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1. Introduction

Sensor array technique has been widely used for measuring various types of wavefields such
as acoustic waves, mechanical vibrations, and electromagnetic waves (1). A common goal of
array signal processing is estimating locations of sources or separating source signals based
on multiple observations. For obtaining efficient spatial information, the geometrical arrange-
ment of sensors is one of the significant issues in this field. An uniform linear array is the most
popular and fundamental one (2; 3), and suiting with purposes, various types of arrays have
been considered such as circular, planar, cross-shaped, cylindrical, and spherical arrays.
In this chapter, we discuss the sensor arrangements from a new viewpoint: correlation be-
tween channels. Generally, multiply-observed signals have correlation each other, and it be-
comes larger especially in a small-sized array. In the case, observed signals themselves are
not efficient representation due to redundancy between channels. Although they are uncor-
related by appropriate basis transformation, which is corresponding to the diagonalization of
the covariance matrix, it depends on the observed wavefield.
However, in isotropic wavefield, there exist special geometrical sensor arrangements, and
observed signals by them are commonly uncorrelated by a fixed basis transform. The signifi-
cances of isotropic wavefield decorrelation are as follows.

• If there is no a priori knowledge to wavefield, the isotropic assumption is simple and
natural. It means spatial stationarity.

• It is well known that Fourier coefficients of a temporally stationary periodic signal are
uncorrelated each other. The isotropic wavefield decorrelation can be considered as
a spatial version of it and decorrelated components represent something like spatial
spectra.

• The decorrelated representation are also useful for encoding because redundancy be-
tween channels is removed.

• It can be applied for several kinds of estimation methods in isotropic noise field such as
power spectrum estimation (4), noise reduction (5), and inverse filtering (6).

• The isotropy assumption can be valid even if wavefield is disturbed by sensor array
itself. Suppose that microphone array is mounted on a rigid sphere. Although the rigid
sphere disturbs acoustic field, due to the symmetry of sphere, the isotropy is still hold.
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Although our main concern lies on microphone array, this technique can be applied for differ-
ent kinds of wavefield sensing. In the following, we mathematically discuss possible sensor
arrangements for blind decorrelation.

2. Problem Formulation

Let’s consider isotropic wavefield is observed by M sensors. Let xm(t) be a signal observed
by the mth sensor, Xm(ω) be its Fourier transform, and X(ω) = (X1(ω) X2(ω) ⋅ ⋅ ⋅ XM(ω))t

be the vector representation, respectively, where t denotes transpose operation. The isotropic
assumption leads: 1) the power spectrum is the same on each sensor, and 2) the cross spectrum
is determined by only a distance between sensors. Under them, by normalizing diagonal
elements to unit, the covariance matrix V(ω) of the observation vector X(ω) is represented as

V(ω) = E[X(ω)X(ω)h] =

⎛

⎜

⎜

⎜

⎝

1 Γ(r12, ω) ⋅ ⋅ ⋅ Γ(r1n, ω)
Γ(r21, ω) 1 ⋅ ⋅ ⋅ Γ(r2n, ω)

...
...

. . .
...

Γ(rn1, ω) Γ(rn2, ω) ⋅ ⋅ ⋅ 1

⎞

⎟

⎟

⎟

⎠

, (1)

where E[⋅] denotes expectation operation, h denotes Hermite transpose, rij is the distance be-
tween sensor i and j, and Γ(r, ω) represents the spatial coherence function of the wavefield
(3). Under the isotropic assumption, V(ω) is a symmetry matrix since rij = rji. Then, there
exist an orthogonal matrix U for diagonalizing V(ω). Our goal here is to find special sensor
arrangements and corresponding unitary matrices U such that UtV(ω)U is constantly diag-
onal for any coherence function Γ(r, ω). We call this kind of decorrelation blind decorrelation
because we don’t have to know each element of V(ω) and the diagonalization matrix U is
determined by only sensor arrangements. For simplicity, we hereafter omit ω and represents
the covariance matrix of the observation vector by just V.
Intuitively, it seems to be impossible since a diagonalization matrix U generally depends on
the elements of V. But suppose that four sensors are arrayed at vertices of a square. There
are only two distances among the vertices in a square: one is the length of a line L, another is

the length of a diagonal
√

2L. Then, numbering sensors circularly shown in Fig. 1 and letting

a = Γ(L, ω) and b = Γ(
√

2L, ω), the covariance matrix is represented as the following form

V =

⎛

⎜

⎜

⎝

1 a b a
a 1 a b
b a 1 a
a b a 1

⎞

⎟

⎟

⎠

(2)
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for any ω and any coherence function Γ(r, ω). Since it is a circulant matrix, it is diagonalized
by the fourth order DFT matrix Z4 or its real-valued version Z̃4 defined by

Z̃4 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

2
cos

2π ⋅ 0 ⋅ 0

4

1
√

2
cos

2π ⋅ 1 ⋅ 0

4

1
√

2
sin

2π ⋅ 1 ⋅ 0

4

1

2
cos

2π ⋅ 2 ⋅ 0

4
1

2
cos

2π ⋅ 0 ⋅ 1

4

1
√

2
cos

2π ⋅ 1 ⋅ 1

4

1
√

2
sin

2π ⋅ 1 ⋅ 1

4

1

2
cos

2π ⋅ 2 ⋅ 1

4
1

2
cos

2π ⋅ 0 ⋅ 2

4

1
√

2
cos

2π ⋅ 1 ⋅ 2

4

1
√

2
sin

2π ⋅ 1 ⋅ 2

4

1

2
cos

2π ⋅ 2 ⋅ 2

4
1

2
cos

2π ⋅ 0 ⋅ 3

4

1
√

2
cos

2π ⋅ 1 ⋅ 3

4

1
√

2
sin

2π ⋅ 1 ⋅ 3

4

1

2
cos

2π ⋅ 2 ⋅ 3

4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(3)

=

⎛

⎜

⎜

⎝

1/2 1/
√

2 0 1/2

1/2 0 1/
√

2 −1/2

1/2 −1/
√

2 0 1/2

1/2 0 −1/
√

2 −1/2

⎞

⎟

⎟

⎠

(4)

such as

Z̃t
4VZ̃4 =

⎛

⎜

⎜

⎝

2a + b + 1 0 0 0
0 −b + 1 0 0
0 0 −b + 1 0
0 0 0 −2a + b + 1

⎞

⎟

⎟

⎠

. (5)

This diagonalization can be performed at any frequency ω because Z̃4 is independent of a and
b. It means the following basis-transformed observations:

y1(t) = x1(t) + x2(t) + x3(t) + x4(t) (6)

y2(t) = x1(t)− x3(t) (7)

y3(t) = x2(t)− x4(t) (8)

y4(t) = x1(t)− x2(t) + x3(t)− x4(t) (9)

are uncorrelated each other in any isotropic field. The problem we concern here is a general-
ization of it.
If UtVU is diagonalized as

UtVU =

⎛

⎜

⎜

⎜

⎝

γ1 0 ⋅ ⋅ ⋅ 0
0 γ2 ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ γM

⎞

⎟

⎟

⎟

⎠

, (10)

V is represented as

V = U

⎛

⎜

⎜

⎜

⎝

γ1 0 ⋅ ⋅ ⋅ 0
0 γ2 ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ γM

⎞

⎟

⎟

⎟

⎠

Ut. (11)

Then, for blind decorrelation, one of the necessary conditions is that V is represented by only
M parameters (γ1 ⋅ ⋅ ⋅ γM) at most. It means there should exist at most M kinds of distances be-
tween sensors. Generally, when sensor arrangement has some symmetry, the number of kinds
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of distances between sensors is smaller. But what kind of symmetry the sensor arrangement
should have for blind decorrelation is not trivial. For instance, suppose an argyle arrangement
shown in Fig. 2. An argyle is one of symmetrical shapes and there are three kinds of distances
among sensors. In arranging sensors shown in Fig. 2, the covariance matrix has the following
form:

V =

⎛

⎜

⎜

⎝

1 a b a

a 1 a c

b a 1 a

a c a 1

⎞

⎟

⎟

⎠

. (12)

Despite of the symmetry of argyle, there are no matrices U for diagonalizing V in eq. (12)
independent of a, b and c. It can be easily checked as the following (7). V in eq. (12) is
decomposed as

V = I + aP1 + bP2 + cP3 (13)

where I is an identity matrix and

P1 =

⎛

⎜

⎜

⎝

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎞

⎟

⎟

⎠

, (14)

P2 =

⎛

⎜

⎜

⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

, (15)

P3 =

⎛

⎜

⎜

⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎞

⎟

⎟

⎠

. (16)

For diagonalizing V by an unitary matrix U independently of a, b and c, it is necessary that
P1, P2 and P3 have to be jointly diagonalized, which is equivalent to the condition that P1, P2

and P3 are commutative each other. However,

P1P2 − P2P1 =

⎛

⎜

⎜

⎝

0 1 0 1
−1 0 −1 0
0 1 0 1
−1 0 −1 0

⎞

⎟

⎟

⎠

, (17)

which means P1 and P2 are not commutative. Therefore, there are no matrices U to jointly
diagonalize P1 and P2. More rigorous mathematical discussion is described in (7).
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Note that the finding possible sensor arrangements for blind decorrelation includes two kinds
of problems. One is what a matrix represented by several parameters is diagonalized inde-
pendently of the values of the parameters, and the other is whether a corresponding sensor
arrangement to the matrix exists or not. For example,

V =

⎛

⎜

⎜

⎜

⎜

⎝

1 a a a a
a 1 a a a
a a 1 a a
a a a 1 a
a a a a 1

⎞

⎟

⎟

⎟

⎟

⎠

(18)

is diagonalized by the DFT matrix Z5 independently of a since V in eq. (18) is a kind of
circulant matrix. However, eq. (18) means that each different pair of five sensors has the same
distance, which cannot be realized in 3-D space.

3. Crystal Arrays

3.1 Necessary Condition

First, we begin with the following lemma.

Lemma 1. A necessary condition for V defined by eq. (1) to be diagonalized by an unitary matrix
U for any function Γ(r, ω), is that a set of distances from the sensor i to others: {ri1, ri2, ⋅ ⋅ ⋅ , rin} is
identical for any i.

Proof: If V is diagonalized by an unitary matrix U without dependence on Γ(r, ω), the matrix
In, of which all elements are identical to 1, is also diagonalized by U since In is obtained by
letting Γ(r, ω) = 1. Then, V and In are commutative. From (i, j) element of VIn = InV, we see
that

n

∑
k=1

Γ(ω, rik) =
n

∑
k=1

Γ(ω, rjk) (19)

has to be an identical equation of rijs. It means that a distance set: {rij∣ j = 1, 2, ⋅ ⋅ ⋅ n} must be
identical for any i.

A square arrangement surely satisfies Lemma 1 since a set of distances from the sensor i to

others is represented as {0, L, L,
√

2L}, which is identical to any i (i = 1, 2, 3, 4). While, in an
argyle arrangement, a set of distances is {0, L, L, D1} from the sensor 1, and it is {0, L, L, D2}
from the sensor 2. Thus, an argyle arrangement does’t satisfy Lemma 1.
Lemma 1 directly gives a necessary condition of sensor arrangements for the blind decorre-
lation, but it is not a sufficient condition. Actually, there exist arrangements which satisfies
Lemma 1 but cannot be used for the blind decorrelation. An example is shown in Fig. 3. The
shape is obtained by merging vertices of two triangles with the same center and a different
angle in the same plane, denoted as a bi-triangle.
In a bi-triangle arrangement, there are four kinds of distances between sensors: a short and a
long line, and two kind of diagonals. The corresponding covariance matrix V is represented
by

V =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 a a b c d
a 1 a d b c
a a 1 c d b
b d c 1 a a
c b d a 1 a
d c b a a 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (20)
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This arrangement obviously satisfies Lemma 1 since a set of distances from a sensor to others is
identically represented as {0, L1, L2, L2, D1, D2, D2}, but there is no matrices for diagonalizing
U in eq. (20).
Although it is not straightforward from lemma 1 to a specific sensor arrangement, we have
found five classes of sensor arrangements for blind decorrelation up to now (4; 8). According
to the geometrical resemblance with crystals, we call them crystal arrays.

3.2 Five classes of crystal arrays

1) Regular polygons

Let circ denote a circulant matrix as

circ(1, a, b) =

⎛

⎝

1 a b
b 1 a
a b 1

⎞

⎠ . (21)

In arraying sensors on vertices of a n-sided regular polygon, circularly numbering them as
shown in Fig. 4 yields a circulant V = circ(1 a1 a2 ⋅ ⋅ ⋅ a2 a1). As well known, it is diagonalized
by n-th order DFT matrix Zn (9). Note that as a matrix to diagonalize V, we can choose a
real-valued version of Zn as shown in eq. (4), instead of Zn itself, which leads simple basis
transform in time domain discussed in section 2.

12

1

2 3

12

3 4

Fig. 4. Regular polygons

2) Rectangular

The second class consists of only a rectangular. Under numbering sensors as shown in Fig. 5,
V has a block-circulant structure as

V =

(

F1 F2

F2 F1

)

, (22)

where F1 and F2 are 2 × 2 circulant matrices. It is diagonalized by U = Z2 ⊗ Z2.
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32

4 1

Fig. 5. Rectangular

3) Regular polygonal prisms

The regular polygonal prism arrangement is given by merging vertices of two parallel n-sided
polygons with the same center axis. As the rectangular case, V has a block-circulant structure
as

V =

(

F1 F2

F2 F1

)

, (23)

where F1 and F2 are n × n circulant matrices. It is diagonalized by

U = Zn ⊗ Z2 =

(

Zn Zn

Zn −Zn

)

. (24)

The two parallel n-sided polygon may have a certain different angle, which yields a twisted
prism as shown in Fig. 6. In n = 2, any angles are allowable, which the matrix structure is
invariant for. In n ≥ 3, only the rotation with π/n is allowable, where V becomes simply
circular by alternative numbering in the top and the bottom n-sided polygon as shown in Fig.
6.
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3

4

1
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1

4
6

882
3

7

5

Fig. 6. Regular polygonal prisms (upper) and their twisted versions (lower)

4) Rectangular solid

In related to a rectangular, a rectangular solid forms another class. By numbering sensors
shown in Fig. 7, V has the following structure:

V =

⎛

⎜

⎜

⎝

F1 F2 F3 F4

F2 F1 F4 F3

F3 F4 F1 F2

F4 F3 F2 F1

⎞

⎟

⎟

⎠

, (25)
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where Fi (i = 1, 2, 3, 4) are 2× 2 circulant matrices. V itself is not circulant but it has recursively
circulant structure. Hence, it is diagonalized by U = Z2 ⊗ Z2 ⊗ Z2.

1

2

3

4

7

6

8

5

Fig. 7. A rectangular solid

5) Regular polyhedrons

As well known, there are only five polyhedrons in a 3D space: tetrahedron, octahedron, hex-
ahedron, icosahedron, and dodecahedron, and they form the last class. From the viewpoint
of the covariance matrix form, the tetrahedron is a special case of a twisted 2-sided polygo-
nal prism, while the octahedron and the hexahedron are a special case of twisted 3-sided and
4-sided polygonal prisms, respectively. The most difficult cases are given by the icosahedron
and the dodecahedron arrangements.
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Fig. 8. Polyhedrons

An icosahedron has twenty equilateral triangular faces. Let two opposed triangles be the
top and the bottom faces. Then, all vertices lie in four parallel planes. Numbering vertices
circularly in the top plane, and then, from the top to the bottom in order as shown in Fig. 8,
we have

V =

⎛

⎜

⎜

⎝

F1 F2 F3 F4

F2 F5 F6 F3

F3 F6 F5 F2

F4 F3 F2 F1

⎞

⎟

⎟

⎠

, (26)
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where

F1 = circ(1 a a), F2 = circ(b a a), (27)

F3 = circ(a b b), F4 = circ(c b b), (28)

F5 = circ(1 b b), F6 = circ(c a a). (29)

Unlike the other cases, V doesn’t have the circulant structure. Taking into consideration that
1) Fi (1 ≤ i ≤ 6) is diagonalized by Z3 (the 3rd order DFT matrix) and 2) the block structure is
different between the first, fourth columns and the second, third columns, we assume that U
has the following form:

U =

⎛

⎜

⎜

⎝

Z3 Z3 Z3 Z3

Z3P3 Z3Q3 −Z3R3 −Z3S3

Z3P3 Z3Q3 Z3R3 Z3S3

Z3 Z3 −Z3 −Z3

⎞

⎟

⎟

⎠

, (30)

where P3, Q3, R3, and S3 are diagonal matrices. Eq. (30) yields

ZHVZ =

⎛

⎜

⎜

⎝

K1 A O O
A K2 O O
O O K3 B
O O B K4

⎞

⎟

⎟

⎠

, (31)

where Ki (1 ≤ i ≤ 4) are diagonal matrices with the size of 3 × 3 and

A = (G1 + G2Q3 + G3Q3 + G4) + P3(G2 + G5Q3 + G6Q3 + G3)

+P3(G3 + G6Q3 + G5Q3 + G2) + (G4 + G3Q3 + G2Q3 + G1), (32)

B = (G1 − G2S3 + G3S3 − G4)− R3(G2 − G5S3 + G6S3 − G3)

+R3(G3 − G6S3 + G5S3 − G2)− (G4 − G3S3 + G2S3 − G1), (33)

G1 = diag(1 + 2a 1 − a 1 − a), (34)

G2 = diag(2a + b b − a b − a), (35)

G3 = diag(a + 2b a − b a − b), (36)

G4 = diag(2b + c c − b c − b), (37)

G5 = diag(1 + 2b 1 − b 1 − b), (38)

G6 = diag(2a + c c − a c − a), (39)

where diag denote a diagonal matrix as

diag(a, b, c) =

⎛

⎝

a 0 0
0 b 0
0 0 c

⎞

⎠ . (40)

From A=0, we have

2(1 + c)(1 + p1q1) + 2(a + b)(2 + 3(p1 + q1) + 2p1q1) = 0, (41)

2(1 + c − a − b)(1 + p2q2) = 0, (42)

2(1 + c − a − b)(1 + p3q3) = 0, (43)
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where pi and qi (i = 1, 2, 3) are diagonal components of P3 and Q3, respectively. For satisfy-
ing them for any aĄCbĄCand c, there are ambiguities on determining p2, q2, p3, q3 since the
conditions for them are only p2q2 = p3q3 = 1, Determining them the most simply, we choose

p1 = p2 = p3 = 1, (44)

q1 = q2 = q3 = −1. (45)

While, B = 0 yields

2(1 − c)(1 + r1s1) + 2(a − b)(2 − (r1 + s1)− 2r1s1) = 0, (46)

2(1 − c)(1 + r2s2)− 2(a − b)(1 − 2(r2 + s2)− r2s2) = 0, (47)

2(1 − c)(1 + r3s3)− 2(a − b)(1 − 2(r3 + s3)− r3s3) = 0, (48)

where ri and si (i = 1, 2, 3) are diagonal components of R3 and S3, respectively. In the same
way as pi and qi, we have

r1s1 = −1, r1 + s1 = 4, (49)

r2s2 = −1, r2 + s2 = 1, (50)

r3s3 = −1, r3 + s3 = 1. (51)

Solving them,

r1 = γ
2
+ + γ+, s1 = γ

2
− + γ−, (52)

r2 = r3 = γ+, s2 = s3 = γ−, (53)

where ri and si (i = 1, 2, 3) are diagonal components of R3 and S3, respectively, and

γ+ = (1 +
√

5)/2, γ− = (1 −
√

5)/2. (54)

Consequently,

P3 = diag(1 1 1), (55)

Q3 = −diag(1 1 1), (56)

R3 = diag(γ2
+ + γ+ γ+ γ+), (57)

S3 = diag(γ2
− + γ− γ− γ−), (58)

in eq. (30) gives us U to diagonalize eq. (26).
By the similar numbering to the icosahedron shown in Fig. 8, V in the dodecahedron has the
same block structure as eq. (26) where

F1 = circ(1 a b b a), F2 = circ(a b c c b), (59)

F3 = circ(d c b b c), F4 = circ(e d c c d), (60)

F5 = circ(1 b d d b), F6 = circ(e c a a c). (61)

The form of U is also the same structure as eq. (30), just replacing the subscript 3 by 5, where

P5 = diag(1 γ
2
− γ

2
+ γ

2
+ γ

2
−), (62)

Q5 = −diag(1 γ
2
+ γ

2
− γ

2
− γ

2
+), (63)

R5 = diag(γ2
+ + γ+ γ+ γ+ γ+ γ+), (64)

S5 = diag(γ2
− + γ− γ− γ− γ− γ−). (65)
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4. Conclusions

In this paper, we discussed geometrical sensor arrangements for the blind decorrelation of
isotropic wavefield. Based on a necessary condition, we showed specific five classes of sensor
arrangements: 1) regular polygons, 2) rectangular, 3) regular polygonal prisms, 4) rectangular
solid, and 5) polyhedrons, the first two of which have two dimensional, and other three have
three dimensional geometries, respectively. Specific orthogonal matrices corresponding to the
sensor arrangements are also derived.
Finding all possible sensor arrangements for blind decorrelation is still an open problem and
we are investigating the relationship with the group theory in mathematics, especially, a point
group (10).
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