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1. Introduction  

The synthesis of dispersed nanoparticles is essential for many advanced applications 
because of their novel properties that are greatly different from those of corresponding bulk 
substances. During the past years, a whole bunch of synthetic methods of metal 
nanoparticles (NPs) have been developed: chemical, photochemical and thermal. Amongst 
them, the photochemical method has attracted much attention due to it being a versatile and 
convenient process with distinguishing advantages such as space-selective fabrication 
(Sakamoto et al., 2009). This method was the key of the development of silver photography 
but recent advances in the chemistry of metal NPs and nanomaterials gave it a new lease of 
life. One of the main interests of metal NPs stems from their unique physical properties, 
which can be addressed by the chemical control of their shape and size (Burda et al., 2005). 
For instance, silver nanoparticles with spherical shape and nanometer size exhibit a very 
intense absorption band in the visible region due to the surface plasmon resonance. The 
absorption coefficient can be orders of magnitude larger than strongly absorbing organic 
chromophores. Besides, the enhanced electromagnetic fields generated in the close-
proximity of the metal surface have a strong influence on the local environment which is 
illustrated by surface-enhanced Raman scattering (SERS) or by metal-enhanced fluorescence 
process. Nanocomposite materials combine the different properties of the components. 
However, in a bulk medium, the benefit of these unique performances mainly relies on the 
homogeneous dispersion of uniformly shaped and sized particles into the matrix. Generally, 
metal-polymer nanocomposites are obtained via multi-step methods. Thus, silver 
nanoparticles can be produced beforehand, and then dispersed into a polymerizable 
formulation to obtain self-assembly functionalized structures. However, besides the specific 
hazards related to handling dry nanoparticules, this “ex-situ” method is limited by the 
difficulty to control their monodispersity over a large scale (Balan et al, 2006, 2008).  
In the “in-situ” approach, the metal nanoparticles are generated in a polymerizable medium 
from cationic precursors that exhibit better dispersion ability and that undergo facile 
chemical or photochemical reduction. 
This study focuses on the in-situ synthesis of silver nanoparticles in polymer matrix through 
photo-assisted processes. In-situ photochemical fabrication is one of the most powerful 
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approach to synthesize metal NPs/polymer nanocomposites. Furthermore, embedding 
nano-sized metal NPs into polymer matrix has attracted much interest because these 
materials open new perspectives; they combine properties from both inorganic and organic 
systems. Thus, metal NPs homogeneously dispersed in polymer matrixes are widely 
investigated. They are already used as sensors (Freeman et al., 1995; McConnell et al., 2000; 
Duan et al., 2001), as materials with solvent switchable electronic properties (Holmes et al. 
2000), as optical limiters or filters (Jin et al., 2001; Biswas et al., 2004), as optical data storage 
(Ouyang et al., 2004, 2005), surface plasmon enhanced random lasing media (Hao et al., 
2007), catalytic applications (Boyd et al., 2006) , or for antimicrobial coatings (Sambhy et al., 
2006; Anyaogu et al., 2008) Up to now, the fabrication of metal/polymer nanocomposites in 
poly(methyl methacrylate) (PMMA), poly(vinyl alcohol) (PVA), poly(vinyl acetate) (PVAc), 
poly(vinyl carbazole) (PVK), polyimide films and N-isopropylacrylamide (NIPAM), 
diallyldimethylammonium chloride (DADMAC) was reported (Weaver et al.1996; Malone et 
al., 2002; Hirose et al., 2004; Sakamoto et al., 2006, 2007). 
Similarly to what is widely-known in homogeneous solution, direct photoreduction and 
photosensitization are powerful approaches for the in-situ synthesis in polymer matrixes 
(Balan et al., 2008, 2009; Yagci et al., 2008). The heart of the photochemical approach is the 
generation of M0 in such conditions that their precipitation is thwarted. M0 can be formed 
through direct photoreduction of a silver source, silver salt or complex, or reduction of 
silver ions using photochemically generated intermediates, such as radicals. 
The photoreduction is often promoted by dyes dispersed or dissolved in the polymer or 
present in the chemical structure of the matrix. In this one-step approach, we report a 
strategy involving the photoinduced formation of homogeneous silver nanoparticles in an 
acrylate polymer stemming from a crosslinking photopolymerization of an acrylate 
monomer (Scheme 1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Scheme 1. Scheme of photochemical synthesis 
 
Finally, no mean advantage of this in situ synthetic route to NPs and polymer/metal 
nanocomposite is its high flexibility in terms of actinic wavelengths used to trigger the 
photochemically assisted reduction of metal precursors (Scheme 2). Several formulations 
using laser sources with emissions ranging from the near-UV to the near-IR will exemplify 
this interesting feature. 

h Silver source

Ag0

Monomer 

Photosensitizer  

O
O

O
O

O
O

O
O

 

 
 
 
 
 
 
Scheme 2. The laser lines used to generate silver NPs in situ in polymerizable formulations 

 
2. General Techniques 

The absorption spectra and kinetic follow-ups were recorded with a Perkin Elmer Lambda 2 
spectrometer. A FluoroMax 4 Luminescence Spectrometer was used for the fluorescence and 
time-gated phosphorescence measurements. Low temperature experiments were carried out 
in a glassy matrix of isopropanol using a 5-mm diameter quartz tube inside a Dewar filled 
with liquid nitrogen. The emission spectra were spectrally corrected in all cases. 
The reference photopolymerizable formulation contained Eosin Y (0.1 wt %), 
Methyldiethanolamine - MDEA (3 % wt) and AgNO3 (1 wt %) in acrylate monomer. It was 
sandwiched between two glass plates with a calibrated thickness wedge setting the optical 
path length to ca 30 µm. Photochemical reactions were carried out at 532 nm with a cw 
Verdi laser from Coherent. The progress of the reaction was monitored via UV-Vis 
absorption spectroscopy. The other formulations with various spectral sensitivity windows 
were formulated according to the same principle. 
The photopolymerization was followed up in situ by real-time Fourier transformed infrared 
spectroscopy with an AVATAR 360 FTIR spectrometer from Nicolet. The laminated 
formulation (typ. 25 µm thick), deposited on a BaF2 pellet, was irradiated at 532 nm with a 
green laser diode module from Crystalaser. The conversion rates were deduced from the 
disappearance of the vinyl C=C stretching vibration band at 1630 cm-1. 
 
Transmission electron microscopy (TEM) was used to characterize the size and shape of Ag 
nanoparticles. The nanocomposites were cut by means of a microtome (LKB model 8800) 
and placed onto the observation grid to get their TEM images. Transmission electron 
microscopy measurements were carried out at 200 kV using a Philips CM20 instrument with 
Lab6 cathode. 

 
3. Results and discussion 

The key step of the process is the reaction of silver cations with photogenerated transient 
species that are able to both reduce them to silver metal atoms and initiate the 
polymerization of the host medium. Two classes of photoinduced reactions were used to 
produce these primary radicals. The first one is based on the reaction of an electron rich 
molecule (amine, thiol, ether…) with the highly oxidant triplet state of a sensitizer excited 
upon absorption of the actinic photons. The second one involves the direct homolytic 
photocleavage of a sigma bond (mainly C-C bonds adjacent to a carbonyl). 
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3.1 Photo-oxidation – Activation at 532 nm 
A dual system based on Eosin Y (E) and N-methyl diethanolamine (MDEA) was used to 
simultaneously photogenerate silver nanoparticles and photoinitiate the free radical 
polymerization. After a mechanistic analysis of the photoprocess by steady state 
spectroscopy, the elementary steps leading to the metal nanocomposite are correlated to 
structural properties of the reactants.  

 
3.1.1 Mechanistic aspect of Ag nanoparticles photogeneration in solution 
Figure 1 shows the lowest energy absorption band of EO2- localized in the 450-575 nm region 
with a maximum at 530 nm in acetonitrile. The fluorescence spectrum of EO2- is mirror 
image of its absorption band with a slight Stockes shift (535 cm-1) suggesting a weak 
geometrical relaxation in the singlet state. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Normalized absorption and fluorescence spectra of Eosin Y (solvent : acetonitrile) 

 
Figure 2 shows the evolution of the absorption spectrum of EO2- upon addition of increasing 
amounts of AgNO3 in an alkaline solution of acetonitrile. The last absorption band is 
progressively shifted to the red (max = + 4 nm) and the presence of two isosbestic points 
located at 498 nm and 530 nm indicates the presence of an equilibrium in the ground state. 
The presence of two isosbestic points located at 498 nm and 530 nm clearly indicates the 
occurrence of an equilibrium in the ground state. Moreover, the addition of tetra-N-
butylammonium hexafluoroborate (3 x 10-2 M) excludes any variation of the ionic strength 
during the reaction. Therefore, these observations can be ascribed to a complexation reaction 
of Ag+ by EO2- which leads to the formation of an ion-pair complex [EO-Ag]. Under the  
same conditions, fluorescence emission shifts to the red (max = + 5 nm) with a slight 
decrease in intensity while the fluorescence lifetime decreases from 4.05 ns to 3.80 ns.  
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Because the acidic character of the hydroxylic group is stronger than that of the carboxylic 
group (Levillain & Fompeydie, 1985; Moser & Grätzel, 1984), such a cation exchange 
reaction should mainly involve the chelation of silver cation by the ‘phenolate’ oxygen. This 
is also in line with the Pearson's hard-soft acid-base (HSAB) principle (Pearson, 1963, 1968)  
which presumes a better stabilizing interaction of Ag+ (Soft Lewis acid) with the phenolate 
group than with the carboxylate function. However, the participation of the carboxylate 
function in the coordination reaction cannot be excluded. The inset of Figure 3 shows the 
best-fitting of the experimental data using the method of least squares; log K1:1 exhibits a 
high value of ca. 4.7  0.3 whereas log K1:2 has a value of ca. 5.0  0.4.  Such a slight 
difference suggests that the formation of the [1:2] complex can be reasonably neglected 
under the experimental conditions of this work (i.e. [Ag+]/[EO2-] < 50).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. (A) Evolution of the absorption spectrum of Eosin upon addition of AgNO3 (solvent: 
acetonitrile), Inset: Isosbestic point at 530 nm. (B) Evolution of the fluorescence spectrum of 
Eosin upon addition of AgNO3 (solvent acetonitrile), Inset: Dependence of fluorescence 
intensity at 545 nm vs. concentration of silver cations (circles). Best fitting curve (red line) 
 
Results of the steady state photolysis experiments are shown on figure 3. The changes in the 
spectral features observed upon laser excitation of Eosin Y and AgNO3 (50 eq.) solution in  

www.intechopen.com



In situ photochemically  
assisted synthesis of silver nanoparticles in polymer matrixes 83

 

                                        

                                        

                                        

                                        

                                        

                                        

450 500 550 600 650
0

1

 Wavelength (nm)

 Fluorescence (norm
.)

 

Ab
so

rb
an

ce
 (n

or
m

.)

OO O

Br

Br Br

Br
COO-

-

3.1 Photo-oxidation – Activation at 532 nm 
A dual system based on Eosin Y (E) and N-methyl diethanolamine (MDEA) was used to 
simultaneously photogenerate silver nanoparticles and photoinitiate the free radical 
polymerization. After a mechanistic analysis of the photoprocess by steady state 
spectroscopy, the elementary steps leading to the metal nanocomposite are correlated to 
structural properties of the reactants.  

 
3.1.1 Mechanistic aspect of Ag nanoparticles photogeneration in solution 
Figure 1 shows the lowest energy absorption band of EO2- localized in the 450-575 nm region 
with a maximum at 530 nm in acetonitrile. The fluorescence spectrum of EO2- is mirror 
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Fig. 1. Normalized absorption and fluorescence spectra of Eosin Y (solvent : acetonitrile) 

 
Figure 2 shows the evolution of the absorption spectrum of EO2- upon addition of increasing 
amounts of AgNO3 in an alkaline solution of acetonitrile. The last absorption band is 
progressively shifted to the red (max = + 4 nm) and the presence of two isosbestic points 
located at 498 nm and 530 nm indicates the presence of an equilibrium in the ground state. 
The presence of two isosbestic points located at 498 nm and 530 nm clearly indicates the 
occurrence of an equilibrium in the ground state. Moreover, the addition of tetra-N-
butylammonium hexafluoroborate (3 x 10-2 M) excludes any variation of the ionic strength 
during the reaction. Therefore, these observations can be ascribed to a complexation reaction 
of Ag+ by EO2- which leads to the formation of an ion-pair complex [EO-Ag]. Under the  
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decrease in intensity while the fluorescence lifetime decreases from 4.05 ns to 3.80 ns.  

 

                                        

                                        

                                        

                                        

                                        

500 550 600 650
0,0

1,1x107

                                        

                                        

                                        

                                        

                                        

450 500 550 600
0,0

0,3

B                                         

                                        

                                        

                                        

                                        

                                        

0,0 2,0x10-5 4,0x10-5 6,0x10-5
9x106

1x107

 

 F
lu

or
es

ce
nc

e 
at

 5
45

 n
m

 

 

log K1:1 = 4.95 +/- 0.2

[Ag+] (M)

 

 

Fl
uo

re
sc

en
ce

  (
a.

u.
)

Wavelength (nm)

A

 

 

                                        

                                        

                                        

                                        

                                        

                                        

520 530 540

0,24

 

 

Wavelength (nm)

A
bs

or
ba

nc
e

Because the acidic character of the hydroxylic group is stronger than that of the carboxylic 
group (Levillain & Fompeydie, 1985; Moser & Grätzel, 1984), such a cation exchange 
reaction should mainly involve the chelation of silver cation by the ‘phenolate’ oxygen. This 
is also in line with the Pearson's hard-soft acid-base (HSAB) principle (Pearson, 1963, 1968)  
which presumes a better stabilizing interaction of Ag+ (Soft Lewis acid) with the phenolate 
group than with the carboxylate function. However, the participation of the carboxylate 
function in the coordination reaction cannot be excluded. The inset of Figure 3 shows the 
best-fitting of the experimental data using the method of least squares; log K1:1 exhibits a 
high value of ca. 4.7  0.3 whereas log K1:2 has a value of ca. 5.0  0.4.  Such a slight 
difference suggests that the formation of the [1:2] complex can be reasonably neglected 
under the experimental conditions of this work (i.e. [Ag+]/[EO2-] < 50).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. (A) Evolution of the absorption spectrum of Eosin upon addition of AgNO3 (solvent: 
acetonitrile), Inset: Isosbestic point at 530 nm. (B) Evolution of the fluorescence spectrum of 
Eosin upon addition of AgNO3 (solvent acetonitrile), Inset: Dependence of fluorescence 
intensity at 545 nm vs. concentration of silver cations (circles). Best fitting curve (red line) 
 
Results of the steady state photolysis experiments are shown on figure 3. The changes in the 
spectral features observed upon laser excitation of Eosin Y and AgNO3 (50 eq.) solution in  
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acetonitrile are reported on Figure 3. Upon increasing the exposure, the absorption band of 
EO2- was progressively fading away while no trace of the formation of silver nanoparticles 
could be detected. The same photolysis experiment was then performed in an acetonitrile 
solution containing Eosin Y, AgNO3 and MDEA. In this case, a new band centred around 
435 nm and characteristic of the surface plasmon (SP) of silver nanoparticles was clearly 
developing (Figure 3). The only species capable of reducing Ag+ in the presence of MDEA 
and under visible irradiation is a transient photoproduct deriving from Eosin. This suggests 
that the formation of silver nanoparticles was promoted by the excited state of EO2- and 
confirms the mediating role of MDEA. Thus, the sequence of reaction would involve first, an 
electron transfer from the amine to 3EO2-, and then a proton transfer within the ion pair 
formed between amine radical cation and Eosin radical anion (Jones & Chatterjee, 1988; 
Kepka & Grossweiner, 1971; Rele et al., 2004; Janata et al., 1994; Burget et al., 1999). Hence, 
the reaction should initially produce an -aminoalkyl radical and the conjugated acid of 
semi-reduced Eosin (EOH•2-). The photogenerated -aminoalkyl that is known as a strongly 
reductive species can convert efficiently Ag+ to Ag0 as follows: 
 

3[EO-Ag]- + MDEA  EO•3- + Ag+ + MDEA•+  
EO•3- + Ag+ + MDEA•+   EOH•2- + Ag+ + MDEA•  

  Ag+ + MDEA•  Ag0  + MDEA+  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Evolution of the absorption spectra of two irradiated mixtures in acetonitrile (irr = 
532 nm) (a) without MDEA and (b) with MDEA 

 
3.1.2 In situ generation of Ag0 embedded in a crosslinked polymer.  
An acrylate formulation which contained EO2- (0.1 wt %) and MDEA (3 % wt) (Espanet et 
al., 1999; Rathore et al., 2005).was mixed with AgNO3 (1 wt %) and then photopolymerized 
at 532 nm (2.5 mW.cm-2). The conversion of the acrylate double bonds was followed up by 
real-time FTIR at 1630 cm-1 and was compared with the conversion rate of a reference 
formulation without AgNO3 (Figure 4).  
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Basically, addition of Ag+ does not perturb the polymerization kinetics. After a 10-min 
exposure, the reference sample turned from pink to colourless whereas the sample with Ag+ 

turned from pink to brown-yellowish. The visible absorption band of EO2- decreased 
progressively whereas the plasmon band developed in the 350-500 nm region with a 
maximum at 437 nm and a FWHM of 115 nm. MDEA acts both as an electron donor in the 
photoinitiation process (Fouassier & Chesneau, 1991) and as a basic agent that quantitatively 
converts Eosin into its dianionic form. Figure 5 shows the photobleaching of Eosin Y which 
goes concomitantly with the growth of the surface plasmon band. The existence of an 
isosbestic point at 480 nm strongly suggests a simple reaction between EO* and Ag+ leading 
to reduced EO2- and Ag0. This assumption was corroborated by the linear correlation 
obtained when plotting the absorbance at 532 nm vs. absorbance at 432 nm (inset Figure 5). 
This latter species is then involved into the photo-initiating process in the presence of 
MDEA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Real-time FTIR kinetics conversion curves of the acrylate double bonds for visible 
curing at 532 nm: (1) EO2-/ MDEA,  0.1 wt % / 3 wt % and (2) EO2-/ MDEA / AgNO3, 0.1 wt 
% / 3 wt % / 1 wt %. Inset: View of 30 µm thick samples (1) and (2) after curing. 
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Basically, addition of Ag+ does not perturb the polymerization kinetics. After a 10-min 
exposure, the reference sample turned from pink to colourless whereas the sample with Ag+ 

turned from pink to brown-yellowish. The visible absorption band of EO2- decreased 
progressively whereas the plasmon band developed in the 350-500 nm region with a 
maximum at 437 nm and a FWHM of 115 nm. MDEA acts both as an electron donor in the 
photoinitiation process (Fouassier & Chesneau, 1991) and as a basic agent that quantitatively 
converts Eosin into its dianionic form. Figure 5 shows the photobleaching of Eosin Y which 
goes concomitantly with the growth of the surface plasmon band. The existence of an 
isosbestic point at 480 nm strongly suggests a simple reaction between EO* and Ag+ leading 
to reduced EO2- and Ag0. This assumption was corroborated by the linear correlation 
obtained when plotting the absorbance at 532 nm vs. absorbance at 432 nm (inset Figure 5). 
This latter species is then involved into the photo-initiating process in the presence of 
MDEA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Real-time FTIR kinetics conversion curves of the acrylate double bonds for visible 
curing at 532 nm: (1) EO2-/ MDEA,  0.1 wt % / 3 wt % and (2) EO2-/ MDEA / AgNO3, 0.1 wt 
% / 3 wt % / 1 wt %. Inset: View of 30 µm thick samples (1) and (2) after curing. 
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Fig. 5. Absorption evolution of the Eosin and silver NPs during photopolymerization, EO 
(0.1 wt %) / MDEA (3 wt %) / AgNO3 (1 wt %). Inset: Linear correlation between 
absorptions at 532 nm and 432 nm.  
 
Transmission electron microscopy analysis of the sample indicated the formation of 
monodisperse spherical particles whose diameters are in the 3 to 7 nanometer range. 
Analysis of a population of ca. hundred silver nanoparticles from a portion of the grid 
indicated that their average diameter was 5.0 ± 0.7 nm (Figure 6). The particles were 
homogeneous in size and no agglomeration was observed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. TEM image of silver nanoparticles embedded in a polyacrylate matrix and histogram 
of the diameter distribution obtained from this TEM image  
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3.2 Photocleavage – Activation at 405 nm 
An acylphosphine oxide was used as free radical source upon irradiation with near-UV 
light. Usually, this photoinitiator serves to initiate the photopolymerization of top-coatings 
formulations by UV A and deep blue sources. In its triplet state, bis-(2,4,6-
trimethylbenzoyl)-phenylphosphine oxide (Irgacure 819) is known to undergo -cleavage 
and generate a pair of radicals as shown on scheme 3.  Indeed, the homolytic photocleavage 
of the C–P bond generates 2,4,6-trimethylbenzoyl and phenylphosphonyl radicals. In the 
present application, this photoinitiator simultaneously induces the formation of silver 
nanoparticles through reduction of AgNO3 and initiates the radical polymerization of the 
acrylic resin. Thus, irradiation of Irgacure 819 in polyethylene glycol diacrylate monomer 
(SR 344, Mw = 508 g/mol) in the presence of AgNO3 led to its reduction with rapid 
generation of both metallic silver and radical initiation of the crosslinking polymerization 
without any spurious side reactions. The formation of silver particles during the 
polymerization was confirmed by UV-Vis absorption (the color of the sample turned to 
brown-yellow). 
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Scheme 3. Photocleavage mechanism of Irgacure 819. 
 
Figure 7 shows the typical evolution of the UV-Visible spectrum of the Irgacure 819/Ag+ 
solution upon increasing the incident dose of actinic light. Before irradiation, Irgacure 819 
exhibited a peak at about 375 nm and a strong absorption at 405 nm. As the photolysis 
proceeded, the absorption of Irgacure 819 decreased; the photo-generated radicals reduced 
Ag+ to Ag0 while a new band grew up at around 410 nm that corresponds to the surface 
plasmon resonance of silver metal particles. It must be emphasized that no metal NPs are 
generated when AgNO3 was irradiated under the same photonic conditions in isopropanol 
in the absence of Irgacure 819. This observation thus, excluded the intervention of any 
photo-thermal effect in the process generating NPs.   
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Fig. 7. Evolution of Irgacure 819 and silver absorptions during exposure of a photosensitive 
silver salt 
 
The bright-field TEM micrograph (Figure 8) of the UV-cured films confirmed the synthesis 
of spherical particles and showed the well dispersed silver nanoparticles without 
macroscopic aggregation. The average diameter of the silver nanoparticules was 4.3 ± 0.4 
nm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. TEM images of silver nanoparticles embedded in polymer matrix with the respective 
size distribution. 
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4. Conclusion 

The photo-induced synthesis of silver nanoparticles was carried out in a wide range of 
experimental conditions: variety of actinic wavelengths (table 1), variety of photoreduction 
media (solution and acrylic monomer).  

Molecule name Structure Wavelength 
(nm) 

Co-
initiator 

2,7-diaminofluorene 
derivative  C10H21 C10H21

N N

O

O 

375 nm * 

Bis (2,4,6-
trimethylbenzoy) 
phenylphosphine 
oxide 

 

C

O

P

O

C

O

 

405 nm - 

Eosin Y 

OO O

Br

Br Br

Br
COO-

-

 , Na+

Na+,

 

532 nm * 

Methylene blue  

 

633 nm * 

Cyanine dye 

N

N

S
Cl

H3C

S

N

H3C
Cl

 

800 nm * 

Table 1. Names and chemical structures of the photoinitiators used 
 
When the dye and silver cations are mixed together in the monomer resin, both 
photoreduction and photoinitiation occur in parallel without interaction. Silver 
nanoparticles are homogenously distributed within the polymer network without 
macroscopic agglomeration and they do not affect the photopolymerization process.  
Polymer/metal nanocomposite materials are thus, produced within seconds from a liquid 
formulation.  
The one-pot and one-step photochemical process turns out to be a verily innovative route to 
synthesize silver nanoparticles especially in polymer matrixes that, to top it all, affords high 
spatial resolution and temporal controllability.  
A few reports mentioning the photoinduced synthesis of other geometries than spheres 
(tetraedrons, sticks…) appeared recently in the literature. However, obtaining particles with 
well-defined geometries and narrow dispersity remains a challenging issue.  
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