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1. Introduction  

Since the early 1900th the Erlang multi-server queueing systems with losses ( B -model or 
0M/M/N/  system) and with an infinite size buffer ( C -model or M/M/N  system) provided 

good mathematical tools for capacity planning and performance evaluation in the classic 
telephone networks for many years. Good quality of the loss probability forecasting in real 
world networks based on the formulas obtained for the 0M/M/N/  system and the delay 
prediction based on the formula obtained for the M/M/N  system was a rather surprising 
because the requirement that inter-arrival and service times have an exponential 
distribution, which is imposed in the 0M/M/N/  and M/M/N  models, seems to be too strict. 
The interest of mathematicians to the fact of good matching of the calculated under 
debatable assumptions characteristics to their measured value in real world systems have 
lead to the following two results. 
By efforts of many mathematicians (A. Ya. Khinchin and B. I. Grigelionis first of all), it was 
proved that the superposition of a large number of independent flows having uniformly 
small intensity approaches to the stationary Poisson input when the number of the 
superposed inputs tends to infinity. It explains the fact that the flows in classic telephone 
networks (where flows are composed by small individual flows from independent 
subscribers) have the exponentially distributed inter-arrival times. 
Concerning the service time distribution, situation was more complicated. The real-life 
measurements have shown that the service (conversation) time can not be well 
approximated by means of the exponentially distributed random variable. So, due to the 
good matching of results obtained for the 0M/M/N/  queue performance characteristics to 
characteristics of real systems modelled by such a queue, the hypothesis has arisen that the 
stationary state distribution in the 0M/M/N/  queue is the same as the one in the 0M/G/N/  
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queue conditional that the average service times in both models coincide. This property was 
called the invariant (or insensitivity) property of the model with respect to the service time 
distribution. The work [10] by B. A. Sevastjanov is the first one where this property was 
proven strictly. 
So, the question why the Erlang's models give very good results for a practice was 
highlighted. The special books containing the tables for a loss probability under the given 
values of the number N  of channels and intensities of the input and service exist. Different 
design problems (for a fixed value of permissible loss probability, to find the maximal 
intensity of the flow, which can be served by the line consisting of a fixed number of 
channels under the fixed average service time, or to find the necessary number of channels 
sufficient for transmission of the flow with a fixed intensity, etc) are solved by means of 
these tables. 
However, the flows in the modern telecommunication networks have lost the nice 
properties of their predecessors in the old classic networks. In opposite to the stationary 
Poisson input (stationary ordinary input with no aftereffect), the modern real life flows are 
non-stationary, group and correlated. The BMAP  (Batch Markovian Arrival Process) arrival 
process was introduced as a versatile Markovian point process (VMPP ) by M.F. Neuts in 
the 70th. The original development of VMPP  contained extensive notations; however these 
notations were simplified greatly in [7] and ever since this process bears the name BMAP . 
The class of BMAP s includes many input flows considered previously, such as stationary 
Poisson ( M ), Erlangian ( kE ), Hyper-Markovian ( HM ), Phase-Type ( PH ), Interrupted 
Poisson Process ( IPP ), Markov Modulated Poisson Process ( MMPP ). Generally speaking, 
the BMAP  is correlated, so it is ideal to model correlated and (or) bursty traffic in modern 
telecommunication networks. 
As it was mentioned above, the question why the inter-arrival times in the classical 
networks have the exponential distribution was answered in literature. However, Erlang's 
assumption that the service time distribution has the exponential distribution is not 
supported by the real networks measurements. In the case of the 0M/M/N/  system, good 
fitting of performance measures of this system with the respective measures of real world 
systems is easy explained by Sevastjanov's result. But in the case of the M/M/N  system, it 
was necessary to generalize results by Erlang to the cases of another, than exponential, 
service time distributions. This work was started by Erlang who offered so called Erlang's 
distribution. He introduced Erlangian of order k  distribution as a distribution of a sum of k  
independent identically exponentially distributed random variables (phases). Further, so 
called phase type ( PH ) distribution was introduced into consideration as the 
straightforward generalization of Erlangian distribution, see, e.g., [8]. PH  distribution 
includes as the special cases the exponential, Erlangian, Hyper-exponential, Coxian 
distributions. In our chapter we assume that service times at the fixed operation mode of the 
system have PH  distribution. 
It follows from discussion above that it is interesting to extend investigation of Erlang's 
models to the case of the BMAP  input and PH  type service process. This work was started 
by M. Combe in [1] and V. Klimenok in [5] where the BMAP/M/N  and 0BMAP/M/N/  
models, respectively, were investigated. 
In paper [2], we investigated the 0BMAP/PH/N/  model having no buffer. It was shown 
there that the stationary distribution of the system states essentially depends on the shape of 

 

the service time distribution and so Sevastjanov's invariant property does not hold true in 
the case of the general BMAP  arrival process. Here we analyze the BMAP/PH/N/L  system 
with a finite buffer and the BMAP/PH/N  system with infinite buffer. Simultaneously, we 
make one more essential generalization of the model under study. Motivation of this 
generalization is as follows. 
Even if one will use such general models of the arrival and service process as the BMAP  
and PH , he may fail in application to practical systems. The reason is the following. 
Assumption that the input flow is described by the BMAP  allows to take into consideration 
a burstiness, an effect of correlation in the arrival process and variation of inter-arrival 
times. Assumption that the service process is described by the PH  distribution allows to 
take into consideration variation of service times. But the BMAP  arrival process and PH  
service process are assumed to be stationary and independent of each other within the 
borders of the models of BMAP/PH/N/L  type, 0 .  L  While in many real world systems 
the input and service processes are not absolutely stable and may be mutually dependent. 
They may be influenced by some external factors, e.g., the different level of the noise in the 
transmission channel, hardware degradation and recovering, change of the distance by a 
mobile user from the base station, parallel transmission of high priority information, etc. 
Information transmission channel modeled by means of the BMAP/PH/N/L  queueing 
system can be a part of complex communication network. The rest of the network may 
essentially vary characteristics of the arrival and service process in this system by means of: 
(i) changing the bandwidth of the channel (due to reliability factors or the needs to provide 
good quality of service in another parts of the network when congestion occurs); (ii) 
changing the mean arrival rate due breakdowns, overflow or underflow of alternative 
information transmission channels. Thus, to get the mathematical tool for adequate 
modeling such information transmission channels, more complicated queues than the 
BMAP/PH/N/L  queueing system should be analyzed. These queues, in addition to the 
account of complicated internal structure of the arrival and service processes by means of 
considering the BMAP  and ,PH  must take into account the influence of random external 
factors. In some extent, it can be done by means of analyzing the models of queues 
operating in a random environment. Such an analysis is the topic of this chapter. 
Importance of investigation of the queues operating in a random environment ( RE ) 
drastically increased in the last years due to the following reason. The flows of information 
in the modern communication networks are essentially heterogeneous. Some types of 
information are very sensitive with respect to a delay and an jitter but tolerant with respect 
to losses. Another ones are tolerant with respect to the delay but very sensitive with respect 
to the loss of the packets. So, different schemes of the dynamic bandwidth sharing among 
these types exist and are developing. They assume that, in the case of congestion, 
transmission of the delay tolerant flows is temporarily postponed to provide better 
conditions for transmission of the delay sensitive flows. Analysis of such schemes requires 
the probabilistic analysis of the multi-dimensional processes describing transmission 
process of the different flows. This analysis is often impossible due to the mathematical 
complexity. In such a case, it is reasonable to decompose a simultaneous consideration of all 
flows to separate analysis of the processes of transmission of the delay sensitive and the 
delay tolerant flows. To this end, we model transmission of the delay sensitive flows in 
terms of the queues with the controlled service or (and) arrival rate where the service or the 
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queue conditional that the average service times in both models coincide. This property was 
called the invariant (or insensitivity) property of the model with respect to the service time 
distribution. The work [10] by B. A. Sevastjanov is the first one where this property was 
proven strictly. 
So, the question why the Erlang's models give very good results for a practice was 
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non-stationary, group and correlated. The BMAP  (Batch Markovian Arrival Process) arrival 
process was introduced as a versatile Markovian point process (VMPP ) by M.F. Neuts in 
the 70th. The original development of VMPP  contained extensive notations; however these 
notations were simplified greatly in [7] and ever since this process bears the name BMAP . 
The class of BMAP s includes many input flows considered previously, such as stationary 
Poisson ( M ), Erlangian ( kE ), Hyper-Markovian ( HM ), Phase-Type ( PH ), Interrupted 
Poisson Process ( IPP ), Markov Modulated Poisson Process ( MMPP ). Generally speaking, 
the BMAP  is correlated, so it is ideal to model correlated and (or) bursty traffic in modern 
telecommunication networks. 
As it was mentioned above, the question why the inter-arrival times in the classical 
networks have the exponential distribution was answered in literature. However, Erlang's 
assumption that the service time distribution has the exponential distribution is not 
supported by the real networks measurements. In the case of the 0M/M/N/  system, good 
fitting of performance measures of this system with the respective measures of real world 
systems is easy explained by Sevastjanov's result. But in the case of the M/M/N  system, it 
was necessary to generalize results by Erlang to the cases of another, than exponential, 
service time distributions. This work was started by Erlang who offered so called Erlang's 
distribution. He introduced Erlangian of order k  distribution as a distribution of a sum of k  
independent identically exponentially distributed random variables (phases). Further, so 
called phase type ( PH ) distribution was introduced into consideration as the 
straightforward generalization of Erlangian distribution, see, e.g., [8]. PH  distribution 
includes as the special cases the exponential, Erlangian, Hyper-exponential, Coxian 
distributions. In our chapter we assume that service times at the fixed operation mode of the 
system have PH  distribution. 
It follows from discussion above that it is interesting to extend investigation of Erlang's 
models to the case of the BMAP  input and PH  type service process. This work was started 
by M. Combe in [1] and V. Klimenok in [5] where the BMAP/M/N  and 0BMAP/M/N/  
models, respectively, were investigated. 
In paper [2], we investigated the 0BMAP/PH/N/  model having no buffer. It was shown 
there that the stationary distribution of the system states essentially depends on the shape of 

 

the service time distribution and so Sevastjanov's invariant property does not hold true in 
the case of the general BMAP  arrival process. Here we analyze the BMAP/PH/N/L  system 
with a finite buffer and the BMAP/PH/N  system with infinite buffer. Simultaneously, we 
make one more essential generalization of the model under study. Motivation of this 
generalization is as follows. 
Even if one will use such general models of the arrival and service process as the BMAP  
and PH , he may fail in application to practical systems. The reason is the following. 
Assumption that the input flow is described by the BMAP  allows to take into consideration 
a burstiness, an effect of correlation in the arrival process and variation of inter-arrival 
times. Assumption that the service process is described by the PH  distribution allows to 
take into consideration variation of service times. But the BMAP  arrival process and PH  
service process are assumed to be stationary and independent of each other within the 
borders of the models of BMAP/PH/N/L  type, 0 .  L  While in many real world systems 
the input and service processes are not absolutely stable and may be mutually dependent. 
They may be influenced by some external factors, e.g., the different level of the noise in the 
transmission channel, hardware degradation and recovering, change of the distance by a 
mobile user from the base station, parallel transmission of high priority information, etc. 
Information transmission channel modeled by means of the BMAP/PH/N/L  queueing 
system can be a part of complex communication network. The rest of the network may 
essentially vary characteristics of the arrival and service process in this system by means of: 
(i) changing the bandwidth of the channel (due to reliability factors or the needs to provide 
good quality of service in another parts of the network when congestion occurs); (ii) 
changing the mean arrival rate due breakdowns, overflow or underflow of alternative 
information transmission channels. Thus, to get the mathematical tool for adequate 
modeling such information transmission channels, more complicated queues than the 
BMAP/PH/N/L  queueing system should be analyzed. These queues, in addition to the 
account of complicated internal structure of the arrival and service processes by means of 
considering the BMAP  and ,PH  must take into account the influence of random external 
factors. In some extent, it can be done by means of analyzing the models of queues 
operating in a random environment. Such an analysis is the topic of this chapter. 
Importance of investigation of the queues operating in a random environment ( RE ) 
drastically increased in the last years due to the following reason. The flows of information 
in the modern communication networks are essentially heterogeneous. Some types of 
information are very sensitive with respect to a delay and an jitter but tolerant with respect 
to losses. Another ones are tolerant with respect to the delay but very sensitive with respect 
to the loss of the packets. So, different schemes of the dynamic bandwidth sharing among 
these types exist and are developing. They assume that, in the case of congestion, 
transmission of the delay tolerant flows is temporarily postponed to provide better 
conditions for transmission of the delay sensitive flows. Analysis of such schemes requires 
the probabilistic analysis of the multi-dimensional processes describing transmission 
process of the different flows. This analysis is often impossible due to the mathematical 
complexity. In such a case, it is reasonable to decompose a simultaneous consideration of all 
flows to separate analysis of the processes of transmission of the delay sensitive and the 
delay tolerant flows. To this end, we model transmission of the delay sensitive flows in 
terms of the queues with the controlled service or (and) arrival rate where the service or the 
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arrival rate can be changed depending on the queue length or the waiting time. 
Redistribution of a bandwidth to avoid congestion for the delay sensitive flows causes a 
variation, at random moments, of an available bandwidth for the delay tolerant flows. 
Correspondingly, the queues operating in a random environment naturally arise as the 
mathematical model for the delay tolerant flows transmission. 
Mention that the 0BMAP/PH/N/  model operating in the RE  was recently investigated in 
[4]. Short overview of the recent research of queues operating in the  RE can be found there. 
In this chapter, we consider the models BMAP/PH/N/L  and BMAP/PH/N  operating in the 

.RE  

 
2. The Mathematical Model 

We consider the queueing system having N  identical servers. The system behavior 
depends on the state of the stochastic process (random environment)   0,tr t  which is 
assumed to be an irreducible continuous time Markov chain with the state space {1, , }R ,  

2R  ,  and the infinitesimal generator Q.  
The input flow into the system is the following modification of the BMAP . In this input 
flow, the arrival of batches is directed by the process    0,t t  (the underlying process) with 
the state space {0 1 }, ,… , W .  Under the fixed state r  of the ,RE  this process behaves as an 
irreducible continuous time Markov chain. Intensities of transitions of the chain    0,t t  
which are accompanied by arrival of k -size batch, are described by the matrices  ( ) 0r

kD k ,  

 1, ,r R  with the generating function 




  ( ) ( )

0
( ) 1.r r k

k
k

D z D z z  The matrix ( )(1)rD  is an 

irreducible generator for all  1, .r R  Under the fixed state r  of the random environment, 
the average intensity  ( )r  (fundamental rate) of the BMAP  is defined as 

  
( ) ( ) ( )

1( )r r r
zD z ,e  and the intensity  ( )r

b  of batch arrivals is defined as 

   ( ) ( ) ( )
0 .r r r

b D e  Here the row vector ( )r  is the solution to the equations 

 ( ) ( ) ( )(1) , 1,r r rD 0 e   e  is a column vector of appropriate size consisting of 1's. The 
variation coefficient ( )r

varc  of intervals between batch arrivals is given by  
 

     
2 ( ) ( ) ( ) 1

02 ( ) 1,r r r(r)
var bc D e  

 
while the correlation coefficient ( )r

corc  of intervals between successive batch arrivals is 
calculated as  

          
2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1

0 0 0( ) ( (1) )( ) 1r r r r r r r r
cor b varc D D D D ce -  

 
At the epochs of the process   0,tr t  transitions, the state of the process    0,t t  is not 
changed, but the intensities of its transitions are immediately changed. 

 

The service process is defined by the modification of the PH -type service time distribution. 
Service time is interpreted as the time until the irreducible continuous time Markov chain 

  0,tm t  with the state space {0 1 1}, ,… , M  reaches the absorbing state  1.M  Under the 
fixed value r  of the random environment, transitions of the chain   0,tm t  within the state 
space {1 },… , M  are defined by an irreducible sub-generator ( )rS  while the intensities of 
transition into the absorbing state are defined by the vector  ( ) ( )

0 .r rSS e  At the service 
beginning epoch, the state of the process   0,tm t  is chosen according to the probabilistic 

row vector ( ) , 1, .r r R  It is assumed that the state of the process   0,tm t  is not changed 
at the epoch of the process   0,tr t  transitions. Just the exponentially distributed sojourn 
time of the process   0,tm t  in the current state is re-started with a new intensity defined 
by the sub-generator corresponding to the new state of the random environment   0.tr t  
The system under consideration has 0L, ,  L  waiting positions. In the case of an 
infinite buffer ( L = ) all customers are always admitted to the system. In the case of a 
finite L,  the system behaves as follows. If the system has all servers being busy at a batch 
arrival epoch, the batch looks for the available waiting position, and occupies it in case of 
success. If the system has all servers and all waiting positions being busy, the batch leaves 
the system forever and is considered to be lost. Due to a possibility of the batch arrivals, it 
can occur that there are free servers or waiting positions in the system at an arrival epoch, 
however the number of these positions is less than the number of the customers in an 
arriving batch. In such situation the acceptance of the customers to the system is realized 
according to the partial admission ( PA ) discipline (only a part of the batch corresponding 
to the number of free servers is allowed to enter the system while the rest of the batch is 
lost), the complete rejection ( CR ) discipline (a whole batch leaves the system if the number 
of free servers is less than the number of customers in the batch), complete admission ( CA ) 
discipline (a part of the batch corresponding to a number of free servers starts the service 
immediately while the rest of the batch waits for a service in the system in some special 
waiting space). All these disciplines are popular in the real life systems and got a lot of 
attention in the literature. Here, we consider all these disciplines. 
Our aim is to calculate the stationary state distribution and main performance measures of 
the described queueing model. 
For the use in the sequel, let us introduce the following notation:   
 

    • ( )n ne 0  is a column (row) vector of size n,  consisting of 1's  (0's). Suffix may be 
omitted if the dimension of the vector is clear from context;  

    •  OI  is an identity (zero) matrix of appropriate dimension (when needed the 
dimension of this matrix is identified with a suffix);  

    •  , 1,kdiag a k K  is a diagonal matrix with diagonal entries or blocks ;ka  

    •  and   are symbols of the Kronecker product and sum of matrices;  
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the described queueing model. 
For the use in the sequel, let us introduce the following notation:   
 

    • ( )n ne 0  is a column (row) vector of size n,  consisting of 1's  (0's). Suffix may be 
omitted if the dimension of the vector is clear from context;  

    •  OI  is an identity (zero) matrix of appropriate dimension (when needed the 
dimension of this matrix is identified with a suffix);  

    •  , 1,kdiag a k K  is a diagonal matrix with diagonal entries or blocks ;ka  

    •  and   are symbols of the Kronecker product and sum of matrices;  

•        
01, 1,l

l

l   






    1

1

0
, 1,m l m

l
l

n n
m

I I l  where n is the   

dimension of square matrix  ; 
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    •  




  ( )

0
( ) , 1, ;r k

k
k

D z diag D r R z   

    •      ( ) ( ) , 1, , 0, , 0;n
n r

k k Mdiag D I r R n N k  

    •




 ( ) ( )

0
( ) , 0, ;n n k

k
k

z z n N    

    •   
      ( ) ( ) , 1, , 1, , 1;n

ln r
l W Mdiag I I r R n N W W   

    •   
   ( ) ( ) , 1, , 1, ;

nn r
Wdiag I S r R n N   

    •   ( ) , 1, ;rdiag S r R   

    •   
   ( ) ( )

0 0 , 1, , 1, ;
nn r

Wdiag I r R n NS  

    •   
  

( ) ( ) ( )
0 0 , 1, ;

NN r r
Wdiag I r RS   

    •      ( ) ( ) ( )
0 , 0, ;n

n n n
W MQ I I n N     

    •


   

      ( ) ( ) ( ) ( )
0

1
, 0, ;min{n,N}

n min{n,N} min{n,N} min{n,N}
kW M

k N L n
Q I I n N      

    •




    ( ) ( ) ( )

0
.N

N L N N
kW M

k
Q I I     

 
3. Process of the System States 

It is easy to see that operation of the considered queueing model is described in terms of the 
regular irreducible continuous-time Markov chain  
 

  (1) (min{ , }){ , , , , , }, 0,tn N
t t t t t tn r m m t  

where   
    • tn  is the number of customers in the system, where  0,tn N L  in case of PA  

and CR  disciplines and  0tn  in case of CA  discipline;  

    • tr  is the state of the random environment,  1, ;tr R   

    • t  is the state of the BMAP  underlying process,   0, ;t W   

    • ( )n
tm  is the phase of PH  service process in the n th busy server, ( ) 1, ,n

tm M  

 1, ,tn N  (we assume here that the busy servers are numerated in order of their occupying, 
i.e. the server, which begins the service, is appointed the maximal number among all busy 
servers; when some server finishes the service, the servers are correspondingly enumerated) 
at epoch , 0.t t   
Let us enumerate the states of the chain  , 0,t t  in the lexicographic order and form the 
row vectors np  of probabilities corresponding to the state n  of the first component of the 
process  , 0.t t  Denote also   0 1 2, , , .p p p p  

 

It is well known that the vector p  satisfies the system of the linear algebraic equations (so 
called equilibrium equations or Chapman-Kolmogorov equations) of the form:  
 
                               , 1,Ap 0 pe                                                 (1) 
 
where A  is the infinitesimal generator of the Markov chain  , 0.t t  
Structure of this generator and methods of system (1) solution vary depending on the 
admission discipline. 

 
3.1. The Case of Partial Admission Discipline 
Lemma 1.  Infinitesimal generator A  of the Markov chain  , 0,t t  in the case of partial 
admission discipline has the following block structure:  
 

   
 , , 0 ,n n n n N L

A A  

 

     

          

           

     

    

    



 

 

 


(0) (0) (0) (0) (0) (0) (0)
1,1 1, 1 , 1, 1, ,

(1) (1) (1) (1) (1) (1) (1)
0 2 , 2 1, 1 , 1 2 , 1 1, 1

(2) (2) (2) (2) (2) (2)
0 3, 3 2 , 2 1, 2 3, 2 2 , 2

ˆ
ˆ

ˆ

N N N N N N N L N N L N

N N N N N N N L N N L N

N N N N N N N L N N L NO



 



    




 



 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 

       

 

 

 
        

 

( 1) ( 1) ( 1) ( 1) ( 1)
1,1 2 ,1 ,1 1,1

( ) ( ) ( ) ( ) ( )
0 1 1

( ) ( ) ( ) ( )
0 2 1

( ) ( )
0

ˆ
ˆ

ˆ

N N N N N
L L

N N N N N
L L

N N N N
L L

N N L

O O

O O

O O O

O O O O O



    

   

 

 

 
where  

       ( ) ( ) ( )
, , 0, 1, 1, 1, ,k k k

m m m m k N m m N   
 

 
 

    1 1
1 1

( ) ( ) ( ) ( )
, ,

ˆˆ , .k k k k
m m m m m m

m m m m
   

 
Proof of the Lemma follows from analysis of Markov chain  , 0,t t  transitions during an 
infinitesimal interval. Block entries of the generator have the following meaning. The non-
diagonal entries of the matrix ( )k  define intensity of transition of the components 

 (1) ( ){ , , , , }tn
t t t tr m m  of the Markov chain  , 0,t t  which do not lead to the change of the 

number k  of busy servers. The diagonal entries of the matrix ( )k  are negative and define, 
up to the sign, intensity of leaving the corresponding states of the Markov chain  , 0.t t  
The entries of the matrix   ( ) ( ) ( )

,
k k k

m m m m   define intensity of transitions of the components 
 (1) ( ){ , , , , }tn

t t t tr m m  of the Markov chain  , 0,t t  which are accompanied by arrival of m   

www.intechopen.com



Performance analysis of multi-server  
queueing system operating under control of a random environment 323

 

    •  




  ( )

0
( ) , 1, ;r k

k
k

D z diag D r R z   

    •      ( ) ( ) , 1, , 0, , 0;n
n r

k k Mdiag D I r R n N k  

    •




 ( ) ( )

0
( ) , 0, ;n n k

k
k

z z n N    

    •   
      ( ) ( ) , 1, , 1, , 1;n

ln r
l W Mdiag I I r R n N W W   

    •   
   ( ) ( ) , 1, , 1, ;

nn r
Wdiag I S r R n N   

    •   ( ) , 1, ;rdiag S r R   

    •   
   ( ) ( )

0 0 , 1, , 1, ;
nn r

Wdiag I r R n NS  

    •   
  

( ) ( ) ( )
0 0 , 1, ;

NN r r
Wdiag I r RS   

    •      ( ) ( ) ( )
0 , 0, ;n

n n n
W MQ I I n N     

    •


   

      ( ) ( ) ( ) ( )
0

1
, 0, ;min{n,N}

n min{n,N} min{n,N} min{n,N}
kW M

k N L n
Q I I n N      

    •




    ( ) ( ) ( )

0
.N

N L N N
kW M

k
Q I I     

 
3. Process of the System States 

It is easy to see that operation of the considered queueing model is described in terms of the 
regular irreducible continuous-time Markov chain  
 

  (1) (min{ , }){ , , , , , }, 0,tn N
t t t t t tn r m m t  

where   
    • tn  is the number of customers in the system, where  0,tn N L  in case of PA  

and CR  disciplines and  0tn  in case of CA  discipline;  

    • tr  is the state of the random environment,  1, ;tr R   

    • t  is the state of the BMAP  underlying process,   0, ;t W   

    • ( )n
tm  is the phase of PH  service process in the n th busy server, ( ) 1, ,n

tm M  

 1, ,tn N  (we assume here that the busy servers are numerated in order of their occupying, 
i.e. the server, which begins the service, is appointed the maximal number among all busy 
servers; when some server finishes the service, the servers are correspondingly enumerated) 
at epoch , 0.t t   
Let us enumerate the states of the chain  , 0,t t  in the lexicographic order and form the 
row vectors np  of probabilities corresponding to the state n  of the first component of the 
process  , 0.t t  Denote also   0 1 2, , , .p p p p  

 

It is well known that the vector p  satisfies the system of the linear algebraic equations (so 
called equilibrium equations or Chapman-Kolmogorov equations) of the form:  
 
                               , 1,Ap 0 pe                                                 (1) 
 
where A  is the infinitesimal generator of the Markov chain  , 0.t t  
Structure of this generator and methods of system (1) solution vary depending on the 
admission discipline. 

 
3.1. The Case of Partial Admission Discipline 
Lemma 1.  Infinitesimal generator A  of the Markov chain  , 0,t t  in the case of partial 
admission discipline has the following block structure:  
 

   
 , , 0 ,n n n n N L

A A  

 

     

          

           

     

    

    



 

 

 


(0) (0) (0) (0) (0) (0) (0)
1,1 1, 1 , 1, 1, ,

(1) (1) (1) (1) (1) (1) (1)
0 2 , 2 1, 1 , 1 2 , 1 1, 1

(2) (2) (2) (2) (2) (2)
0 3, 3 2 , 2 1, 2 3, 2 2 , 2

ˆ
ˆ

ˆ

N N N N N N N L N N L N

N N N N N N N L N N L N

N N N N N N N L N N L NO



 



    




 



 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 

       

 

 

 
        

 

( 1) ( 1) ( 1) ( 1) ( 1)
1,1 2 ,1 ,1 1,1

( ) ( ) ( ) ( ) ( )
0 1 1

( ) ( ) ( ) ( )
0 2 1

( ) ( )
0

ˆ
ˆ

ˆ

N N N N N
L L

N N N N N
L L

N N N N
L L

N N L

O O

O O

O O O

O O O O O



    

   

 

 

 
where  

       ( ) ( ) ( )
, , 0, 1, 1, 1, ,k k k

m m m m k N m m N   
 

 
 

    1 1
1 1

( ) ( ) ( ) ( )
, ,

ˆˆ , .k k k k
m m m m m m

m m m m
   

 
Proof of the Lemma follows from analysis of Markov chain  , 0,t t  transitions during an 
infinitesimal interval. Block entries of the generator have the following meaning. The non-
diagonal entries of the matrix ( )k  define intensity of transition of the components 

 (1) ( ){ , , , , }tn
t t t tr m m  of the Markov chain  , 0,t t  which do not lead to the change of the 

number k  of busy servers. The diagonal entries of the matrix ( )k  are negative and define, 
up to the sign, intensity of leaving the corresponding states of the Markov chain  , 0.t t  
The entries of the matrix   ( ) ( ) ( )

,
k k k

m m m m   define intensity of transitions of the components 
 (1) ( ){ , , , , }tn

t t t tr m m  of the Markov chain  , 0,t t  which are accompanied by arrival of m   
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customers and occupying m  servers conditional the number of busy servers is .k  The 
entries of the matrix ( )

0
k  define intensity of transitions, which are accompanied by a 

departure of a customer, conditional the number of busy servers is .k  
To solve system (1) with the matrix A  defined by Lemma 1, we use the effective 
numerically stable procedure developed in [2] that exploits the special structure of the 
matrix A  (it is upper block Hessenberg) and probabilistic meaning of the unknown vector 

.p  This procedure is given by the following statement. 

Theorem 1. In case of partial admission, the stationary probability vectors  , 0, ,i i N Lp  
are computed as follows:  

  0 , 1, ,l lF l N Lp p  
 
where the matrices lF  are calculated recurrently:  
 

 
 



 
      
 


1 1

0, , ,
1

, 1, 1,
l

l i l l ll i
i

F A F A A l N L  

 
  

    


 
   
 


1 1

0, , ,
1

,
N L

N L N L i i N L N L N L
i

F A F A A  

 
the matrices ,I N LA  are calculated from the backward recursions:  
 

   , , , 0, ,I N L i N LA A i N L  

        , , 1, , 0, , 1, 2, ,0,i l i li l lA A A G i l l N L N L  
 

the matrices   , 0, 1,iG i N L  are calculated from the backward recursion:  
 

  

         


    
 

 
11

1, 1 1, 1 1 1 1,
1

,
N L i

i i i i i l i l i l i i i
l

G A A G G G A  

     1, 2, ,0,i N L N L  
 

the vector 0p  is calculated as the unique solution to the following system of linear algebraic 
equations:  





 
   

 
0,00 0

1
0, 1.

N L

l
l

A Fp p e e  

 
3.2. The Case of Complete Rejection Discipline 
Lemma 2.  Infinitesimal generator A  of the Markov chain  , 0,t t  in the case of complete 
rejection discipline has the following block structure:  
 

   
 , , 0 ,n n n n N L

A A  

 

     

          

           

     

    
    



 

 
 

   

(0) (0) (0) (0) (0) (0) (0)
1,1 1, 1 , 1, 1, ,
(1)(1) (1) (1) (1) (1) (1)

0 2 , 2 1, 1 , 1 2 , 1 1, 1
(2) (2) (2) (2) (2) (2)
0 3, 3 2 , 2 1, 2 3, 2 2 , 2

N N N N N N N L N N L N

N N N N N N N L N N L N

N N N N N N N L N N L NO



 


    




 



 
 
 
 
 
 
 
     
 
 
 
 
 
 
 
 

    

 

 

 
        

 

( 1) ( 1) ( 1) ( 1) ( 1)
1,1 2 ,1 ,1 1,1
( )( ) ( ) ( ) ( )

0 1 1
( ) ( ) ( ) ( )
0 2 1

( ) ( )
0

.
N N N N N

L L
NN N N N

L L
N N N N

L L

N N L

O O

O O

O O O

O O O O O



    

   

 

 

 
The proof of the Lemma is analogous to the proof of the previous Lemma and takes into 
account the fact that the number of customers in the system does not change when the 
number of customers in an arriving batch exceeds the number of free servers. 
To solve system (1) with the matrix A  defined by Lemma 2, we also use the procedure 
described by Theorem 1. 

 
3.3. The Case of Complete Admission Discipline 
Lemma 3.  Infinitesimal generator A  of the Markov chain  , 0,t t  in the case of complete 
admission discipline has the following block structure:  
 

  
 , , 0n n n n

A A  

 

     

          

            

     
    
    



  
  
 

(0) (0) (0) (0) (0) (0) (0)
1,1 , 1, 1, , 1,

(1) (1) (1) (1) (1) (1) (1)
0 1, 1 , 1 2 , 1 1, 1 , 1

(2) (2) (2) (2) (2) (2)
0 2 , 2 1, 2 3, 2 2 , 2 1, 2

N N N N N L N N L N N L N

N N N N N L N N L N N L N

N N N N N L N N L N N L NO


 



    
 

 

 





    


         

  
  

  
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0
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Essential difference of complete admission discipline is that the state space of the Markov 
chain  , 0,t t  is infinite and this makes its analysis more complicated. However, the block 
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customers and occupying m  servers conditional the number of busy servers is .k  The 
entries of the matrix ( )

0
k  define intensity of transitions, which are accompanied by a 

departure of a customer, conditional the number of busy servers is .k  
To solve system (1) with the matrix A  defined by Lemma 1, we use the effective 
numerically stable procedure developed in [2] that exploits the special structure of the 
matrix A  (it is upper block Hessenberg) and probabilistic meaning of the unknown vector 

.p  This procedure is given by the following statement. 

Theorem 1. In case of partial admission, the stationary probability vectors  , 0, ,i i N Lp  
are computed as follows:  

  0 , 1, ,l lF l N Lp p  
 
where the matrices lF  are calculated recurrently:  
 

 
 



 
      
 


1 1

0, , ,
1

, 1, 1,
l

l i l l ll i
i

F A F A A l N L  

 
  

    


 
   
 


1 1

0, , ,
1

,
N L

N L N L i i N L N L N L
i

F A F A A  

 
the matrices ,I N LA  are calculated from the backward recursions:  
 

   , , , 0, ,I N L i N LA A i N L  

        , , 1, , 0, , 1, 2, ,0,i l i li l lA A A G i l l N L N L  
 

the matrices   , 0, 1,iG i N L  are calculated from the backward recursion:  
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         


    
 

 
11

1, 1 1, 1 1 1 1,
1

,
N L i

i i i i i l i l i l i i i
l

G A A G G G A  

     1, 2, ,0,i N L N L  
 

the vector 0p  is calculated as the unique solution to the following system of linear algebraic 
equations:  





    
 
0,00 0

1
0, 1.

N L

l
l

A Fp p e e  

 
3.2. The Case of Complete Rejection Discipline 
Lemma 2.  Infinitesimal generator A  of the Markov chain  , 0,t t  in the case of complete 
rejection discipline has the following block structure:  
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The proof of the Lemma is analogous to the proof of the previous Lemma and takes into 
account the fact that the number of customers in the system does not change when the 
number of customers in an arriving batch exceeds the number of free servers. 
To solve system (1) with the matrix A  defined by Lemma 2, we also use the procedure 
described by Theorem 1. 

 
3.3. The Case of Complete Admission Discipline 
Lemma 3.  Infinitesimal generator A  of the Markov chain  , 0,t t  in the case of complete 
admission discipline has the following block structure:  
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0
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 
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Essential difference of complete admission discipline is that the state space of the Markov 
chain  , 0,t t  is infinite and this makes its analysis more complicated. However, the block 
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rows, except the first N L  boundary block rows, have only two non-zero blocks and this 
Markov chain behaves as Quasi-Death process when the state of the first component tn  of 
the Markov chain  , 0,t t  if greater than  .N L  It allows to construct effective stable 
algorithm for calculation of the stationary distribution of this Markov chain. Note, that 
although the state space of the Markov chain  , 0,t t  is infinite, this Markov chain is 
ergodic under the standard assumptions about the parameters of the BMAP  input, the PH  
type service and the random environment. The algorithm for calculation of the stationary 
distribution is given in the following statement. 
Theorem 2. In case of complete admission discipline, the stationary probability vectors 

, 0,l lp  are calculated as follows:  
 0 , 1,l lF lp p  

 
where the matrices lF  are calculated recurrently  
 

 
 



 
    
 


1 1

0, , ,
1

, 1,
l

l i l l ll i
i

F A F A A l  

 
the matrices ,i IA  are calculated as:  
 


  

      


     max{0 , }
, , , min{ , } 1 min{ , } 2

1
, 0, , , 1,l k N L

i l i l i l k N L l k N L l k l
k

A A A G G G G i l l  

 
the matrix G  has a form  

 
 

1( ) ( )
0 ,

N L N
G    

 
the matrices   , 0, 1,iG i N L  are calculated from the backward recursion  
 


 

        
 

 
       

 
 

1
max{0 , }

1, 1 1, min{ , } 1 min{ , } 2 1 1,
2

 ,l N L
i i i i l N L l N L l i i i

l i
G A A G G G G A

 
 

the vector 0p  is the unique solution of the system:  
 





 
   

 
0,00 0

1
0, 1.l

l
A Fp p e e  

 
The proof of the Theorem follows from the theory of multi-dimensional Markov chains with 
continuous time, see [6]. It is worth to note that Neuts' matrix ,G  which is usually found 
numerically as solution to matrix equation, see [9], here is obtained in the explicit form. 

 

 

3.4. The Case of an Infinite Size of a Buffer  =L  
The system under consideration in this section has an infinite waiting space. If an arriving 
batch of customers sees idle servers, a part of the batch corresponding to the number of free 
servers occupy these servers while the rest of the batch joins the queue. If the system has all 
servers being busy at a batch arrival epoch, all customer of the batch go to the queue. 
Lemma 3.  Infinitesimal generator A  of the Markov chain  , 0,t t  has the following block 
structure:  

                                
 , , 0n n n n

A A                                                       (2)  

 

   

      

      

 

     
    

   

 

 
 
 

        


(0) (0) (0) (0) (0) (0) (0)
1,1 2 ,2 1, 1 , 1, 2 ,

(1) (1) (1) (1) (1) (1) (1)
0 1,1 2 , 2 1, 1 , 1 1, 1

(2) (2) (2) (2) (2) (2)
0 3, 3 2 , 2 1, 2 , 2

( 1) ( 1)
1,1

N N N N N N N N

N N N N N N N N

N N N N N N N N

N N

O
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
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  
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 
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 
 
 
  
 
 
 
 
 
 
 
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 

 

 
        
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0
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N N
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N N N

N N

O O O

O O O O

O O O O O

   

  

 

 

 
 In what follows we perform the steady state analysis of the Markov chain having generator 
of form (2). To this end, we use the results for continuous time multi-dimensional Markov 
chain ( QTMC ) presented in [6]. 
Theorem 3. The necessary and sufficient condition for existence of the Markov chain 
 , 0,t t  stationary distribution is the fulfillment of the inequality  
 

                                      / 1,                                                             (3)  
where     

                                                           '
1 1( ) ,zD zx e                                                       (4)  

  


 ( )
2 0 , 1, ,

Nrdiag r Rx S e  

 
the vectors , 1,2,n nx  are the unique solutions to the following systems of linear algebraic 
equations:  

                                                1 1(1) , 1,WQ I Dx 0 x e                                          (5) 
 

                        
       

 
( ) ( ) ( )

2 0 2, 1, , 1.N

Nr r r
MQ I diag S r Rx S 0 x e                   (6)  

 
Proof. Using the results of [6], we directly obtain the desired condition in the form of 
inequality  
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rows, except the first N L  boundary block rows, have only two non-zero blocks and this 
Markov chain behaves as Quasi-Death process when the state of the first component tn  of 
the Markov chain  , 0,t t  if greater than  .N L  It allows to construct effective stable 
algorithm for calculation of the stationary distribution of this Markov chain. Note, that 
although the state space of the Markov chain  , 0,t t  is infinite, this Markov chain is 
ergodic under the standard assumptions about the parameters of the BMAP  input, the PH  
type service and the random environment. The algorithm for calculation of the stationary 
distribution is given in the following statement. 
Theorem 2. In case of complete admission discipline, the stationary probability vectors 

, 0,l lp  are calculated as follows:  
 0 , 1,l lF lp p  

 
where the matrices lF  are calculated recurrently  
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    
 
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the matrices ,i IA  are calculated as:  
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

     max{0 , }
, , , min{ , } 1 min{ , } 2

1
, 0, , , 1,l k N L
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A A A G G G G i l l  

 
the matrix G  has a form  

 
 
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0 ,

N L N
G    

 
the matrices   , 0, 1,iG i N L  are calculated from the backward recursion  
 


 
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 
 
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the vector 0p  is the unique solution of the system:  
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   

 
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1
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l
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The proof of the Theorem follows from the theory of multi-dimensional Markov chains with 
continuous time, see [6]. It is worth to note that Neuts' matrix ,G  which is usually found 
numerically as solution to matrix equation, see [9], here is obtained in the explicit form. 

 

 

3.4. The Case of an Infinite Size of a Buffer  =L  
The system under consideration in this section has an infinite waiting space. If an arriving 
batch of customers sees idle servers, a part of the batch corresponding to the number of free 
servers occupy these servers while the rest of the batch joins the queue. If the system has all 
servers being busy at a batch arrival epoch, all customer of the batch go to the queue. 
Lemma 3.  Infinitesimal generator A  of the Markov chain  , 0,t t  has the following block 
structure:  

                                
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 In what follows we perform the steady state analysis of the Markov chain having generator 
of form (2). To this end, we use the results for continuous time multi-dimensional Markov 
chain ( QTMC ) presented in [6]. 
Theorem 3. The necessary and sufficient condition for existence of the Markov chain 
 , 0,t t  stationary distribution is the fulfillment of the inequality  
 

                                      / 1,                                                             (3)  
where     

                                                           '
1 1( ) ,zD zx e                                                       (4)  

  


 ( )
2 0 , 1, ,

Nrdiag r Rx S e  

 
the vectors , 1,2,n nx  are the unique solutions to the following systems of linear algebraic 
equations:  

                                                1 1(1) , 1,WQ I Dx 0 x e                                          (5) 
 

                        
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Proof. Using the results of [6], we directly obtain the desired condition in the form of 
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

   
( ) ( )

1
( ) 0,N N

z
z z zx e                                                 (7) 

 
where x  is the unique solution to the system  
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It is easy to show that inequality (7) is reduced to the following inequality:  
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where   1 ,NRW MIx x e     2 .NR W MI Ix x e  

To get the equations for the row vectors 1x  and 2 ,x  we multiply equation (8) by the 
matrices  NRW MI e  and   NR W MI Ie  respectively. After multiplication and some algebra 
we obtain equations (5), (6) for the vectors 1x  and 2 .x  So, inequality (9) is equivalent to 
inequality (3) and the theorem is proved. 
The value   has a meaning of the system load. In what follows we assume inequality (3) be 
fulfilled. 
To solve system (1) with the matrix A  defined by (2), we use the effective numerically 
stable procedure [6] based on the account special structure of the matrix ,A  notion of the 
censored Markov chain and probabilistic meaning of the unknown vector .p  For more 
detail see [6]. This procedure is given by the following statement. 
Theorem 4. The stationary probability vectors , 0,l lp  are calculated as follows:  
 

 0 , 1,l lF lp p  
 

where the matrices lF  are calculated recurrently:  
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the matrices ,i IA  are calculated as:  
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the matrices  , 0, 1,iG i N  are calculated from the backward recursion:  
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the vector  0p  is calculated as the unique solution to the following system of linear algebraic 
equations:  
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 
0,00 0

1
, 1.l

l
A Fp 0 p e e  

 
4. Performance Measures 

Having the probability vector p  been computed, we are able to calculate performance 
measures of the considered model. The main performance measure in the case of a finite 
buffer is the probability lossP  that an arbitrary customer will be lost (the loss probability). 
Theorem 5. The loss probability lossP  is calculated as follows 
(i) in the case of PA  discipline  
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(ii) in the case of CR  discipline  
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(iii) in the case of CA  discipline  
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Proofs of formulae (10) - (12) are analogous. So, we will prove only formula (10). According 
to a formula of the total probability, the probability lossP  is calculated as  
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 

   
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( ) ( , )

0 1
1

N L
k i k
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where kP  is a probability that an arbitrary customer arrives in a batch consisting of k  
customers; ( )k

iP  is a probability to see i  servers being busy at the epoch of the k size batch 
arrival; ( , )i kR  is a probability that an arbitrary customer will not be lost conditional it arrives 
in a batch consisting of k  customers and i  servers are busy at the arrival epoch. 
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where kP  is a probability that an arbitrary customer arrives in a batch consisting of k  
customers; ( )k

iP  is a probability to see i  servers being busy at the epoch of the k size batch 
arrival; ( , )i kR  is a probability that an arbitrary customer will not be lost conditional it arrives 
in a batch consisting of k  customers and i  servers are busy at the arrival epoch. 
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It can be shown that  

                                          
( )

( )
(0)

1

, 0, 1, 1,
i

k i k
i

k

P i N L kp e
x e



                                      (14)  

 

                                      


  
(0) (0)

1 1
'

1 1

, 1,
( )

k k
k

z

kP k k
D z
x e x e

x e
                                        (15) 

 

                           
  

        

( , )
1, ,

, , 0, 1.
i k

k N L i
R N L i k N L i i N L

k
                           (16)  

 
By substituting (14)-(16) into (13) after some algebra we get (10).   
 
Some performance measures for the case  L  are presented below. 

    • The probability to see i  customers in the system  
 

 , 0;i ip ip e  
 

    • The mean number of customers in the system  
 






0

;queue i
i

L ip e  

 
    • The probability to see n  busy servers  
 





    , 0, 1, ;n n N n
n N

p n N pp e p e  

 
    • The mean number of busy servers  
 



 

  
1

;
N

busy n n
n n N

N n Np e p e  

 
    • The mean number idleN  of idle servers  
 

  ;idle busyN N N  
 

    •The vector ˆ np  whose    ( 1) 1W r -th entry is the joint probability to see n  

busy servers, the random environment in the state r  and the process  t  in the state    
 

   




     ˆ ˆ, 0, 1, ;n nn n N nRW RWM M
n N

I n N Ip p e p p e  

 

    •The vector of conditional means of the number of busy servers under the fixed 
states of the random environment  

 

     






   1

1

ˆmin , , 1, ;nn R rW
n

n N I diag q r Rn p e  

 

    •The vector ( )( )a np  whose    ( 1) 1W r -th entry is the joint probability that 

an arbitrary arriving call sees n  busy servers and the random environment in the state r  
and the state of the process  t  becomes   after the arrival epoch  

 
 

 ( ) 1 '
1ˆ( ) ( ) , 0, ;a

n zn D z n Np p  

 
    • The probability ( )( )ap n  that an arbitrary arriving call sees n  busy servers  
 

 ( ) ( )( ) ( ) , 0, ;a ap n n n Np e  
 

    •The vector ( )( )a
b np  whose    ( 1) 1W r -th entry is the joint probability that 

an arbitrary arriving batch of size k  sees n  busy servers and the random environment in 
the state r  and the state of the process  t  becomes   after the arrival epoch  

 

     ( ) ( )1 ˆ( , ) , 1, , 0, , 1,a r
b b n kk n diag D r R n N kp p  

where    (1) (0) ;b D Dx e  
 

    • The probability ( )( , )a
bp k n  that an arbitrary arriving batch of size k  sees n  busy 

servers  
  ( ) ( )( , ) ( , ) , 0, , 1;a a

b bp k n k n n N kp e  
 

    •The vector ( )( )a
b np  whose    ( 1) 1W r -th entry is the joint probability that 

an arbitrary arriving batch sees n  busy servers and the random environment in the state r  
and the state of the process  t  becomes   after the arrival epoch  

 
    ( ) 1 ˆ( ) (1) (0) , 0, ;a

b b nn D D n Np p  
 

    • The probability ( )( )a
bp n  that an arbitrary arriving batch sees n  busy servers  

 
 ( ) ( )( ) ( ) , 0, ;a a

b bp n n n Np e  
 

    •The probability immP  that an arbitrary customer will enter the service 
immediately upon arrival (without visiting a buffer)  
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It can be shown that  
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
 


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   
1

( )1

0 0
( ) .

N N i
i

imm i k
i k

P k i Np e  

 
5. Actual Sojourn Time 

Let  ( ), 0,a s Re s  be the Laplace-Stieltjes transform ( LST ) of the sojourn time distribution 

and  a  be the mean sojourn time of the arbitrary customer in the system. 
Theorem 6. The Laplace-Stieltjes transform  ( )a s  is calculated as follows  
 

                                   


 

 


   


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1
( )

0 1

1( ) min , i

N
i

a i k R Wm
i k

s k N i Ip e                         (17) 

 

   
 

 

      

  


  (min{ , }) (max{0 , })

0 max{1, 1} max{1, 1}
( ) ( ) ,N

k
i N li N N i

i k R RM
i k N i l N i

s I sp e e     

where  

          1( ) ( )
0( ) , 1, ( ) , 1, ,r r

Ms diag r R sI Q I diag r RS   

      


         
 

1
( ) ( ) ( )

0( ) , 1, , 1, ,N

N Nr r r
Ms sI Q I diag S r R diag r RS   

  


    ( ) ( ) , 1, , 0, ,N n

nn r
W Mdiag I r R n Ne   

  ( ) , 1, .rdiag S r R  

 
Proof. We derive the expression for the LST   ( )a s   by means of the method of collective 
marks (method of additional event, method of catastrophes) for references see, e.g. [3], [11]. 
To this end, we interpret the variable s  as the intensity of some virtual stationary Poisson 
flow of catastrophes. So,  ( )a s  has the meaning of probability that no one catastrophe 
arrives during the sojourn time of an arbitrary customer. Then, the proof of the theorem 
follows from the formula of total probability if we analyze the states of the system at an 
arbitrary customer arrival epoch and take into account the probabilistic meaning of the 
involved matrices. The matrix ( )s  is the matrix LST  of an arbitrary customer service time 
distribution. It is the R -size square matrix whose ( , )r r  entry is a probability that during 
the service time of a customer a catastrophe does not arrive and the process   0,tr t  transits 

from the state r  to the state   , , 1, .r r r R  It is defined by the formula:  
 

   
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    
( )( { , 1, })( ) ( )

0
0

( ) , 1, e e , 1, .
r

MQ I diag S r R tr rsts diag r R dt diag r RS  

 
Analogously, the entries of the matrix LST  ( )s  are the probabilities of no catastrophe 
arrival and corresponding transitions of the process (1) ( ){ , , , }, 0,N

t t tr m m t  during the time 

 

interval from an arbitrary moment when all N  servers are busy till the first epoch when one 
of these servers finishes the service of a customer. This matrix is defined by the formula:  
 

  
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Theorem 7. The mean sojourn time  a  of an arbitrary customer in the system is calculated 
by  
 

   


    


       

    

   

1
(min{ , }) (max{0 , })

0 max{1, 1} max{1, 1} 0

1 (0) (0) N

k i l N
mi N N i

a i k R M
i k N i l N i m

Ip e     

                                            
 

 

    
1

( )

0 1
min{ , } (0)i

N
i

i k R WM
i k

k N i Ip e฀                                      (18) 

   
 

 

      

  


  (min{ , }) (max{0, })

0 max{1, 1} max{1, 1}
(0) (0)

k
i N li N N i

i k R RM
i k N i l N i

Ip e e

฀     

where  
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Proof. To get expression (18) for  a  we differentiate (17) at the point  0s  and use the 
formula   

'
(0).a a  

 
6. Numerical Examples 

The goal of the numerical experiments is to demonstrate the feasibility of the proposed 
algorithms for computing the stationary distributions of the number of customers and the 
sojourn time in the system and to give some insight into behavior of the considered 
queueing systems. In particular, the following issues are addressed:   

    • Comparison of the mean sojourn time of an arbitrary customer and the 
probability of immediate access to the servers in the systems with varying traffic intensities 
and different coefficients of correlation in the BMAP s (experiment #1 );  

    • Comparison of the mean sojourn time of an arbitrary customer and the 
probability of immediate access to the servers in the original system in a RE  and in more 
simple queueing systems for different system loads (experiments #2 );  

    • Demonstration of possible positive effect of redistribution of traffic between 
the peak traffic periods and normal traffic periods (experiment #3 );  

    • Comparison of the exact value of performance measures of the system in a RE  
and their simple engineering approximations in cases of slowly and quickly varying RE  
(experiment #4 );  

    • Investigation of the rate of convergence of the mean sojourn time and the 
probability of immediate access in the system with the finite buffer to corresponding 
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5. Actual Sojourn Time 

Let  ( ), 0,a s Re s  be the Laplace-Stieltjes transform ( LST ) of the sojourn time distribution 

and  a  be the mean sojourn time of the arbitrary customer in the system. 
Theorem 6. The Laplace-Stieltjes transform  ( )a s  is calculated as follows  
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6. Numerical Examples 

The goal of the numerical experiments is to demonstrate the feasibility of the proposed 
algorithms for computing the stationary distributions of the number of customers and the 
sojourn time in the system and to give some insight into behavior of the considered 
queueing systems. In particular, the following issues are addressed:   

    • Comparison of the mean sojourn time of an arbitrary customer and the 
probability of immediate access to the servers in the systems with varying traffic intensities 
and different coefficients of correlation in the BMAP s (experiment #1 );  

    • Comparison of the mean sojourn time of an arbitrary customer and the 
probability of immediate access to the servers in the original system in a RE  and in more 
simple queueing systems for different system loads (experiments #2 );  

    • Demonstration of possible positive effect of redistribution of traffic between 
the peak traffic periods and normal traffic periods (experiment #3 );  

    • Comparison of the exact value of performance measures of the system in a RE  
and their simple engineering approximations in cases of slowly and quickly varying RE  
(experiment #4 );  

    • Investigation of the rate of convergence of the mean sojourn time and the 
probability of immediate access in the system with the finite buffer to corresponding 
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performance measures of the system with an infinite buffer when the buffer size increases 
(experiment #5 );  

    • Demonstration of the possibility to apply the presented results for 
optimization of the number of  servers in the system (experiment #6 ).  

 
In numerical examples, we consider the systems operating in the RE  which has two states 

(  2R ). The generator of the random environment is 
 

   

5 5
.

15 15
Q  The stationary 

distribution of the RE  states is defined by the vector   0.75, 0.25 .q  The number of servers 
is  3.N  
In the presented examples, we will use several different MAP s and BMAP s for description 
of the arrival process and two PH  type distributions for description of the service processes 
under the fixed value of the .RE  For the use in the sequel, let us define these processes. 
We consider four arrival processes , 1,4.rMAP r  rMAP  is defined by the matrices ( )

0 ,rD   

( )
1 , 1,4,rD r  where  

   
        
      

(1) (1)
0 1

3.9 0.15 0.15 3.5 0.08 0.02
0.13 0.6 0.1 , 0.03 0.3 0.04 ;
0.15 0.14 0.5 0.02 0.06 0.13

D D  

                
   
        
      

(2) (2)
0 1

6.4 0.1 0.1 6.06 0.12 0.02
0.04 0.6 0.1 , 0.01 0.4 0.05 ;
0.07 0.1 0.44 0.01 0.06 0.2

D D  
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        
      

(3) (3)
0 1

2.9 0.73 0.77 0.68 0.45 0.27
0.87 3.06 0.53 , 0.48 1.08 0.1 ;
0.85 0.5 2 0.35 0.05 0.25

D D  

   
        
      

(4) (4)
0 1

1.3 0.21 0.17 0.46 0.32 0.14
0.16 2.04 0.21 , 0.13 1.34 0.2 .
0.01 0.16 1.3 0.02 0.01 1.1

D D  

 
All these MAP s have fundamental rate  ( ) 1.25.r  The 1MAP  has the squared variation 

coefficient   
2(1) 4varc  and the coefficient of correlation of the lengths of successive inter-

arrival times (1) 0.2.corc  For the rest of the MAP s, the corresponding parameters are: 

  
2(2) 4,varc  (2) 0.3;corc    

2(3) 1.097,varc  (3) 0.0052;corc    
2(4) 1.037,varc  (4) 0.0065.corc  

Based on these MAP s, we construct batch flows BMAP s as follows. If the MAP  is defined 
by the matrices ( )

0 ,rD  and ( )
1 , 1,4,rD r  then the BMAP  having the maximal size of a batch 

equal to K  is defined by the matrices ( )
0 ,rD      ( ) ( ) 1

1 (1 )/(1 ), 1, , 1, ,r r k K
kD D q q q k K r R   

where  0.9.q  

 

Following this way, we construct the 1 ,BMAP  2 ,BMAP  3 ,BMAP  4BMAP  flows based on 
the 1 ,MAP  2 ,MAP  3 ,MAP  4MAP  correspondingly, with  5.K  Note that the coefficients of 
variation and correlation of all BMAP s are the same as these coefficients for the 
corresponding MAP s. Fundamental rate  ( )r  and the mean batch size 

( )r
k  of the BMAP s 

are the following:       (1) (2) (3) (4) 3.488,      
(1) (2) (3) (4)

1.989.k k k k  
The , 1,2,rPH r  service processes are defined by the vectors  (1) 1, 0 ,   (2) 0.2, 0.8  
and the matrices  

    
        

(1) (2)4 4 10 2
, .

0 4 2 20
S S  

 
The mean rates of service are   (1) (2)2, 14.  The coefficients of variation of the service 

time distribution are defined by   
2(1) 0.5,varc    

2(2) 1.24.varc  

In the first experiment, we compare the dependence of  a  and immP  on the system load   
for the BMAP s with different correlations. 
In the experiment we use service processes defined by 1PH  and 2PH  and four different 
input flows which are described by 1 ,BMAP  2 ,BMAP  3BMAP  and 4BMAP  having the same 
mean fundamental rate equal to 3.488 but different correlation coefficients. 
We consider three queueing systems which have different combinations of the BMAP s 
under the first and second states of the .RE  
The input flow in the first system is defined by 1BMAP  and 2 .BMAP  These BMAP s have 
large coefficients of correlation (1) 0.2corc  and (2) 0.3.corc  
The input flow in the second system is defined by 3BMAP  and 4 .BMAP  These BMAP s 
have small coefficients of correlation (3) 0.0052corc  and (4) 0.0065.corc  
In the third system the input is defined by 1BMAP  and 4 .BMAP  The correlation coefficients 
of these BMAP s differ significantly. 
Figures  1 and  2 show the dependence of the mean sojourn time  a  and the probability immP  
on the system load   for all these systems. Variation of the value of   in all experiments is 
performed by means of multiplying the entries of the matrices, which define the 
corresponding ,BMAP  by some varying factor  .  This implies the increase of the 
fundamental rate of all the BMAP  by a factor  .  Service time distributions are not 
modified. It is clear from  Figure 1 that correlation in BMAP  has a great impact on the 
sojourn time in the system. An increase of correlation at least in one of the BMAP s 
describing input in the system implies an increase of the sojourn time in the system in all 
range of the system load. 
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performance measures of the system with an infinite buffer when the buffer size increases 
(experiment #5 );  

    • Demonstration of the possibility to apply the presented results for 
optimization of the number of  servers in the system (experiment #6 ).  

 
In numerical examples, we consider the systems operating in the RE  which has two states 
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Following this way, we construct the 1 ,BMAP  2 ,BMAP  3 ,BMAP  4BMAP  flows based on 
the 1 ,MAP  2 ,MAP  3 ,MAP  4MAP  correspondingly, with  5.K  Note that the coefficients of 
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The mean rates of service are   (1) (2)2, 14.  The coefficients of variation of the service 

time distribution are defined by   
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In the first experiment, we compare the dependence of  a  and immP  on the system load   
for the BMAP s with different correlations. 
In the experiment we use service processes defined by 1PH  and 2PH  and four different 
input flows which are described by 1 ,BMAP  2 ,BMAP  3BMAP  and 4BMAP  having the same 
mean fundamental rate equal to 3.488 but different correlation coefficients. 
We consider three queueing systems which have different combinations of the BMAP s 
under the first and second states of the .RE  
The input flow in the first system is defined by 1BMAP  and 2 .BMAP  These BMAP s have 
large coefficients of correlation (1) 0.2corc  and (2) 0.3.corc  
The input flow in the second system is defined by 3BMAP  and 4 .BMAP  These BMAP s 
have small coefficients of correlation (3) 0.0052corc  and (4) 0.0065.corc  
In the third system the input is defined by 1BMAP  and 4 .BMAP  The correlation coefficients 
of these BMAP s differ significantly. 
Figures  1 and  2 show the dependence of the mean sojourn time  a  and the probability immP  
on the system load   for all these systems. Variation of the value of   in all experiments is 
performed by means of multiplying the entries of the matrices, which define the 
corresponding ,BMAP  by some varying factor  .  This implies the increase of the 
fundamental rate of all the BMAP  by a factor  .  Service time distributions are not 
modified. It is clear from  Figure 1 that correlation in BMAP  has a great impact on the 
sojourn time in the system. An increase of correlation at least in one of the BMAP s 
describing input in the system implies an increase of the sojourn time in the system in all 
range of the system load. 
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In the second experiment we compare the values  a  and immP  in the / /BMAP PH N   
system operating in the RE  and in more simple queueing systems which can be considered 
as its simplified analogs. The first type analog is the / /XM PH N  system in the RE  where, 
under the fixed value of the ,RE  the input flow is a group stationary Poisson with the same 
batch size distribution and intensity equal to fundamental rate of the corresponding BMAP  
in the original system. The second type analog is the system / /XM M N  with parameters of 
arrival and service processes which are obtained by means of averaging, according to 
stationary distribution of the ,RE  parameters of the original system. 
Input flow is described by 1BMAP  and 2 .BMAP  Service processes are 1PH  and 2 .PH  

Figures  3 and  4 show the dependence of the the mean sojourn time  a  and the probability 
immP  on the value of .  

 

 
Fig. 3. Mean sojourn time in original system and more simple queueing systems 
 

  
Fig. 4. Probability of immediate access to the servers in original system and more simple 
queueing systems   
 
It can be seen from  Figures  3 and  4 that an approximation of the mean sojourn time and the 
probability that an arbitrary call reaches the server immediately  by means of their values in 
some specially constructed more simple queueing system can be rather bad. 
The idea of the third experiment is the following. Let us assume that the RE  has two states. 
One state corresponds to the peak traffic periods, the second one corresponds to the normal 
traffic periods. Service times during these periods are defined by 1PH  and 2PH  
distributions. Arrivals during these periods are defined by the stationary Poisson flow with 
the rates 1  and 2  correspondingly and initially we assume that  1 2 .  It is intuitively 
clear that if it is possible to redistribute the arrival processes (i.e., to reduce the arrival rate 
during the peak periods and to increase it correspondingly during the normal traffic 
periods) without changing the total average arrival rate, the mean sojourn time in the 
system can be reduced. In real life system such a redistribution is sometimes possible, e.g., 
by means of controlling tariffs during the peak traffic periods. The goal of this experiment is 
to show that this intuitive consideration is correct and to illustrate the effect of the 
redistribution. 
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We assume that the averaged arrival rate   should be 12.5 and consider four different 
situations: a huge difference of arrival rates  1 250 ,  a very big difference  1 210 ,  a big 
difference  1 23  and equal arrival rates  1 2 .  The generator of the random 

environment is 
 

   

15 15
.

5 5
Q  

It can be seen from  Figures  5 and  6 that the smoothing of the peak rates can cause essential 
decrease of the mean sojourn time and the increase of the probability that an arbitrary call 
reaches the server immediately upon arrival in the system. 
 

 
Fig. 5. Mean sojourn time as a function of system load for different relations of arrival rates 
 

   
Fig. 6. Probability of immediate access to the servers as a function of system load for 
different relations of arrival rates 

   
In the second experiment, we have seen that an approximation of the system performance 
measures by means of their values in more simple queueing system can be bad. However, it 
is intuitively clear the following. If the random environment is "very slow" (the rate of the 
RE  is much less then the rates of the input flow and the service processes), an 
approximation called below as "mixed system" can be applied successfully. This 
approximation consists of calculation of the system characteristics under the fixed states of 

 

the  RE and their averaging by the  RE distribution. If the random environment is "very fast", 
approximation called below as "mixed parameters" can be successfully applied. This 
approximation consists of averaging parameters of the arrival and service processes by the 
distribution of the RE  and calculation of performance measures in / /BMAP PH N  system 
with the averaged arrival and service rates. 
In the fourth experiment, we show numerically that sometimes the described 
approximations make sense. However, in situations when environment is neither "very 
slow" nor "very fast", these approximations can be very poor. We consider the RE s with 

different rate which are characterized by the generators of the form 
 
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We vary the parameter k  from -7 to 4 what corresponds to the variation of the RE  rate 
from "very slow" to "very fast". In this and further experiments, the input flow is described 
by the 1BMAP  and 2BMAP  and the service process is defined by the 1PH  and 2 .PH  The 
results are presented in  Figures 7, 8 and  9. In application of "mixed system" approximation, 
the averaged arrival rates under both states of the RE are equal to 3.488. The averaged 
service rate is equal to 2 at the first state of the RE  and is equal to 14 at the second state. The 
mean sojourn times of an arbitrary customer at these states are equal to 3.5297 and 0.0998, 
respectively; the probabilities of immediate access to the servers are equal to 0.2021 and 
0.81399; the mean numbers of customers in the system are equal to 12.311 and 0.3482. The 
averaged, according to the stationary distribution of the ,RE  mean sojourn time of an 
arbitrary customer is equal to 2.6722 and the probability that an arbitrary arriving customer 
sees an idle server is equal to 0.355. In application of "mixed parameters" approximation, the 
averaged, according to the stationary distribution of the ,RE  arrival rate is equal to 3.778 
while the averaged service rate is equal to 4.0625. The value of the mean sojourn time of an 
arbitrary customer in the system with averaged arrival and service rates is equal to 0.7541, 
the probability of immediate access to the servers is equal to 0.4168, the mean number of 
customers in the system is equal to 2.849. 
Figures 7, 8 and  9 confirm the hypothesis that the first type approximation ("mixed system") 
is good in case of "very slow" RE  and the second one ("mixed parameters") can be applied 
to case of "very fast" .RE  But sometimes the second type approximation is not very good 
(see  Figures 8) because it is not quite clear how to make averaging of service intensity. 
Simple averaging of service rates under the different states of the RE  may be not correct 
when the load of the system is not high because there are time intervals when the system is 
empty and no service is provided. It is worth to note also that there is an interval for RE  
rate (interval   3, 0k ) where one should not use the values of the system performance 
measures calculated based on the considered approximating models. The use of these values 
can lead to the large relative error. Thus, Figures 7, 8 and 9 confirm the importance of 
investigation implemented in this chapter. Simple engineering approximations can lead to 
unsatisfactory performance evaluation and capacity planning in real world systems. 
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Fig. 7. Mean sojourn time of an arbitrary customer as a function of the RE  rate 
 

   
Fig. 8. Probability of immediate access to the servers as a function of the RE  rate 
 

  
Fig. 9. The mean number of customers in the system queueL  as a function of the RE  rate  
 
In the fifth experiment we compare the mean number of customers, probability of 
immediate access to the servers and loss probability in the / /BMAP PH N  and 

 

/ / /BMAP PH N L  systems operating in the RE  for different values L  of the buffer 
capacity and different customers admission discipline. 
 

 
Fig. 10. Mean number of customers in the system as a function of the buffer capacity L  
 

 
Fig. 11. Probability of immediate access to the servers as a function of the buffer capacity L  
 

 
Fig. 12. Loss probability as a function of the buffer capacity L    
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Looking at  Figures 10-12, it should be noted that the rate of convergence of the curves 
corresponding to the disciplines PA  and CR  to their limits defined by the system with an 
infinite buffer is not very high. When we further increase the value L , we discover that even 
for the buffer capacity L  about 5000, the difference is not negligible. So, estimation of 
performance measures of the system with an infinite buffer by the respective measures of 
the system with a finite buffer can be not very good. This explains why we made the 
separate analysis of the system with an infinite buffer. 
 
Finally, in the sixth experiment we consider the next optimization problem:  
 

    1 2 ,a
N

J N c c N max                                                      (19) 

where   
    •  a  is the mean sojourn time in the system, 
    • N  is the number of servers,  
    • 1c  is the charge for an unit of customer sojourn time in the system, 
    • 2c  is the cost of a server maintenance per unit of time.  
 

 It is clear that this problem is not trivial. When the number of servers is small, the cost of 
servers maintenance is also small, but the mean sojourn time is large. If we increase the 
number of servers, the mean sojourn time decreases while the cost of servers maintenance 
increases. 
Let us assume that the cost coefficients be fixed as 1 5c  and 2 3.c  Service time 
distribution at both states of the RE  is exponential with intensities  (1) 1,   (2) 7.  
On Figure 13, dependence of the cost criterion  J N  on N is presented along with the 

dependences of the summands 1 ac  and 2 .c N  
 

 
Fig. 13. Criterion  J N   as a function of number of servers in the system   
 

 

Based on  Figure 13, one can conclude that our analysis allows effectively solve the problems 
of the system design and that the optimal value of the cost criterion (in this example it is 
provided by  4N ) can be significantly smaller than the values of the cost criterion for 
other values on .N  

 
7. Conclusion 

The / / /BMAP PH N L  system operating in a finite state space Markovian random 
environment is investigated for the finite and infinite buffer capacity. The joint stationary 
distribution of the number of the customers in the system, the state of the random 
environment, and the states of the underlying processes of arrival and service processes is 
calculated. The analytic formulas for performance measures of the system are derived. The 
Laplace-Stieltjes transform of sojourn time distribution is derived and the mean sojourn time 
is calculated. Selected results of numerical study are presented. They show an impact of the 
correlation in arrival process, illustrate the poor quality of the system characteristics 
approximation by means of more simple models, confirm the positive effect of the traffic 
redistribution between the peak and normal operation periods. The results can be used for 
the optimal design, capacity planning, and performance evaluation of real world systems in 
which operation of the system can be changed depending on some external factors. 
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