We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



23

Roundoff Noise Minimization for State-Estimate
Feedback Digital Controllers Using Joint
Optimization of Error Feedback and Realization

Takao Hinamoto, Keijiro Kawai, Masayoshi Nakamoto and Wu-Sheng Lu
Name-of-the-University-Company
Country

1. INTRODUCTION

Due to the finite precision nature of computer arithmetic, the output roundoff noise of a fixed-
point IIR digital filter usually arises. This noise is critically dependent on the internal structure
of an IIR digital filter [1],[2]. Error feedback (EF) is known as an effective technique for reduc-
ing the output roundoff noise in an IIR digital filter [3]-[5]. Williamson [6] has reduced the
output roundoff noise more effectively by choosing the filter structure and applying EF to the
filter. Lu and Hinamoto [7] have developed a jointly optimized technique of EF and realiza-
tion to minimize the effects of roundoff noise at the filter output subject to [-norm dynamic-
range scaling constraints. Li and Gevers [8] have analyzed the output roundoff noise of the
closed-loop system with a state-estimate feedback controller, and presented an algorithm for
realizing the state-estimate feedback controller with minimum output roundoff noise under
[-norm dynamic-range scaling constraints. Hinamoto and Yamamoto [9] have proposed a
method for applying EF to a given closed-loop system with a state-estimate feedback con-
troller.

This paper investigates the problem of jointly optimizing EF and realization for the closed-
loop system with a state-estimate feedback controller so as to minimize the output roundoff
noise subject to [-norm dynamic-range scaling constraints. To this end, the problem at hand is
converted into an unconstrained optimization problem by using linear-algebraic techniques,
and then an iterative technique which relies on a quasi-Newton algorithm [10] is developed.
With a closed-form formula for gradient evaluation and an efficient quasi-Newton solver, the
unconstrained optimization problem can be solved efficiently. Our computer simulation re-
sults demonstrate the validity and effectiveness of the proposed technique.

Throughout the paper, I, stands for the identity matrix of dimension n X n, the transpose
(conjugate transpose) of a matrix A is indicated by AT (A*), and the trace and ith diagonal
element of a square matrix A are denoted by tr[A] and (A);;, respectively.

2. ROUNDOFF NOISE ANALYSIS

Consider a stable, controllable and observable linear discrete-time system described by
x(k+1) = Aox(k) + bou(k)

1
y(k) = cox(k) W
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450 Signal Processing

where x(k) is an n x 1 state-variable vector, u(k) is a scalar input, y(k) is a scalar output, and
Ao, by and ¢, are n x n, n x 1 and 1 X n real constant matrices, respectively. The transfer
function of the linear system in (1) is given by

H,(z) = co(zI, — Ay) " 'by,. )

If a regulator is designed by using the full-order state observer, we obtain a state-estimate

feedback controller as
¥(k+1) = Fox(k) + bou(k) + g,y (k)

= Rox(k) + bor (k) + g,y (k) ®)
u(k) = —kox(k) + r(k)

where ¥ (k) is an n x 1 state-variable vector in the full-order state observer, g, is an 7 x 1 gain
vector chosen so that all the eigenvalues of F, = A, — g,¢, are inside the unit circle in the
complex plane, k, is a 1 x n state-feedback gain vector chosen so that each of the eigenvalues
of Ay — bok, is at a desirable location within the unit circle, r(k) is a scalar reference signal,
and R, = F, — bok,. The closed-loop control system consisting of the linear system in (1) and
the state-estimate feedback controller in (3) is illustrated in Fig. 1.

(k) + o u(k) Ho2) y(k)
bo 8o

x(k

Fo K—

ko (—|

Fig. 1. The closed-loop control system with a state-estimate feedback controller.

When performing quantization before matrix-vector multiplication, we can express the finite-
word-length (FWL) implementation of (3) with error feedback as

#(k+1) = RQ[&(K)] + br(k) + gy (k) + De (k) @)
u(k) = —k Q[&(k)] + r(k)

where

e(k) = &(k) — Q[x(K)]

is an n x 1 roundoff error vector and D is an n x n error feedback matrix. All coefficient
matrices R, b, g and k are assumed to have an exact fractional B, bit representation. The FWL
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state-variable vector %(k) and signal u(k) all have a B bit fractional representation, while the
reference input r(k) is a (B — Bc) bit fraction. The vector quantizer Q[-] in (4) rounds the B
bit fraction %(k) to (B — B.) bits after completing the multiplications and additions, where the
sign bit is not counted. It is assumed that the roundoff error vector e(k) can be modeled as a
zero-mean noise process with covariance 02T, where
1
2 _ —2(B—B.)
= =0 .
TR
It is noted that if the ith element of the roundoff error vector e(k) is indicated by e; (k) for i =
1,2,-- - ,n then the variable ¢;(k) can be approximated by a white noise sequence uniformly
distributed with the following probability density function:

BB for — %z—w—m <ei(k) < %z—w—m

0 otherwise

plei(k)) = {

r(k) + u(k) o) y(k)

(L
\4

Q[x(k)]

kG

Fig. 2. A state-estimate feedback controller with error feedback.

The closed-loop system consisting of the linear system in (1) and the state-estimate feedback
controller with error feedback in (4) is shown in Fig. 2, and is described by

©)
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where )
— | Ao —bok _ | bo
A= , b=
gCo R b
— bok
B — y c= [CO 0] .
D —-R

From (5), the transfer function from the roundoff error vector e(k) to the output y(k) is given
by

Gp(z) =¢(zl, —A)"'B. (6)
The output noise gain (D) = ¢2,,/0? is then computed as

J(D) = tr[Wp] )

with . i

z

Wp = — 7( Gh(2)Gp(z)Z 8
LR e p(2)Gp(z)- (8)
where 0'02ut stands for the noise variance at the output. For tractability, we evaluate J(D) in (7)

by replacing R, b, g and k by R,, b,, g, and k,, respectively. Defining
I, 0
S = , 9)
In - I;fl
the transfer function in (6) can be expressed as

Gp(z) =¢S(zl,, —S™'AS)"1s7'B

bok
— ezl — @) 1|
F,—D
(10)
= CU(ZIn — Ao + boko)_lboko(zln — F0>_1
=¢(zl,, — ®)~'U(zI, — D)
where _
Ay, —bok, bk,
P —
0 F,
[0
U= .
L In

It is noted that the stability of the closed-loop control system is determined by the eigenvalues
of matrix A in (5), or equivalently, those of matrix ® in (10). This means that neither of the
roundoff error vector e(k) and the error-feedback matrix D affects the stability.

Substituting (10) into matrix Wp in (8) gives

Wp = (boko)TW1boko + (boko)TWo(Fy — D)
+(Fo — D)"W3boky (11)
+(Fy— D)TWy(Fy — D)
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where
W=o"Wwo +¢le

Wi W,
W = .
W3 Wy

Since W is positive semidefinite, it can be shown that there exists an n x n matrix P such that
W3 = W4P. In addition, (11) can be written by virtue of W, = W;{ as

Wp = (Fo + Pbokg — D)"Wy(F + Pboky — D) 2
+(boko)T (W1 — PTW4P)boko.

Alternatively, applying z-transform to the first equation in (5) under the assumption that
e(k) = 0, we obtain
[ X(z)

— _ 13
%(2) ] = (zI — A)"'bR(2) (13)

where X(z), X(z) and R(z) represent the z-transforms of x(k), &(k) and r(k), respectively.
Replacing R, b, k and g by Ry, by, k, and g, respectively, and then using

X(z _ _
s1 [ ( ; ] = (zI,, — S"YAS)"1s71p
yields

X(z) = X(z) = Fz)R(2) (14)

where
F(Z) - [Z.ln - (Ao - boko)]_lbo

The controllability Gramian K defined by

1 v, dz
K=y fzzl F(z)F'(2)2 (15)

can be obtained by solving the following Lyapunov equation:
K = (A — boko)K(A, — boko)T + bob]. (16)

3. ROUNDOFF NOISE MINIMIZATION

Consider the system in (4) with D = 0 and denote it by (R, b, g, k). By applying a coordinate
transformation ¥’ (k) = lefc(k) to the above system (R, b, g, k), we obtain a new realization
characterized by (R, b, g, k), where

R =TIRT, b=T""1p

. (17)
g=T"g, k = kT.
For the system described by (17), the counterparts of W; fori = 1,2, 3,4 are given by
W, =TTw,;T (18)
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and the corresponding output noise gain is given by
J(D,T) = tr[Wp] (19)
where W can be obtained referring to (11) as
- T
Wp = [T‘l(FO + Pboko)T — D]
TTW,T [T*l (Fo + Pboko) T — D}
+TT (boko)T (W1 — PTW,P)bok,T.

In addition, (15) can be written as

1
27r]

=T KT T.

; ’ -1 x _rdz
K= ]ézlzlr F(z)F ()T T2 o0

As a result, the output roundoff noise minimization problem amounts to obtaining matrices
D and T which jointly minimize (D, T) in (19) subject to the lp-norm dynamic-range scaling
constraints specified by

(K)jj=(T'KT M) =1, i=12,--,n (21)

To deal with (21), we define
T =T1TK 2. (22)

Then the /;-norm dynamic-range scaling constraints in (21) can be written as
T Tt Y =1, i=12-,n (23)

These constraints are always satisfied if T_l assumes the form

1 b tn ]
= , e (24)
[HtlH ||£2]] |2
Substituting (22) into (19), we obtain
—tr [T(A-T'DT™")TW,
I (25)
(A—TTpT 1T +T€:T]

where ) : ) .
A=K 2(Fy+ Pboko)K2, W, =K2W4K:
C = K2 (boko)T (W7 — PTW,P)bokK:.

From the foregoing arguments, the problem of obtaining matrices D and T that minimize (19)
subject to the scaling constraints in (21) is now converted into an unconstrained optimization
problem of obtaining D and T that jointly minimize J(D, T) in (25).
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Let x be the column vector that collects the variables in matrix D and matrix [t1,t,- -, £].
Then J(D, T) is a function of x, denoted by J(x). The proposed algorithm starts with an initial
point xy obtained from an initial assignment D = T = I,,. In the kth iteration, a quasi-Newton
algorithm updates the most recent point x; to point x; 1 as [10]

Xg1 = Xg + agdy (26)

where
di = =S,V ](x¢)

ap = arg [rr}xm J(xy + ocdk)}

IS 567 OyTSi+Siy,.0;
_ 1+ Y2k Vi KOk Ok Vi Ok Tk YOk
Skt = St ( s, ) Vi 0k Vi O
So=1 Or=xk1—x V= V](¥1)—V](xp)
Here, V](x) is the gradient of J(x) with respect to x, and Sy is a positive-definite approxima-
tion of the inverse Hessian matrix of J(xy). This iteration process continues until

[J(xpp1) — J(xp)| <e (27)

is satisfied where ¢ > 0 is a prescribed tolerance.

In what follows, we derive closed-form expressions of V] (x) for the cases where D assumes
the form of a general, diagonal, or scalar matrix.

1) Case 1: D Is a General Matrix: From (25), the optimal choice of D is given by

—Ta & T

D=T AT, (28)
which leads to . .
AT 1) = e [ch ] . (29)

In this case, the number of elements in vector x consisting of T is equal to #? and the gradient
of J(x) is found to be

a(x) .. J(Ty) —I(T)
oty R S — (30)

— ZEJ.TTCTTTgZ.j, ij=1,2-,n

where Tij is the matrix obtained from T with a perturbed (i, j)th component, which is given
by
. Ta
ATgi]-ej T
1— Ae].T Tg;

A

~

_|_

and g;; is computed using

1 [[2l] |12

2) Case 2: D Is a Diagonal Matrix: Here, matrix D assumes the form

D = diag{dy,dy, - ,dn}. (31)
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In this case, (25) becomes

J(D,T) = tr [ TM,T" | 32
where : ) ]
M;=C+A W,A+W,T DT
_ATWALTTDTiT — W4ATTDT7T,
It follows that 3
gi(.x) = ZETTMdTTAgl]/ I,]= 1’2/ 7
J (l]) (33)
J(x » ATy ol :
adi :ze;T(DT_TA )W4T e;, i=1,2,---,n.

3) Case 3: D Is a Scalar Matrix: It is assumed here that D = «I, with a scalar a. The gradient of
J(x) can then be calculated as

agg) = 2ejTTMsTTTgij, j=12-n
i (34)
a]aif) =tr [T(erW;; — AW, - W4A)TT]

where

4. A NUMERICAL EXAMPLE

In this section we illustrate the proposed method by considering a linear discrete-time system

specified by
0 1 0 0
A, = 0 0 1 , by=10
1

0.339377 —1.152652 1.520167
co =[0.093253 0.128620 0.314713 |.
Suppose that the poles of the observer and regulator in the system are required to be located
at z = 0.1532, 0.2861, 0.1137, and z = 0.5067, 0.6023, 0.4331, respectively. This can be achieved
by choosing
ko= [ 0471552 —0.367158 3.062267 |

g, = [ —0.006436 3.683651 5.083920 | .

Performing the /;-norm dynamic-range scaling to the state-estimate feedback controller, we
obtain J(0) = 686.4121 in (7) where D = 0. Next, the controller is transformed into the optimal
realization that minimizes J(0) in (7) under the l;-norm dynamic-range scaling constraints.
This leads to i, (0) = 28.6187. Finally, EF and state-variable coordinate transformation are
applied to the above optimal realization so as to jointly minimize the output roundoff noise.
The profiles of J(x) during the first 20 iteration for the cases of D being a general, diagonal,
and scalar matrix are depicted in Fig. 3.
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1) Case 1: D Is a General Matrix: The quasi-Newton algorithm was applied to minimize (25). It
took the algorithm 20 iterations to converge to the solution

0.211191 —-3.078211 —3.344596
D= | —1.321589 1.897308 3.243515
1917916 —1.890027 —3.807473

—11.039974 —43.683697 —30.131793
T = —3.231505 8.919473 9.118205
2.620911 6.462685 7.032260

and the minimized noise gain was found to be J(D,T) = 4.8823. Next, the above optimal
EF matrix D was rounded to a power-of-two representation with 3 bits after the binary point,

which resulted in
0.250 —-3.125 -3.375

Dy, = | —1375 1875  3.250
1.875 —1.875 —3.750

and a noise gain J(D3p;, T) = 23.4873. Furthermore, when the optimal EF matrix D was
rounded to the integer representation

0o -3 -3
Dy = —1 2 31,
2 -2 -4

the noise gain was found to be J(D;,;, T) = 293.0187.
2) Case 2: D Is a Diagonal Matrix: Again, the quasi-Newton algorithm was applied to minimize
J(D, T) in (25) for a diagonal EF matrix D. It took the algorithm 20 iterations to converge to

the solution
D = diag{0.050638, —0.608845, —0.951572}

3.588878 0.735966 0.010417
T = | —2457241 0.728171  0.556762
1.514232 —2.058856 0.142204

and the minimized noise gain was found to be J(D,T) = 12.7097. Next, the above opti-
mal diagonal EF matrix D was rounded to a power-of-two representation with 3 bits af-
ter the binary point to yield D3; = diag{0.000, —0.625, —1.000}, which leads to a noise
gain J(Dgp;y, T) = 12.7722. Furthermore, when the optimized diagonal EF matrix D was
rounded to the integer representation D;,,; = diag{0, —1, —1}, the noise gain was found to be
J(Djy;, T) = 13.7535.

3) Case 3: D Is a Scalar Matrix: In this case, the quasi-Newton algorithm was applied to mini-
mize (25) for D = al3 with a scalar «. The algorithm converges after 20 iterations to converge

to the solution
D = —0.779678 I3

3.252790 —0.081745 —0.198376
T=| —1717225 1.220068 —0.792487
0.546599 —0.854316 2.295944

and the minimized noise gain was found to be J(D, T) = 16.2006. Next, the EF matrix D = aI
was rounded to a power-of-two representation with 3 bits after the binary point as well as
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Fig. 3. Profiles of iterative noise gain minimization.

an integer representation. It was found that these representations were given by Dj;;; =
diag{0.750,0.750,0.750} and D;,,; = diag{1,1,1}, respectively. The corresponding noise gains
were obtained as J(Dzy;, T) = 16.2370 and J(D;,;, T) = 18.2063, respectively.

The above simulation results in terms of noise gain (D, T) in (25) are summarized in Table 1.
For comparison purpose, their counterparts obtained using the method in [9] are also included
in the table, where the minimization of the roundoff noise was carried out using EF and state-
variable coordinate transformation, but in a separate manner. From the table, it is observed
that the proposed joint optimization offers improved reduction in roundoff noise gain for the
cases of a scalar EF matrix and a diagonal EF matrix when compared with those obtained by
using separate optimization. However, in the case of a general EF matrix, the optimal solution
with infinite precision appears to be quite sensitive to the parameter perturbations

Error-Feedback _ Accur'acy of D
Scheme Inflp{te 3 1?1'( ] Inte}ger‘
Precision Quantization Quantization
D=0
Separate 286187
Scalar
Separate [9] 20.1235 20.1810 26.0527
Scalar 16.2006 16.2370 18.2063
Joint
Diagonal 16.4104 16.4547 17.4039
Separate [9]
Diagonal 12.7097 12.7722 13.7535
Joint
S General 11.6352 11.7054 16.5814
eparate [9]
General 4.8823 23.4873 293.0187
Joint

Table 1. Noise gain J(D, T) for different EF schemes.

More reduction of the noise gain might be possible by re-designing the coordinate transfor-
mation matrix T for the optimally quantized D.
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5. CONCLUSION

The joint optimization problem of EF and realization to minimize the effects of roundoff
noise of the closed-loop system with a state-estimate feedback controller subject to I,-norm
dynamic-range scaling constraints has been investigated. The probelm at hand has been con-
verted into an unconstrained optimization problem by using linear algebraic techniques. An
efficient quasi-Newton algorithm has been employed to solve the unconstrained optimization
problem. The proposed technique has been applied to the cases where EF matrix is a general,
diagonal, or scalar matrix. The effectiveness for the cases of a scalar EF matrix and a diag-
onal EF matrix compared with the existing method [9] has been illustrated by a numerical
example.
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