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1. Introduction

Array processing techniques aim principally at estimating source Directions Of Arrivals
(DOA’s) based on the observations recorded on a sensor array. The vector-sensor technology
allows the use of polarization as an additional parameter, leading to vector sensor array
processing. In electromagnetics, a vector sensor is composed of six spatially collocated but
orthogonally polarized antennas, measuring all six components (three for the electric and
three for the magnetic fields) of the incident wave. The benefits of considering source
polarization in signal estimation were illustrated in Burgess and Van Veen (1994); Le Bihan et
al. (2007); Li (1993); Miron et al. (2006); Nehorai and Paldi (1994); Rahamim et al. (2003); Weiss
and Friedlander (1993a); Wong and Zoltowski (1997) for diverse signal processing problems.
Most of these algorithms are based on bilinear polarized source mixture models which suffers
from identifiability problems. This means that, without any additional constraint, the steering
vectors of the sources (and implicitly their DOA’s) cannot be uniquely determined by matrix
factorization. The identifiability issues involved in vector sensor applications are investigated
in Ho et al. (1995); Hochwald and Nehorai (1996); Tan et al. (1996a;b).

The use of polarization as a third diversity, in addition to the temporal and spatial diversities,
in vector sensor array processing, leading to a trilinear mixture model, was proposed for the
first time in Miron et al. (2005). Based on this model, a PARAFAC-based algorithm for signal
detection, was later introduced in Zhang and Xu (2007). Multilinear models gave rise to a
great interest in the signal processing community as they exhibit interesting identifiability
properties; their factorization is unique under mild conditions. Several multilinear algorithms
were proposed, mainly in telecommunication domain, using different diversity schemes such
as code diversity Sidiropoulos et al. (2000a), multi-array diversity Sidiropoulos et al. (2000b)
or time-block diversity Rong et al. (2005). For the trilinear mixture model with polarization
diversity, we derived in Guo et al. (2008) the identifiability conditions and showed that
in terms of source separation, the performance of the proposed algorithm is similar to the
classical non-blind techniques.
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Nevertheless, the joint estimation of all the three parameters of the sources (DOA, polar-
ization, and temporal sequence) is time-consuming, and it does not always have a practical
interest, especially in array processing applications. A novel stochastic algorithm for DOA
estimation of polarized sources is introduced in this chapter, allowing the estimation of only
two source parameters (DOA and polarization), and thus presenting a smaller computa-
tional complexity than its trilinear version Guo et al. (2008). It is based on a quadrilinear
(fourth-order tensor) representation of the polarized data covariance. The parameters are
then obtained by CANDECOMP/PARAFAC (CP) decomposition the covariance tensor of the
polarized data, using a quadrilinear alternating least squares (QALS) approach. A significant
advantage of the proposed algorithm lies in the fact that the methods based on statistical
properties of the signals proved to outperform deterministic techniques Swindlehurst et al.
(1997), provided that the number of samples is sufficiently high. The performance of the
proposed algorithm is compared in simulations to the trilinear deterministic method, MUSIC
and ESPRIT for polarized sources and to the Cramér-Rao Bound.

This chapter is organized as follows. Section 2 provides some multilinear algebra notions, nec-
essary for the presentation of the multilinear models. In Section 3 we introduce the quadri-
linear model for the covariance of the polarized data and the identifiability conditions for
this model are discussed in Section 4. Section 5 presents the QALS algorithm for parameter
estimation; performance and computational complexity issues are also addressed. Section 6
compares in simulations the quadrilinear algorithm to its trilinear version Guo et al. (2008),
to polarized versions of MUSIC Miron et al. (2005) and ESPRIT Zoltowski and Wong (2000b)
and to the CRB for vector sensor array Nehorai and Paldi (1994). We summarize our findings
in Section 7.

2. Multilinear algebra preliminaries

In multilinear algebra a tensor is a multidimensional array. More formally, an N-way or Nth-
order tensor is an element of the tensor product of N vector spaces, each of which has its
own coordinate system. A first-order tensor is a vector, a second-order tensor is matrix and
tensors of order three or higher are called higher-order tensors. Extending matrix notations to
multilinear algebra we denote by

XXX ∈ C
I1×I2×···×IN (1)

a Nth-order tensor with complex entries. In (1), I1, I2, . . . , IN are the dimensions of the N modes
of XXX . The entry (i1, i2, . . . , iN) of XXX is denoted by xi1i2 ...iN

or by (XXX )i1i2 ...iN
. For an overview

of higher-order tensor their applications, the reader is referred to De Lathauwer (1997); Kolda
and Bader (2007). In this section we restrain ourselves to some basic definitions and elemen-
tary operations on tensors, necessary for the understanding of the multilinear models and
algorithms presented in the paper.

Definition 1 (Norm of a tensor). The norm of a tensor XXX ∈ CI1×I2×···×IN is the square root of the
sum of the squares of all its elements, i.e.,

‖XXX‖
△
=

√

√

√

√

I1

∑
i1

I2

∑
i2

· · ·
IN

∑
iN

|xi1i2 ...iN
|2. (2)

This is analogous to the matrix Frobenius norm.
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Definition 2 (Outer product). The outer product of two tensors XXX ∈ CI1×I2×···×IN and YYY ∈

C J1×J2×···×JP is a tensor XXX ◦YYY ∈ CI1×···×IN×J1×···×JP defined by (XXX ◦YYY)i1 ...iN j1 ...jp

△
= xi1 ...iN

yj1 ...jP
.

The outer product allows to extend the rank-one matrix definition to tensors.

Definition 3 (Rank-one tensor). An N-way tensor XXX ∈ CI1×I2×···×IN is rank-one if it can be
written as the outer product of N vectors, i.e.,

XXX = a1 ◦ a2 ◦ · · · ◦ aN (3)

with an ∈ CIn .

Tensors can be multiplied together though the notation is much more complex than for ma-
trices. Here we consider only the multiplication of a tensor by a matrix (or a vector) in mode
n.

Definition 4 (n-mode product). The n-mode product of a tensor XXX ∈ CI1×···×In×···×IN with a
matrix U ∈ C J×In is denoted by XXX ×n U and is of size I1 × · · · × In−1 × J × In+1 × · · · × IN . It is
defined as :

(XXX ×n U)i1 ...in−1 jin+1 ...iN
=

In

∑
in=1

xi1i2 ...iN
ujin

. (4)

Several matrix products are important in multilinear algebra formalism, two of which being
recalled here.

Definition 5 (Kronecker product). The Kronecker product of matrices A ∈ CI×J and B ∈ CK×L,
denoted by A ⊗ B, is a matrix of size IK × JL defined by

A ⊗ B =







a11B . . . a1JB

...
. . .

...
aI1B . . . aI JB






(5)

Definition 6 (Khatri-Rao product). Given matrices A ∈ CI×K and B ∈ C J×K , their Khatri-Rao
product is a I J × K matrix defined by

A ⊙ B = [a1 ⊗ b1 a2 ⊗ b2 . . . aK ⊗ bK ], (6)

where ak and bk are the the columns of A and B, respectively.

A tensor can be also represented into a matrix form, process known as matricization or unfold-
ing.

Definition 7 (Matricization). The n-mode matricization of a tensor XXX ∈ CI1×···×In×···×IN is a
In × I1 . . . In−1 In+1 . . . IN size matrix denoted by X(n). The tensor element (i1, i2, . . . , iN) maps to

matrix element (in, j) where

j = 1 +
N

∑
k=1,k �=n

(ik − 1)Jk with Jk =
k−1

∏
m=1,m �=n

Im (7)

This operation is generally used in the alternating least squares algorithms for fitting the CP
models, as illustrated in section 5.1.
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3. The quadrilinear model of the data covariance

We introduce in this section a quadrilinear model for electromagnetic source covariance,
recorded on a six-component vector sensor array. Suppose the sources are completely po-
larized and the propagation takes place in an isotropic, homogeneous medium. We start by
modeling the data measurements under the narrowband assumptions.
Consider an uniform array of M identical sensors spaced by ∆x along the x-axis, collecting
narrowband signals emitted from K (known a priori) spatially distinct far-field sources. For the
kth incoming wave, its DOA can be totally determined by the azimuth angle φk ∈ [0, π) (mea-
sured from +x-axis) and the elevation angle ψk ∈ [−π/2, π/2] (measured from the ground)1,
as shown in Fig. 1.

Fig. 1. 2D-DOA on a vector-sensor array

On an electromagnetic vector sensor, if the incoming wave has unit power, the electric- and

magnetic-field measurements in Cartesian coordinates, e(φk, ψk, αk, βk) � [e
(k)
x , e

(k)
y , e

(k)
z ]T and

h(φk, ψk, αk, βk) � [h
(k)
x , h

(k)
y , h

(k)
z ]T , can be stacked up in a 6 × 1 vector bk Nehorai and Paldi

(1994)

bk �

[
e(φk, ψk, αk, βk)
h(φk, ψk, αk, βk)

]

=











− sin φk − cos φk sin ψk

cos φk − sin φk sin ψk

0 cos ψk

− cos φk sin ψk sin φk

− sin φk sin ψk − cos φk

cos ψk 0











︸ ︷︷ ︸

F(φk ,ψk)

gk. (8)

The 6 × 2 matrix Fk � F(φk, ψk) is referred to as the steering matrix Nehorai et al. (1999)
and characterizes the capacity of a vector sensor to convert the information carried on an
impinging polarized plane wave defined in polar coordinates, into the six electromagnetic-
field-associated electric signals in the corresponding Cartesian coordinates. A 2 × 1 complex

1 We assume the sources are all coming from the +y side of the x − z plane.
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vector

gk � g(αk, βk) =

[
gφ(αk, βk)
gψ(αk, βk)

]

=

[
cos αk sin αk

− sin αk cos αk

] [
cos βk

j sin βk

]

(9)

is used to depict the polarization state of the kth signal in terms of the orientation angle αk ∈
(−π/2, π/2] and the ellipticity angle βk ∈ [−π/4, π/4] Deschamps (1951). Now we have a
compact expression bk = F(φk, ψk)g(αk, βk) modeling the vector sensor response to the kth
polarized source.
Under the far-field assumption, the spatial response of a M-sensor uniform linear array to the
kth impinging wave, i.e. the steering vector, presents a Vandermonde structure that can be
expressed as

ak � a(φk, ψk) = [1, ak, · · · , aM−1
k ]T , (10)

where ak = exp(jk0∆x cos φk cos ψk) is the inter-sensor phase shift and k0 is the wave number
of the electromagnetic wave.
Let p (p = 1, 2, · · · , 6) index the six field components of the vector bbbk respectively. Define

A � [a1, . . . , aK ] =








1 · · · 1
a1 · · · ak
...

...

aM−1
1 · · · aM−1

K








(11)

a M × K matrix containing the spatial responses of the array to the N sources,

B � [b1, . . . , bK ] = [F1g1, . . . , FKgK ] (12)

a 6 × K matrix containing the polarization responses and

S
△
=






s1 · · · 0
...

. . .
...

0 · · · sK




 (13)

a K × K diagonal matrix containing the K source signals at some fixed instant. With these
notations, a snapshot of the output of the array can be organized as a M × 6 matrix

X = ASBT + N (14)

with N a M × 6 matrix expressing the noise contribution on the antenna.
The following assumptions are made

(A1) Sources are zero-mean, stationary, mutually uncorrelated, ergodic processes

(A2) The noise is i.i.d. centered, complex Gaussian process of variance σ2, non-polarized and
spatially white

(A3) The sources have distinct DOAs

We define the 4-way covariance of the received data as the M × 6 × M × 6 array

CCCXX
△
= E{X ◦ X∗} (15)

where E{.} denotes the mathematical expectation operation. We define also the source covari-
ance as the K × K × K × K fourth-order tensor
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CCCSS
△
= E{S ◦ S∗} (16)

From (14) and (16) and using assumptions (A1) and (A2) the covariance tensor of the received
data takes the following form

CCCXX = CCCSS ×1 A ×2 B ×3 A∗ ×4 B∗ +NNN (17)

where NNN is a M × 6 × M × 6 tensor containing the noise power on the sensors. Assumption
(A1) implies that CCCSS is a hyperdiagonal tensor (the only non-null entries are those having
all four indices identical), meaning that CCCXX presents a quadrilinear CP structure Harshman
(1970). The inverse problem for the direct model expressed by (17) is the estimation of matrices
A and B starting from the 4-way covariance tensor CCCXX .

4. Identifiability of the quadrilinear model

Before addressing the problem of estimating A and B, the identifiability of the quadrilinear
model (17) must be studied first. The polarized mixture model (17) is said to be identifiable if
A and B can be uniquely determined (up to permutation and scaling indeterminacies) from
CCCXX . In multilinear framework Kruskal’s condition is a sufficient condition for unique CP
decomposition, relying on the concept of Kruskal-rank or (k-rank) Kruskal (1977).

Definition 8 (k-rank). Given a matrix A ∈ CI×J , if every linear combination of l columns has full
column rank, but this condition does not hold for l + 1, then the k-rank of A is l, written as kA = l.

Note that kA ≤ rank(A) ≤ min(I, J), and both equalities hold when rank(A) = J.
Kruskal’s condition was first introduced in Kruskal (1977) for the three-way arrays and gen-
eralized later on to multi-way arrays in Sidiropoulos and Bro (2000). We formulate next
Kruskal’s condition for the quadrilinear mixture model expressed by (17), considering the
noiseless case (NNN in (17) has only zero entries).

Theorem 1 (Kruskal’s condition). Consider the four-way CP model (17). The loading matrices
A and B can be uniquely estimated (up to column permutation and scaling ambiguities), if but not
necessarily

kA + kB + kA∗ + kB∗ ≥ 2K + 3 (18)

This implies
kA + kB ≥ K + 2 (19)

It was proved Tan et al. (1996a) that in the case of vector sensor arrays, the responses of a
vector sensor to every three sources of distinct DOA’s are linearly independent regardless of
their polarization states. This means, under the assumption (A3) that kB ≥ 3. Furthermore, as
A is a Vandermonde matrix, (A3) also guarantees that kA = min(M, K). All these results sum
up into the following corollary:

Corollary 1. Under the assumptions (A1)-(A3), the DOA’s of K uncorrelated sources can be uniquely
determined using an M-element vector sensor array if M ≥ K − 1, regardless of the polarization states
of the incident signals.

This sufficient condition also sets an upper bound on the minimum number of sensors needed
to ensure the identifiability of the polarized mixture model. However, the condition M ≥
K − 1 is not necessary when considering the polarization states, that is, a lower number of
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sensors can be used to identify the mixture model, provided that the polarizations of the
sources are different. Also the symmetry properties of CCCXX are not considered and we believe
that they can be used to obtain milder sufficient conditions for ensuring the identifiability.

5. Source parameters estimation

We present next the algorithm used for estimating sources DOA’s starting from the observa-
tions on the array and address some issues regarding the accuracy and the complexity of the
proposed method.

5.1 Algorithm

Supposing that L snapshots of the array are recorded and using (A1) an estimate of the polar-
ized data covariance (15) can be obtained as the temporal sample mean

Ĉ̂ĈCXX =
1

L

L

∑
l=1

X(l) ◦ X
∗(l). (20)

For obvious matrix conditioning reasons, the number of snapshots should be greater or equal
to the number of sensors, i.e. L ≥ K.

The algorithm proposed in this section includes three sequential steps, during which the
DOA information is extracted and then refined to yield the final DOA’s estimates. These three
steps are presented next.

5.1.1 Step 1

This first step of the algorithm is the estimation of the loading matrices A and B from Ĉ̂ĈCXX .
This estimation procedure can be accomplished via the Quadrilinear Alternative Least Squares
(QALS) algorithm Bro (1998), as shown next.
Denote by Ĉpq = Ĉ̂ĈCXX(:, p, :, q) the (p, q)th matrix slice (M × M) of the covariance tensor Ĉ̂ĈCXX .
Also note Dp(·) the operator that builds a diagonal matrix from the pth row of another and

∆ = diag
(

E‖s1‖
2, . . . , E‖sK‖

2
)

, the diagonal matrix containing the powers of the sources. The
matrices A and B can then be determined by minimizing the Least Squares (LS) criterion

φ(σ, ∆, A, B) =
6

∑
p,q=1

∥

∥

∥
Ĉpq − A∆Dp(B)Dq(B

∗)AH − σ2δpqIM

∥

∥

∥

2

F
(21)

that equals

φ(σ, ∆, A, B) = ∑
p,q

∥

∥

∥
Ĉpq − A∆Dp(B)Dq(B

∗)AH
∥

∥

∥

2

F
(22)

− 2σ2 ∑
p
ℜ
{

tr
(

Ĉpp − A∆Dp(B)Dp(B
∗)AH

)}

+ 6Mσ4

where tr(·) computes the trace of a matrix and ℜ(·) denotes the real part of a quantity.
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φ(σ, ∆, A, B) = ∑
p,q

∥

∥

∥
Ĉpq − A∆Dp(B)Dq(B

∗)AH
∥

∥

∥

2

F
− 2σ2 ∑

p
ℜ
{

tr
(

Ĉpp − 2M∆

)}

+ 6Mσ4

(23)
Thus, finding A and B is equivalent to the minimization of (23) with respect to A and B, i.e.

{Â, B̂} = min
A,B

ω(∆, A, B) (24)

subject to ‖aaak‖
2 = M and ‖bbbk‖

2 = 2, where

ω(∆, A, B) = ∑
p,q

∥

∥

∥
Ĉpq − A∆Dp(B)Dq(B

∗)AH
∥

∥

∥

2

F
(25)

The optimization process in (24) can be implemented using QALS algorithm, briefly summa-
rized as follows.

Algorithm 1 QALS algorithm for four-way symmetric tensors

1: INPUT: the estimated data covariance Ĉ̂ĈCXX and the number of the sources K
2: Initialize the loading matrices A, B randomly, or using ESPRIT Zoltowski and Wong

(2000a) for a faster convergence
3: Set C = A∗ and D = B∗.
4: repeat
5: A = X(1)[(B ⊙ C ⊙ D)†]T

6: B = X(2)[(C ⊙ D ⊙ A)†]T

7: C = X(3)[(D ⊙ A ⊙ B)†]T

8: D = X(4)[(A ⊙ B ⊙ C)†]T ,

where (·)† denotes Moore-Penrose pseudoinverse of a matrix
9: Update C, D by C := (A∗ + C)/2 and D := (B∗ + D)/2

10: until convergence
11: OUTPUT: estimates of A and B.

Once the Â, B̂ are estimated, the following post-processing is needed for the refined DOA
estimation.

5.1.2 Step 2

The second step of our approach extracts separately the DOA information contained by the
columns of Â (see eq. (10)) and B̂ (see eq. (8)).

First the estimated matrix B̂ is exploited via the physical relationships between the electric and
magnetic field given by the Poynting theorem. Recall the Poynting theorem, which reveals the
mutual orthogonality nature among the three physical quantities related to the kth source: the
electric field ek, the magnetic field hk, and the kth source’s direction of propagation, i.e., the
normalized Poynting vector uk.
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uk =





cos φk cos ψk

sin φk cos ψk

sin ψk



 = ℜ

(

ek × h∗
k

‖ek‖ · ‖hk‖

)

. (26)

Equation (26) gives the cross-product DOA estimator, as suggested in Nehorai and Paldi
(1994). An estimate of the Poynting vector for the kth source ûk is thus obtained, using the
previously estimated êk and b̂k.

Secondly, matrix Â is used to extract the DOA information embedded in the Vandermonde
structure of its columns âk.
Given the noisy steering vector â = [â0 â1 · · · âM−1]

T , its Fourier spectrum is given by

A(ω) =
1

M

M−1

∑
m=0

âm exp(−jmω) (27)

as a function of ω.
Given the Vandermonde structure of the steering vectors, the spectrum magnitude |A(ω)| in
the absence of noise is maximum for ω = ω0. In the presence of Gaussian noise, maxω |A(ω)|

provides an maximum likelihood (ML) estimator for ω0 � k0∆x cos φ cos ψ as shown in Rife
and Boorstyn (1974).

In order to get a more accurate estimator of ω0 � k0∆x cos φ cos ψ, we use the following
processing steps.

1) We take uniformly Q (Q ≥ M) samples from the spectrum A(ω), say {A(2πq/Q)}Q−1
q=0 ,

and find the coarse estimate ω̂ = 2πq̆/Q so that A(2πq̆/Q) has the maximum magni-
tude. These spectrum samples are identified via the fast Fourier transform (FFT) over
the zero-padded Q-element sequence {â0, . . . , âM−1, 0, . . . , 0}.

2) Initialized with this coarse estimate, the fine estimate of ω0 can be sought by maximizing
|A(ω)|. For example, the quasi-Newton method (see, e.g., Nocedal and Wright (2006))

can be used to find the maximizer ω̂0 over the local range
(

2π(q̆−1)
Q ,

2π(q̆+1)
Q

)

.

The normalized phase-shift can then be obtained as ̺ = (k0∆x)−1 arg(ω̂0).

5.1.3 Step 3

In the third step, the two DOA information, obtained at Step 2, are combined in order to
get a refined estimation of the DOA parameters φ and ψ. This step can be formulated as the
following non-linear optimization problem

min
ψ,φ

∥

∥

∥

∥

∥

∥





cos φ cos ψ

sin φ cos ψ

sin ψ



− û

∥

∥

∥

∥

∥

∥

subject to cos φ cos ψ = ̺. (28)

A closed form solution to (28) can be found by transforming it into an alternate problem of 3-D
geometry, i.e. finding the point on the vertically posed circle cos φ cos ψ = ̺ which minimizes
its Euclidean distance to the point û, as shown in Fig. 2.
To solve this problem, we do the orthogonal projection of û onto the plane x = ̺ in the 3-D
space, then join the perpendicular foot with the center of the circle by a piece of line segment.
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plane x = ̺

O′

O

y

z

x

P

Q

Fig. 2. Illustration of the geometrical solution to the optimization problem (28). The vector �OP represents
the coarse estimate of Poynting vector û. It is projected orthogonally onto the x = ̺ plane, forming a

shadow cast O′Q, where O′ is the center of the circle of center O on the plane given in the polar coordinates

as cos φ cos ψ = ̺. The refined estimate, obtained this way, lies on O′Q. As it is also constrained on the
circle, it can be sought as their intersection point Q.

This line segment collides with the circumference of the circle, yielding an intersection point,
that is the minimizer of the problem.

Let û � [û1 û2 û3]
T and define κ � û3/û2, then the intersection point is given by

[

̺ ±
√

1−̺2

1+κ2 ±|κ|
√

1−̺2

1+κ2

]T
(29)

where the signs are taken the same as their corresponding entries of vector û. Thus, the az-
imuth and elevation angles estimates are given by

φ̂ =







arctan 1
|̺|

√

1−̺2

1+κ2 , if ̺ ≥ 0

π − arctan 1
|̺|

√

1−̺2

1+κ2 , if ̺ < 0
(30a)

ψ̂ = arcsin

√

̺2 +
1 − ̺2

1 + κ2
, (30b)

which completes the DOA estimation procedure. The polarization parameters can be obtained
in a similar way from B̂.
It is noteworthy that this algorithm is not necessarily limited to uniform linear arrays. It can
be applied to arrays of arbitrary configuration, with minimal modifications.

5.2 Estimator accuracy and algorithm complexity issues

This subsection aims at giving some analysis elements on the accuracy and complexity of the
proposed algorithm (QALS) used for the DOA estimation.

www.intechopen.com



Vector sensor array processing for polarized sources  
using a quadrilinear representation of the data covariance 29

An exhaustive and rigorous performance analysis of the proposed algorithm is far from
being obvious. However, using some simple arguments, we provide elements giving some
insights into the understanding of the performance of the QALS and allowing to interpret the
simulation results presented in section 6.

Cramér-Rao bounds were derived in Liu and Sidiropoulos (2001) for the decomposition of
multi-ways arrays and in Nehorai and Paldi (1994) for vector sensor arrays. It was shown Liu
and Sidiropoulos (2001) that higher dimensionality benefits in terms of CRB for a given data
set. To be specific, consider a data set represented by a four-way CP model. It is obvious that,
unfolding it along one dimension, it can also be represented by a three-way model. The result
of Liu and Sidiropoulos (2001) states that than a quadrilinear estimator normally yields better
performance than a trilinear one. In other word, the use of a four-way ALS on the covariance
tensor is better sounded that performing a three-way ALS on the unfolded covariance tensor.
A comparaison can be conducted with respect to the three-way CP estimator used in Guo et
al. (2008), that will be denoted TALS. The addressed question is the following : is it better to
perform the trilinear decomposition of the 3-way raw data tensor or the quadriliear decom-
position of the 4-way convariance tensor ?
To compare the accuracy of the two algorithms we remind that the variance of an unbiased

linear estimator of a set of independant parameters is of the order of O
(

P
N σ2

)

, where P is the

number of parameters to estimate and N is the number of samples.
Coming back to the QALS and TALS methods, the main difference between them is that the
trilinear approach estimates (in addition to A and B), the K temporal sequences of size L.
More precisely, the number of parameters to estimate equals (6 + M + L)K for the three-way
approach and (6 + M)K for the quadrilinear method. Nevertheless, TALS is directly applied
on the three-way raw data, meaning that the number of available observations (samples) is
6ML while QALS is based on the covariance of the data which, because of the symmetry of the
covariance tensor, reduces the samples number to half of the entries of Ĉ̂ĈCXX , that is 18M

2. The
point is that the noise power for the covariance of the data is reduced by the averaging in (20)

to σ2/L. If we resume, the estimation variance for TALS is of the order of O
(

(6+M+L)K
6ML

σ2
)

and of O
(

(6+M)K
18M2

σ2

L

)

for QALS. Let us now analyse the typical situation consisting in having

a large number of time samples. For large values of L, (L ≫ (M + 6)), the variance of TALS

tends to a constant value O

(

K

6M
σ2

)

while for QALS it tends to 0. This means that QALS

improves continuously with the sample size while this is not the case for TALS. This analysis
also applies to the case of MUSIC and ESPRIT since both also work on time averaged data.

We address next some computational complexity aspects for the two previously discussed
algorithms. Generally, for an N-way array of size I1 × I2 × · · · × IN , the complexity of its CP
decomposition in a sum of K rank-one tensors, using ALS algorithm is O(K ∏

N

n=1 In) Rajih and
Comon (2005), for each iteration. Thus, for one iteration, the number of elementary operations
involved is QALS is of order O(62

KM
2) and of the order of O(6KML) for TALS. Normally

6M ≪ L, meaning that for large data sets QALS should be much faster than its trilinear
counterpart. In general, the number of iterations required for the decomposition convergence,
is not determined by the data size only, but is also influenced by the initialisation and the
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parameter to estimate. This makes an exact theoretical analysis of the algorithms complexity
rather difficult. Moreover, trilinear factorization algorithms have been extensively studied
over the last two decades, resulting in improved, fast versions of ALS such as COMFAC2,
while the algorithms for quadrilinear factorizations remained basic. This makes an objective
comparison of the complexity of the two algorithms even more difficult.
Compared to MUSIC-like algorithms, which are also based on the estimation of the data co-
variance, the main advantage of QALS is the identifiability of the model. While MUSIC gen-
erally needs an exhaustive grid search for the estimation of the source parameters, the quadri-
linear method yields directly the steering and the polarization vectors for each source.

6. Simulations and results

In this section, some typical examples are considered to illustrate the performance of the
proposed algorithm with respect to different aspects. In all the simulations, we assume the
inter-element spacing between two adjacent vector sensors is half-wavelength, i.e., ∆x = λ/2
and each point on the figures is obtained through R = 500 independent Monte Carlo runs.
We divided this section into two parts. The first aims at illustrating the efficiency of the novel
method for the estimation of both DOA parameters (azimuth and elevation angles) and the
second shows the effects of different parameters on the method. Comparisons are conducted
to recent high-resolution eigenstructure-based algorithms for polarized sources and to the
CRB Nehorai and Paldi (1994).

Example 1: This example is designed to show the efficiency of the proposed algorithm using
a uniform linear array of vector sensors for the 2D DOA estimation problem. It is compared
to MUSIC algorithm for polarized sources, presented under different versions in Ferrara and
Parks (1983); Gong et al. (2009); Miron et al. (2005); Weiss and Friedlander (1993b), to TALS
Guo et al. (2008) and the Cramér-Rao bound for vector sensor arrays proposed by Nehorai
Nehorai and Paldi (1994). A number of K = 2 equal power, uncorrelated sources are consid-
ered. The DOA’s are set to be φ1 = 20◦, ψ1 = 5◦ for the first source and φ2 = 30◦, ψ2 = 10◦

for the other; the polarization states are α1 = α2 = 45◦, β1 = −β2 = 15◦. In the simula-
tions, M = 7 sensors are used and in total L = 100 temporal snapshots are available. The
performance is evaluated in terms of root-mean-square error (RMSE). In the following simu-
lations we convert the angular RMSE from radians to degrees to make the comparisons more
intuitive. The performances of these algorithms are shown in Fig. 3(a) and (b) versus the in-
creasing signal-to-noise ratio (SNR). The SNR is defined per source and per field component
(6M field components in all). One can observe that all the algorithms present similar per-
formance and eventually achieve the CRB for high SNR’s (above 0 dB in this scenario). At
low SNR’s, nonetheless, our algorithm outperforms MUSIC, presenting a lower SNR thresh-
old (about 8 dB) for a meaningful estimate. CP methods (TALS and QALS), which are based
on the LS criterion, are demonstrated to be less sensitive to the noise than MUSIC. This con-
firms the results presented in Liu and Sidiropoulos (2001) that higher dimension (an increased
structure of the data) benefits in terms of estimation accuracy.
Example 2: We examine next the performance of QALS in the presence of four uncorrelated
sources. For simplicity, we assume all the elevation angles are zero, ψk = 0◦ for k = 1, . . . , 4,
and some typical values are chosen for the azimuth angles, respectively: φ1 = 10◦, φ2 = 20◦,

2 COMFAC is a fast implementation of trilinear ALS working with a compressed version of the data
Sidiropoulos et al. (2000a)
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(a) RMSE of the DOA estimation for the first source
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(b) RMSE of the DOA estimation for the second source

Fig. 3. RMSE of the DOA estimation versus SNR in the presence of two uncorrelated sources
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Fig. 4. RMSE of azimuth angle estimation versus SNR for the second source in the presence of
four uncorrelated sources

φ1 = 30◦, φ1 = 40◦. The polarizations parameters are α2 = −45◦, β2 = −15◦ for the second
source and for the others, the sources have equal orientation and ellipticity angles, 45◦ and 15◦

respectively. We keep the same configuration of the vector sensor array as in example 1. For
this example we compare our algorithm to polarized ESPRIT Zoltowski and Wong (2000a;b)
as well. The following three sets of simulations are designed with respect to the increasing
value of SNR, number of vector sensors and snapshots.
Fig. 4 shows the comparison between the four algorithms as the SNR increases. Once again,
the advantage of the multilinear approaches in tackling DOA problem at low SNR’s can be
observed. The quadrilinear approach seems to perform better than TALS as the SNR increases.
The MUSIC algorithm is more sensitive to the noise than all the others, yet it reaches the CRB
as the SNR is high enough. The estimate obtained by ESPRIT is mildly biased.
Next, we show the effect of the number of vector sensors on the estimators. The SNR is fixed
to 20 dB and all the other simulation settings are preserved. The results are illustrated on
Fig. 5. One can see that the DOA’s of the four sources can be uniquely identified with only
two vector sensors (RMSE around 1◦), which substantiates our statement on the identifiablity
of the model in Section 4. As expected, the estimation accuracy is reduced by decreasing the
number of vector sensors, and the loss becomes important when only few sensors are present
(four sensors in this case). Again ESPRIT yieds biased estimates. For the trilinear method,
it is shown that its performance limitation, observed on Fig. 4, can be tackled by using more
sensors, meaning that the array aperture is a key parameter for TALS. The MUSIC method
shows mild advantages over the quadrilinear one in the case of few sensors (less than four
sensors), yet the two yield comparable performance as the number of vector sensors increases
(superior to the other two methods).

2 4 6 8 10 12 14 16 18 20
10−3

10−2

10−1

100

101

Number of vector sensors

R
M

S
E

 (d
eg

)

CRB
QALS
TALS
ESPRIT
Vector MUSIC

www.intechopen.com



Vector sensor array processing for polarized sources  
using a quadrilinear representation of the data covariance 33

−10 −5 0 5 10 15 20 25 30
10−3

10−2

10−1

100

101

SNR (dB)

R
M

S
E

 (d
eg

)

CRB
QALS
TALS
ESPRIT
Vector MUSIC

2 4 6 8 10 12 14 16 18 20
10−3

10−2

10−1

100

101

Number of vector sensors

R
M

S
E

 (d
eg

)

CRB
QALS
TALS
ESPRIT
Vector MUSIC

Fig. 5. RMSE of azimuth angle estimation versus the number of vector sensors for the second
source in the presence of four uncorrelated sources

Finally, we fix the SNR at 20 dB, while keeping the other experimental settings the same as
in Fig. 4, except for an increasing number of snapshots L which varies from 10 to 1000. Fig. 6
shows the varying RMSE with respect to the number of snapshots in estimating azimuth an-
gle of the second source. Once again, the proposed algorithm performs better than TALS.
Moreover as L becomes important, one can see that TALS tends to a constant value while the
RMSE for QALS continues to decrease, which confirms the theoretical deductions presented
in subsection 5.2.

7. Conclusions

In this paper we introduced a novel algorithm for DOA estimation for polarized sources,
based on a four-way PARAFAC representation of the data covariance. A quadrilinear alter-
nated least squares procedure is used to estimate the steering vectors and the polarization
vectors of the sources. Compared to MUSIC for polarized sources, the proposed algorithm
ensures the mixture model identifiability; thus it avoids the exhaustive grid search over the
parameters space, typical to eigestructure algorithms. An upper bound on the minimum num-
ber of sensors needed to ensure the identifiability of the mixture model is derived. Given the
symmetric structure of the data covariance, our algorithm presents a smaller complexity per
iteration compared to three-way PARAFAC applied directly on the raw data. In terms of
estimation, the proposed algorithm presents slightly better performance than MUSIC and ES-
PRIT, thanks to its higher dimensionality and it clearly outperforms the three-way algorithm
when the number of temporal samples becomes important. The variance of our algorithm
decreases with an increase in the sample size while for the three-way method it tends asymp-
totically to a constant value.
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Fig. 6. RMSE of azimuth angle estimation versus the number of snapshots for the second
source in the presence of four uncorrelated sources

Future works should focus on developing faster algorithms for four-way PARAFAC factor-
ization in order to take full advantage of the lower complexity of the algorithm. Also, the
symmetry of the covariance tensor must be taken into account to derive lower bounds on the
minimum number of sensors needed to ensure the source mixture identifiability.
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