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1. Introduction 

Recently, wireless mobile communication systems have experienced a tremendous growth 
and became an integral part of people’s daily life worldwide. This global predominance of 
wireless communications has been ever more pronounced with the success of new 
generations of wireless communication standards that support a rich set of value-added 
features in addition to basic phone services. Among these features is the possibility to offer 
radiolocation services whereby the mobile system (MS) position is determined by 
combining relevant information (such as signal time of arrival or angle of arrival) from 
different base stations (BSs) having radio links with the intended mobile. This positioning 
capability can support many services ranging from medical emergency help, security and 
law enforcement, on-the-road assistance, location-dependent commercial advertisement, etc. 
As such, mobile radiolocation has been mandated by several of the recently introduced 
wireless standards, and is being widely deployed by cellular network operators worldwide 
(Rappaport et al., 1996).  
 
With the deployment of the 3rd generation wireless cellular standards such as the Universal 
Mobile Telecommunication System (UMTS) (Dahlman et al., 2000) , the use of wideband 
code division multiple access (CDMA) signals is poised to offer highly accurate positioning 
capabilities with time-of-arrival (TOA) information owing to the fine timing resolution of 
the high chip rate wideband spread-spectrum waveforms used. There are however some 
impairments such as multi-path fading, multi-user interference and noise, that can affect the 
performance of mobile positioning schemes. In particular, because of the need to use signal 
detection at several base stations in mobile positioning, the problem of near-far interference 
at remote base stations (whereby a far-away mobile weak signal can be overwhelmed by 
strong signals from close-in mobiles) can constitute a major limiting factor. In CDMA 
networks, this is further exacerbated by power control (Viterbi, 1995). Indeed, power control 
loops operate in such a way to maintain the received power from different users at the same 
level at their respective serving base station. However, at other non-serving base stations 
(not actively involved in a call with the intended mobile), the mobile received power level 
can be extremely low, thereby giving rise to a problem of signal hearability,  which,  in turn, 
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will affect the accuracy of the mobile positioning algorithms (Gosh & Love, 1998). A 
thorough analysis of these different aspects under realistic channel modeling and network 
traffic loading conditions is therefore necessary in order to obtain an accurate assessment of 
the achievable positioning performance.  

 
In this work, we study the accuracy of mobile radiolocation under near-far interference, and 
show that it can vary considerably depending on the mobile link quality with the base 
stations involved in position determination. We first present a detailed performance analysis 
of mobile TOA estimation in broadband CDMA wireless cellular networks at the different 
base stations surrounding the mobile terminal. In most previous works, the proposed 
radiolocation algorithms have simplistically assumed that the time-of-arrival measurements 
are Gaussian-distributed, with a fixed known variance that is commonly set irrespective of 
the actual RF channel and interference conditions or other system parameters. Moreover, the 
same TOA variance is typically assigned for all base stations involved in positioning, which 
is an inaccurate and overly optimistic assumption, as our results will show. Instead, our 
approach is the use of complete statistics for the mobile timing estimation errors, derived by 
taking into account realistic system parameters at the different base stations of interest.  

 
Since precise TOA estimation in CDMA receivers is typically implemented by delay-locked 
loop (DLL) tracking systems (Viterbi, 1995), a detailed study of the DLL TOA tracking is 
introduced under fading and multi-user interference conditions assuming  a cellular model 
with multiple tiers of base stations, and it is shown that the DLL tracking performance can 
vary widely depending on the level of multiple-access interference and RF propagation 
conditions of the links between the mobile and base stations. Using the TOA data collected 
at the base stations involved in mobile positioning, a numerically-efficient, quasi-optimum 
algorithm, based on Approximate Maximum Likelihood (AML) estimation (Chan et al., 
2006), is presented, and a generalization of this algorithm is also derived under the realistic 
assumption of un-equal TOA estimation errors at the different base stations.  

 
Based on our analysis, the impact of mobile link condition and its relative position with 
respect to the base stations involved in its positioning is fully quantified for a number of 
scenarios depending on the near-far interference environment and the level of Soft Handoff 
(SHO) connectivity of the mobile with the base stations. Our results show that positioning 
accuracy is greatly improved when the mobile station is in 2-way, and particularly in 3-way 
SHO (i.e., with two and three base stations, respectively), compared to single connectivity 
with only the home serving base station.  

 
The rest of the chapter is organized as follows. First, in Section 2, we present an overview of 
radiolocation techniques, focusing in particular on network-based approaches with TOA 
processing suitable for cellular systems. The system modeling and analysis of near-far 
interference in CDMA networks is presented in Section 3, followed by a detailed analysis of 
the performance of delay-locked loops for time-of-arrival tracking in Section 4.  Then, in 
Section 5, the approximate maximum likelihood positioning algorithm is presented, and 
various illustrative examples and numerical results are discussed in Section 6, followed by 
summary and final conclusions in Section 7.  

2. Wireless Network-Based Mobile Radiolocation 

2.1 Overview 
The concept of wireless radiolocation refers to the determination of the geographic position 
information of a mobile user in terms of its geographic coordinates with respect to a 
reference point. Wireless location is also commonly referred to as mobile positioning, 
radiolocation, or localization. Position location techniques can be classified into two main 
categories: handset-based and network-based. A well known example of handset-based 
radiolocation is the Global Positioning System (GPS) and other similar systems (Kaplan, 
1996). The other category consists of network-based techniques that utilize the existing 
wireless cellular networks to obtain location information (Sayed, et al., 2005). In this work, 
we mainly focus on the network-based approach which integrates seamlessly with the 
widely deployed mobile cellular infrastructures throughout the world. The basic 
architecture of such systems is illustrated in Figure 1. 
 

 
Fig. 1. Network-based wireless mobile radiolocation 
 
The network-based positioning schemes rely on data collected by several base stations 
surrounding the mobile station of interest, and can be based on the mobile’s signal strength 
(SS), angle of arrival (AOA), time of arrivals (TOA) or time difference of arrival (TDOA) 
measurements. Using these measurements, specific geometric and/or statistical signal 
processing algorithms are used to determine the mobile location. Hybrid methods involving 
more than one of type of measurements can also be used (Sayed, et al., 2005). In general, 
locating a mobile in two-dimensions requires a minimum of three sets of measurements 
from corresponding base stations, although for AOA methods, two base stations are 
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will affect the accuracy of the mobile positioning algorithms (Gosh & Love, 1998). A 
thorough analysis of these different aspects under realistic channel modeling and network 
traffic loading conditions is therefore necessary in order to obtain an accurate assessment of 
the achievable positioning performance.  

 
In this work, we study the accuracy of mobile radiolocation under near-far interference, and 
show that it can vary considerably depending on the mobile link quality with the base 
stations involved in position determination. We first present a detailed performance analysis 
of mobile TOA estimation in broadband CDMA wireless cellular networks at the different 
base stations surrounding the mobile terminal. In most previous works, the proposed 
radiolocation algorithms have simplistically assumed that the time-of-arrival measurements 
are Gaussian-distributed, with a fixed known variance that is commonly set irrespective of 
the actual RF channel and interference conditions or other system parameters. Moreover, the 
same TOA variance is typically assigned for all base stations involved in positioning, which 
is an inaccurate and overly optimistic assumption, as our results will show. Instead, our 
approach is the use of complete statistics for the mobile timing estimation errors, derived by 
taking into account realistic system parameters at the different base stations of interest.  

 
Since precise TOA estimation in CDMA receivers is typically implemented by delay-locked 
loop (DLL) tracking systems (Viterbi, 1995), a detailed study of the DLL TOA tracking is 
introduced under fading and multi-user interference conditions assuming  a cellular model 
with multiple tiers of base stations, and it is shown that the DLL tracking performance can 
vary widely depending on the level of multiple-access interference and RF propagation 
conditions of the links between the mobile and base stations. Using the TOA data collected 
at the base stations involved in mobile positioning, a numerically-efficient, quasi-optimum 
algorithm, based on Approximate Maximum Likelihood (AML) estimation (Chan et al., 
2006), is presented, and a generalization of this algorithm is also derived under the realistic 
assumption of un-equal TOA estimation errors at the different base stations.  

 
Based on our analysis, the impact of mobile link condition and its relative position with 
respect to the base stations involved in its positioning is fully quantified for a number of 
scenarios depending on the near-far interference environment and the level of Soft Handoff 
(SHO) connectivity of the mobile with the base stations. Our results show that positioning 
accuracy is greatly improved when the mobile station is in 2-way, and particularly in 3-way 
SHO (i.e., with two and three base stations, respectively), compared to single connectivity 
with only the home serving base station.  

 
The rest of the chapter is organized as follows. First, in Section 2, we present an overview of 
radiolocation techniques, focusing in particular on network-based approaches with TOA 
processing suitable for cellular systems. The system modeling and analysis of near-far 
interference in CDMA networks is presented in Section 3, followed by a detailed analysis of 
the performance of delay-locked loops for time-of-arrival tracking in Section 4.  Then, in 
Section 5, the approximate maximum likelihood positioning algorithm is presented, and 
various illustrative examples and numerical results are discussed in Section 6, followed by 
summary and final conclusions in Section 7.  

2. Wireless Network-Based Mobile Radiolocation 

2.1 Overview 
The concept of wireless radiolocation refers to the determination of the geographic position 
information of a mobile user in terms of its geographic coordinates with respect to a 
reference point. Wireless location is also commonly referred to as mobile positioning, 
radiolocation, or localization. Position location techniques can be classified into two main 
categories: handset-based and network-based. A well known example of handset-based 
radiolocation is the Global Positioning System (GPS) and other similar systems (Kaplan, 
1996). The other category consists of network-based techniques that utilize the existing 
wireless cellular networks to obtain location information (Sayed, et al., 2005). In this work, 
we mainly focus on the network-based approach which integrates seamlessly with the 
widely deployed mobile cellular infrastructures throughout the world. The basic 
architecture of such systems is illustrated in Figure 1. 
 

 
Fig. 1. Network-based wireless mobile radiolocation 
 
The network-based positioning schemes rely on data collected by several base stations 
surrounding the mobile station of interest, and can be based on the mobile’s signal strength 
(SS), angle of arrival (AOA), time of arrivals (TOA) or time difference of arrival (TDOA) 
measurements. Using these measurements, specific geometric and/or statistical signal 
processing algorithms are used to determine the mobile location. Hybrid methods involving 
more than one of type of measurements can also be used (Sayed, et al., 2005). In general, 
locating a mobile in two-dimensions requires a minimum of three sets of measurements 
from corresponding base stations, although for AOA methods, two base stations are 
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sufficient. However, in the presence of noisy measurements, statistical signal processing 
algorithms using data collected from multiple base stations are preferred in order to resolve 
the ambiguities arising from multiple crossings of the lines of position, and to improve the 
positioning accuracy.  

 
2.2 Time-of-Arrival Mobile Radiolocation 
TOA-based techniques offer several advantages compared to the other methods, including 
low cost and ease of use. The TOA data is readily available from timing synchronization 
mechanisms at the different base stations, without requiring complex hardware as with the 
Angle-of-Arrival methods. In particular, with the widespread deployment of the latest 3G 
CDMA-based wireless cellular networks, the spread-spectrum signaling waveforms offer 
high time resolution and good robustness vis-à-vis the radio channel impairments (fading, 
shadowing, and near-far interference), and are therefore well-suited to aid in achieving the 
required accuracy in position location services.  

 
In the TOA-based mobile radiolocation approach, the distance between an MS and a BS is 
measured by finding the one-way propagation delay under direct line-of-sight (LOS) 
propagation conditions. The TOA measurements at the different base stations are therefore 
directly proportional to the mobile-base distance separation. The involved base stations are 
assumed to have a common timing reference, with a known mobile transmission time. 
Geometrically, the mobile position will trace a circle centered at the base stations. By using 
three base stations to resolve ambiguities, the mobile position is given by the intersection of 
these circles as illustrated in Figure 2. It should be pointed out that, in the presence of noisy 
TOA data due to interference and synchronization errors, the three circles may not intersect 
at a single point. Therefore, the geometric approach will not produce a single intersection 
point, and “statistical” techniques are typically adopted to process the noisy data, as will be 
further discussed subsequently when we introduce the AML algorithm.   
 

 
Fig. 2. TOA radiolocation based on intersection of base station centered circles  
 

3. Near-Far Interference Analysis 

3.1 Signal and System Models 
Consider a cellular CDMA network employing signaling schemes with quaternary phase-
shift keying (QPSK) modulation and complex spreading (conforming to 3G/UTMS 
standards (Dahlman et al., 2000). At the transmitter, the complex baseband signal for a given 
mobile user is given by 
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where {sm} are the complex spreading chip symbols, and Tc  the chip duration. The 
information data bits are omitted here for simplicity as this will be applicable for a pure 
pilot signal that can be used for positioning purposes. The impulse response h(t) of the 
pulse-shaping filter is assumed to be a root-raised cosine filter with roll-off factor 22%, as 
recommended in the UMTS standard. As will be seen next, the Fourier transform H(f) of the 
filter impulse response h(t) will have a major impact on the other-user interference in 
cellular CDMA networks.  
 
For wireless fading channels, the received signal at the output of the radio frequency (RF)  
receiver filter is written as 
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where P is the received signal power, M is the number of resolvable multipath signals, with 
ai and i denoting the i-th path complex Gaussian tap factor (with a Rayleigh-fading 
magnitude) and its propagation delay, respectively, and fc is the carrier frequency. The noise 
signal n(t)  models the total noise-plus-interference terms and is assumed to be zero-mean 
Gaussian random process. For  the different resolvable multipath signal epochs, we mainly 
focus on the first arriving signal which will be tracked to estimate its TOA. The combined 
multiple-access interference (MAI) terms from both same-cell and other-cell users can be 
modeled as being Gaussian distributed, which is a valid assumption for a large number of 
users. In this case, it can be shown that the total composite power spectral density (PSD), I0, 
that captures the effect of both thermal noise and MAI terms (assumed to be statistically 
independent) is given by (Viterbi, 1995) 
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where No is due to the thermal noise component and the factor  represents both same-cell 
and other-cell MAI terms. The function H(f) denotes the Fourier transfer of the chip shaping 
filter impulse response h(t). The MAI PSD term is typically the dominant factor  in CDMA 
systems, and will depend on network loading, fraction of inter-cell to intra-cell MAI, 
channel pathloss and shadowing models. For typical system parameters of interest, it is 
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sufficient. However, in the presence of noisy measurements, statistical signal processing 
algorithms using data collected from multiple base stations are preferred in order to resolve 
the ambiguities arising from multiple crossings of the lines of position, and to improve the 
positioning accuracy.  

 
2.2 Time-of-Arrival Mobile Radiolocation 
TOA-based techniques offer several advantages compared to the other methods, including 
low cost and ease of use. The TOA data is readily available from timing synchronization 
mechanisms at the different base stations, without requiring complex hardware as with the 
Angle-of-Arrival methods. In particular, with the widespread deployment of the latest 3G 
CDMA-based wireless cellular networks, the spread-spectrum signaling waveforms offer 
high time resolution and good robustness vis-à-vis the radio channel impairments (fading, 
shadowing, and near-far interference), and are therefore well-suited to aid in achieving the 
required accuracy in position location services.  

 
In the TOA-based mobile radiolocation approach, the distance between an MS and a BS is 
measured by finding the one-way propagation delay under direct line-of-sight (LOS) 
propagation conditions. The TOA measurements at the different base stations are therefore 
directly proportional to the mobile-base distance separation. The involved base stations are 
assumed to have a common timing reference, with a known mobile transmission time. 
Geometrically, the mobile position will trace a circle centered at the base stations. By using 
three base stations to resolve ambiguities, the mobile position is given by the intersection of 
these circles as illustrated in Figure 2. It should be pointed out that, in the presence of noisy 
TOA data due to interference and synchronization errors, the three circles may not intersect 
at a single point. Therefore, the geometric approach will not produce a single intersection 
point, and “statistical” techniques are typically adopted to process the noisy data, as will be 
further discussed subsequently when we introduce the AML algorithm.   
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modeled as being Gaussian distributed, which is a valid assumption for a large number of 
users. In this case, it can be shown that the total composite power spectral density (PSD), I0, 
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and other-cell MAI terms. The function H(f) denotes the Fourier transfer of the chip shaping 
filter impulse response h(t). The MAI PSD term is typically the dominant factor  in CDMA 
systems, and will depend on network loading, fraction of inter-cell to intra-cell MAI, 
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found that the o MAI factor is approximately 1.6(Ku-1), where Ku is the number of users per 
cell (Viterbi, 1995).  

 
3.2 Near-Far Interference and Soft Handoff Impact 
We consider a cellular network with a central cell and two tiers of surrounding cells as 
illustrated in Figure 3, where mobiles are assumed to be uniformly distributed across the 
coverage area. 
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Fig. 3. Cellular network model, with center cell and two tiers of interfering cells. 
 
The mobile received power at a given base station, BSi, is multiplied by an attenuation 
factor,  , that reflects distance path loss, p(d), and log-normal shadowing factor, ,  
according to (Viterbi, 1995): 
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The path-loss factor is assumed to follow the model: 
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where n is the path loss exponent and d  the mobile’s relative position with respect to the 
base station. For a given mobile location, shadowing vis-à-vis the different base stations is 
typically assumed to be partially correlated, log-normally-distributed, and given by (Viterbi, 
1995):  
 

    
iBS c ia b  (6) 

 
where c andi denote the common and independent terms, respectively, and a2+b2=1.  
With closed-loop CDMA power control, a given mobile will have the same received power 
at its home (serving) base station compared with other intra-cell mobiles. On the other hand, 
at the neighboring base stations, the mobile will be received at much lower power due to the 
so-called near-far problem (which cannot be mitigated due to the lack of “inter-cell” power 
control). However, when the mobile is in soft-handoff with other neighboring base stations, 
its received power is relatively close to that at the home cell, and this greatly improve 
radiolocation accuracy, as will be discussed next.  

 
Since TOA estimation accuracy depends on the timing synchronization mechanism, which is 
in turn affected by the received interference levels at the different base stations, the near-far 
interference at the non-serving base stations will have a major impact on the final mobile 
positioning accuracy. To illustrate this point, we consider a system where the mobile is 
served by the center base station BS1 and is radio-located using TOA data from three or 
more base stations BS1, BS2,…, BS7 (sorted in a descending order from BS1 that receives the 
highest average received power). The near-far interference impact can be conveniently 
assessed by defining the ratio of its average received power at BSi compared to BS1 (for 
which the power will be normalized to 1, and used as a reference value). We then define the 
following:  
 

   1i iP P  (7) 
 

where Pi is the received power at BSi and ≥  ≥  ≥  ≥ . A wide fluctuation in the  
factors is expected depending on the mobile position relative to the base stations of interest.  
It should be noted that, due to power control, all mobiles will be received at equal power 
(=1) at their respective home serving base stations, but much lower values of  are 
expected at far-away base stations (because of the near-far problem). This however will 
depend on the relative position of the mobile with respect to the other base stations (i.e., its 
proximity to the cell border). Soft Handoff (SHO) is one of the salient features of CDMA 
cellular systems which allow the mobile to be simultaneously connected to more than one 
serving base station.  In fact, the possibility of SHO calls enables a stronger signal reception 
at multiple base stations, and this will in turn improve positioning accuracy.  
 
To further investigate this point, we consider different scenarios denoted by Cases 1, 2, and 
3, respectively. Case 1 refers to a mobile in close proximity (within half the cell radius, R) of 
its serving BS1, with a signal at least 10dB above that at the other nearest two base stations. 
Case 2 represents a two-way soft handover scenario, with the mobile power at BS2 within 
3dB from that at BS1. Finally, Case 3 corresponds to a 3-way soft handover situation where 
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found that the o MAI factor is approximately 1.6(Ku-1), where Ku is the number of users per 
cell (Viterbi, 1995).  

 
3.2 Near-Far Interference and Soft Handoff Impact 
We consider a cellular network with a central cell and two tiers of surrounding cells as 
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where c andi denote the common and independent terms, respectively, and a2+b2=1.  
With closed-loop CDMA power control, a given mobile will have the same received power 
at its home (serving) base station compared with other intra-cell mobiles. On the other hand, 
at the neighboring base stations, the mobile will be received at much lower power due to the 
so-called near-far problem (which cannot be mitigated due to the lack of “inter-cell” power 
control). However, when the mobile is in soft-handoff with other neighboring base stations, 
its received power is relatively close to that at the home cell, and this greatly improve 
radiolocation accuracy, as will be discussed next.  

 
Since TOA estimation accuracy depends on the timing synchronization mechanism, which is 
in turn affected by the received interference levels at the different base stations, the near-far 
interference at the non-serving base stations will have a major impact on the final mobile 
positioning accuracy. To illustrate this point, we consider a system where the mobile is 
served by the center base station BS1 and is radio-located using TOA data from three or 
more base stations BS1, BS2,…, BS7 (sorted in a descending order from BS1 that receives the 
highest average received power). The near-far interference impact can be conveniently 
assessed by defining the ratio of its average received power at BSi compared to BS1 (for 
which the power will be normalized to 1, and used as a reference value). We then define the 
following:  
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where Pi is the received power at BSi and ≥  ≥  ≥  ≥ . A wide fluctuation in the  
factors is expected depending on the mobile position relative to the base stations of interest.  
It should be noted that, due to power control, all mobiles will be received at equal power 
(=1) at their respective home serving base stations, but much lower values of  are 
expected at far-away base stations (because of the near-far problem). This however will 
depend on the relative position of the mobile with respect to the other base stations (i.e., its 
proximity to the cell border). Soft Handoff (SHO) is one of the salient features of CDMA 
cellular systems which allow the mobile to be simultaneously connected to more than one 
serving base station.  In fact, the possibility of SHO calls enables a stronger signal reception 
at multiple base stations, and this will in turn improve positioning accuracy.  
 
To further investigate this point, we consider different scenarios denoted by Cases 1, 2, and 
3, respectively. Case 1 refers to a mobile in close proximity (within half the cell radius, R) of 
its serving BS1, with a signal at least 10dB above that at the other nearest two base stations. 
Case 2 represents a two-way soft handover scenario, with the mobile power at BS2 within 
3dB from that at BS1. Finally, Case 3 corresponds to a 3-way soft handover situation where 
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the mobile signal at both BS2 and BS3 is within 3dB compared to BS1. The numbers chosen 
here merely serve to illustrate the variability in received signal power (and its subsequent 
impact on TOA estimation accuracy), but do not attempt to model the specific thresholds 
and soft handover mechanisms used in CDMA standards. 
 
Table 1 and Table 2 give the different  factors for the three cases of interest, and for 
different values for the pathloss and shadowing models, where a typical 50% correlation 
factor is assumed (a=b). For the numerical results, we assumed typical parameters for the 
radio propagation channel model. A two-segment pathloss model with breakpoint at 
distance do=200m and exponents n=2 and 4, respectively, was used, with a load of 20 users 
per cell, and a cell radius of 2Km. The relative powerfactors given in Table 1 and Table 2 
clearly show that large variations occur across the base stations depending on the mobile 
soft handoff conditions and its proximity to one or more base station, and this will impact 
the accuracy of signal estimation at the different base stations as will be discussed next.   
 

 β1 β2 β3 β4 β5 β6 β7 
Case 1 (mobile 
close to home BS) 1 0.0216    0.0113     0.0069    0.0045     0.0031    0.0021  

Case 2 (mobile in 
two-way SHO) 1 0.6982    0.2215     0.1202    0.0735     0.0485    0.0331 

Case 3 (mobile in 
three-way SHO) 1 0.7922    0.6353     0.2993    0.1701     0.1065    0.0706 

Table 1. Relative received power factors for various mobile soft-handoff link conditions. 
Shadowing s.t.d 8dB. 
 

 β1 β2 β3 β4 β5 β6 β7 
Case 1 (mobile 
close to home BS) 1 0.0248    0.0125     0.0072    0.0045     0.0030    0.0020 

Case 2 (mobile in 
two-way SHO) 1 0.7000    0.2281     0.1258    0.0761     0.0486    0.0322    

Case 3 (mobile in 
three-way SHO) 1 0.7985    0.6443     0.3403    0.1953     0.1252    0.0808    

Table 2. Relative received power factors for various mobile soft-handoff link conditions. 
Shadowing s.t.d 12dB. 

 
4. Signal Time-of-Arrival Estimation  

4.1. Delay-Locked Loop Time Tracking 
Timing synchronization for CDMA signals is typically implemented in two steps consisting 
of an initial coarse timing acquisition (within an uncertainty range on the order of one-chip 
interval), followed by fine time tracking achieved by a delay-locked loop (DLL) mechanism 
(Viterbi, 1995). In this work, we assume that the initial timing acquisition has been achieved, 
and focus on the more accurate DLL tracking as the main signal timing estimation 
mechanism. For each base station involved in mobile positioning, a DLL device 
continuously attempts to bring the local code timing estimate in perfect alignment with the 

incoming mobile signal. However, this timing estimation will be subject to error due to 
noise, fading and multiple-access interference.  In the following, we consider TOA 
estimation based on a non-coherent DLL (NC-DLL) scheme. In practice, the NC-DLL is 
preferred over a coherent structure because of its insensitivity to carrier phase error and 
data modulation.  Figure 4 depicts a block diagram showing the different processing stages 
of a NC-DLL code tracking loop. Because QPSK spreading is used, the NC-DLL employs 
both I & Q branches where the I & Q received signals, after down conversion and chip 
matched filtering, are fed to two early & late branches which correlate the spread-spectrum 
waveforms with advanced and delayed code sequence replicas.  The outputs obtained at the 
I & Q channels of the early & late branches can be obtained as (Viterbi, 1995) 
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where A is the fading signal envelope modeled as a Rayleigh random variable, and θ is its 
uniform phase.  is the early & late timing offset (typically set to Tc/2), P is the signal 
power, and N is the number of accumulated chips. The function R() is a correlation function 
given by the convolution of the impulse responses of the pulse-shaping filter and its 
matched filter (Viterbi, 1995): 
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The DLL I & Q correlator outputs are combined as shown in Figure 4, and a resulting 
discriminator metric Z

 
is low-pass filtered to form an error signal used to drive a 

numerically-controlled oscillator (NCO) that controls the code timing adjustment. The DLL 
discriminator output can be obtained as (Viterbi, 1995): 
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where  is the power reduction factor reflecting the impact of DLL operation at different 
base stations (compared to the main serving base station, as discussed previously). The term 
 represents the combined Gaussian noise term with variance I0. The function S() is known 
as the normalized DLL S-curve, and is given by  
 

        2 2( ) ( ) ( )S R R  (12) 
 

where   is the normalized timing error given by 
 

     ˆ( )/ cT  (13) 
 
with   denoting  the correct TOA and  ̂  the estimated one.  
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A common figure of merit for assessing the DLL performance is based on the tracking jitter 
variance. For additive white Gaussian (AWGN) channels, a simple upper-bound 
approximation for the tracking jitter variance, valid for linearized first-order DLL models, is 
derived in (Viterbi, 1995) as 
  

  


2
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c

I
N E
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 (14) 

 
where Ec is the received chip energy, is the slope of the S-curve at the origin, and I0 is the 
variance of the thermal noise & MAI terms. However, there is no simple equivalent result 
for the case of frequency-selective multipath fading channels considered in this work, and 
the above approximation is only valid for high mobile received Signal-to-Noise Ratio (SNR) 
conditions, which is not necessarily the case at the remote base stations (other than the home 
serving one), as discussed previously.  In this work, we resort to a more accurate 
performance analysis valid for all SNR conditions and based on the computation of the full 
statistics (probability density function) of the DLL tracking loop, as discussed next. 

 
Fig. 4. DLL system used for CDMA signal timing synchronization and TOA estimation 

 
4.2. DLL Tracking Error Statistics   
For the purpose of analyzing the impact of TOA estimation error on mobile positioning 
accuracy, we need to obtain accurate statistics for the TOA measurements at each of the base 
stations involved in tracking the given mobile TOA. Hypothetical distributions (Gaussian 
models) are commonly assumed for the TOA timing estimation error. The same variance is 

usually assigned to the TOA error at all base stations involved in mobile positioning, and 
this variance is sometimes set rather arbitrarily. In this work, we use results based on a more 
rigorous analysis with full derivation of the TOA error probability density function (PDF). 
The results are obtained following the approach presented in (Su & Yen, 1997) and extended 
to quadrature-spread CDMA signals in (Khan, 2009). Assuming a discrete-time model, the 
analysis is based on a discrete-time Markov model for the residual DLL error, according to 
the following equation:  
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1 1 1 1( )k k NCO k k kK A S             (15) 

 
where KNCO is the NCO gain, and k is the  additive Gaussian noise term. It can be seen that 
the residual tracking error follows a discrete-time Markov process for which the first order 
probability distribution can be obtained using the Kolmogorov-Chapman equation (Su & 
Yen, 1997): 
 

      


 
  1 1 0( ) | |k k kp f x p x dx  (16) 

 
where 0 is the initial timing error, pk-1(x|0) is the PDF of x given 0, and fk-1(|x) is the 
transition pdf of k given x. Through detailed analysis, one can calculate the exact 
expressions fk-1(|x) under assumption of a Rayleigh fading channel. Using numerical 
integration, it is then possible to iterate the Kolmogorov-Chapman equation to get the PDF 
of the TOA estimation error. The lengthy details of this derivation are not included here, but 
can be found in (Khan, 2009).  
 
The procedure outlined above can be done for different scenarios reflecting mobile TOA 
estimation at a given base station of interest. For our purpose, we analyze the performance 
of TOA DLL tracking at the different base stations for each one of the three cases described 
in Section 3.  The results are shown in Figures 5 through 7, where it is clearly seen that the 
TOA residual error behavior can vary widely depending on the mobile position vis-à-vis the 
tracking base station. For example, in Figure 5 which corresponds to a mobile very close to 
its home serving base station, the residual error at the home base station is well-confined 
and nearly Gaussian-distributed (with a standard deviation  found to be on the order of 
0.15Tc), whereas for the other two base stations, the timing errors remain nearly uniformly-
distributed with a standard deviation of 0.29Tc (which shows that the DLL loops at those 
base stations are not effectively tracking the mobile signal TOA). On the other hand, in 
Figure 6 and Figure 7 corresponding to 2-way and 3-way SHO, respectively, the mobile time 
tracking performance at BS2 and BS3 is markedly better, with distributions approaching that 
of the home BS1. It is to be noted that the number of users per cell (assumed the same for all 
cells, for simplicity) can also have a major impact on the timing estimation accuracy, 
regardless of the mobile position scenario (i.e., for all different cases discussed previously). 
Indeed, as shown in Figure 8, when the number of users increases, the tracking error PDFs 
are more wide-spread, and have an increasing error s.t.d (given with a normalization factor 
of 1/Tc). 
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Fig. 5. Mobile TOA Tracking error PDF at BS1, BS2, BS3 for Case 1 (MS without handoff) 
 

 
Fig. 6. Mobile TOA tracking error PDF at BS1, BS2, BS3 for Case 2 (MS in 2-way soft handoff) 

 
Fig. 7. Mobile TOA time tracking error PDF at BS1, BS2, BS3 for Case 3 (MS in 3-way soft 
handoff) 
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Fig. 8. Illustration of the impact of the number of users on the TOA tracking error 
probability density function. 
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5. TOA Processing for Mobile Positioning  

5.1. Approximate Maximum Likelihood Algorithm 
In time-of-arrival radiolocation techniques, the distance is calculated as the propagation 
time multiplied by the speed of light c. Line-of-sight (LOS) propagation is assumed, 
whereby the mobile signal travels on a direct path at the constant speed of light in free 
space. It is further assumed that the base stations are synchronized and the mobile 
transmission time is known (set to zero for simplicity). The TOA measurements, produced 
at each base station, are therefore directly proportional to the mobile-base distance 
separation. Geometrically, circles centered at the base stations can be drawn with the 
calculated distance as the radius. With the help of three base stations, the mobile location 
can be found geometrically as the intersection of the corresponding circles.  However, in the 
presence of noise and interference, the three circles may not intersect at a single point. 
Therefore, the geometric approach is not suitable, and several other “statistical” techniques 
have been proposed (Caffrey, 1999), (Sayed et al., 2005) to process the noisy data. Many of 
these are based on iterative algorithms using least-squares or gradient search minimization. 
On the other hand, since the positioning equations involved are typically nonlinear, some 
traditional approaches based on linearization followed by a gradient search were proposed 
(Niezgoda & Ho, 1994). However, these approaches suffer from sensitivity to initialization 
errors and convergence problems. More recently, some researchers introduced new closed-
form linear techniques (Caffrey & Stuber, 2000), (Chan & Ho, 1994), but the drawback of 
these methods is that optimum location estimates can only be found at high SNR values, 
which may not always be the case in practice.  

 
Another interesting solution was proposed by (Chan et al., 2006) and shown to have near-
optimum performance, with the added advantage of reduced complexity. Their method 
uses an Approximate Maximum Likelihood (AML) algorithm, which we adopt in this study. 
In the following, we give a general overview of the AML algorithm processing steps, and 
introduce a modification tailored towards the case of unequal TOA variances at the different 
base stations, and relevant to mobile radiolocation under near-far interference conditions 
(which is the focus of this work), as will be outlined subsequently. Based on the assumed 
cellular geometry, the true distances between the BSs and MS are given by 

 

            22
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where NBS is the number of involved BSs. The measured distances, li, is given by 
 
      i i il R  i=1,2,……,NBS      (18) 
 
where εi is the DLL timing error. In matrix form, this is written as 
 

 l = R +ε  (19) 
 

Dividing by c to get the measured TOA vector T, we obtain  
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is the vector of additive measurement noise, and T0  is the vector of true TOAs. The original 
AML algorithm proposed by (Chan et al., 2006) assumes that all BSs have an equal error 
variance. Hence, the elements of e are assumed to be independent, zero-mean Gaussian 
random variables with covariance matrix 
 

     2tEQ ee I  (23) 
 
The AML algorithm can be generalized to account for different values of the error variance 
at different BSs. If the variance of the error can be estimated at each BS, one can use this 
information to improve the localization performance by giving more trust to BSs with lower 
error variance. In this case the elements of e are assumed to be independent, zero mean 
Gaussian random variables with covariance matrix: 
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The conditional probability density function (PDF) of T given Θ is given by 
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The ML estimate of the MS position (x, y) is the Θ that minimizes J (Trees, 1968). Minimizing 
J is done by setting its gradient with respect to Θ to zero. Considering first the derivative 
with respect to the position variable x, we have 
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J is done by setting its gradient with respect to Θ to zero. Considering first the derivative 
with respect to the position variable x, we have 
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By expressing the timing error in terms of the difference between the true TOA and 
measured one, this gives 
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Substituting in Equation (27), we get 
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The above steps starting with Equation (27) can be repeated for ∂J/∂y in a straightforward 
manner. Finally, by setting the gradient of J with respect to Θ to zero, we get the two ML 
equations 
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The above equations can be expressed in matrix notation as     
              

 
 
 

     
            

 
  

2

2
2 i i ii i i i

i i i i i i i

g s K lxg x g y
yh x h x h s K l

 (33) 

where 
  2 2s x y  (34) 

 

  2 2
i i iK x y  (35) 

 

  



  2

i
i

i i i i

x xg
R R l

 (36) 

 

  



  2

i
i

i i i i

y y
h

R R l
 (37) 

 
In a more compact form, Equation (34) can be re-written as 
 

 AΘ = b (38) 
 
with the matrix A and vector b being functions of Θ. A suboptimal solution based on a 
linear model (Chan & Ho, 1994) can be used as a first initial estimate of Θ, which will in turn 
give starting values of A and b. Then, solving Equation (33) produces a new value of Θ to 
update A and b, and subsequently Θ. This iterative procedure first gives an approximate 
maximum likelihood (AML) estimator, which can then be iterated a number of times to 
obtain a final solution. The final solution takes the Θ that gives the smallest J in Equation 
(26). This ensures that the AML will not diverge. In fact, simulation results presented in 
(Chan et al., 2006) show that the AML can nearly achieve the Cramer–Rao lower bound 
(CRLB) with a small number of iterations (typically on the order of five updates are found to 
be sufficient). It should be noted that, for the special case of equal measurement variance 
assumption (as in the original AML), the common  term drops from Equation (32). 
However, with the modified AML in Equation (33), the quantities gi and hi will be different 
for different BSs, and this is found to yield some improvement in performance as will be 
discussed next.  

 
5.2. Positioning Accuracy with the Modified AML Algorithm 
To illustrate the impact of the modified AML that takes into account the unequal error 
variances, we consider an example of three BSs with different measurement error statistics 
for mobiles located in three different regions, as described in the different cases of Section 3. 
Figure 9 shows the geometry of the layout used for this purpose, where distances are shown 
in meters. The dense scatter points represents a total of 105 noisy mobile locations generated 
according to the TOA statistics for the different cases of interest which are referred to as 
MS1, MS2, MS3, corresponding to mobiles classified in Section 3 as Case 1, 2, and 3, 
respectively. For each mobile location, the AML and modified AML algorithms are executed 
to obtain the estimated mobile coordinates, and by comparing with the known mobile 
position, the resulting positioning error can be computed. The different parameters for the 
radio channel and relative received power factors used are based on the results given in 
Table 1 of Section 3.   
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Fig. 9. Layout of the mobile localization geometry used to test the accuracy of the AML 
algorithm. 
 
Various aspects of mobile positioning performance are illustrated in Figure 10 based on the 
cumulative distribution function (CDF) of the radiolocation error. First, it can be seen that 
the modified AML which takes into account the differences in TOA noise statistics at the 
various base stations (as proposed in this work) outperforms, albeit slightly, the 
conventional AML which assumes equal TOA noise variance at all base stations. This is 
more pronounced for mobiles categorized as MS1 (i.e., which are in close proximity to their 
home base stations). The other major observation from Figure 10 is that a large difference in 
radiolocation accuracy is present depending on the mobile relative position with respect to 
the base stations. It is clearly seen that MS2 and particularly MS3 mobiles, corresponding to 
mobiles in 2-way and 3-way soft handoff, respectively, achieve much better performance as 
opposed to MS1. This is due to the poor TOA accuracy at BS2 and BS3 for the latter case, 
owing to the overwhelming near-far interference experienced by the mobile at the remote 
bases stations, as discussed in Section 4. As an example, the probability of the residual 
positioning error being less than 20m is almost one for MS3 mobiles, while it is on the order 
of 70% for MS2, and only 50% for MS1–type mobiles.  Similar observations also hold for 
other distances. Therefore, as highlighted throughout this study, the accuracy of mobile 
positioning is best when the mobile is in close proximity to a border cell region where soft 
handoff connectivity is established with one or two more cells involved in its positioning in 
addition to its home serving cell.  

 
 
 

 
Fig. 10. Illustration of mobile positioning accuracy with the Approximate Maximum 
Likelihood Algorithm.   

 
6. Conclusion 
This study dealt with the performance analysis of time-of-arrival (TOA) techniques for 
mobile positioning in CDMA wireless cellular networks. Since several base stations are 
typically needed for mobile radiolocation, the problem of weak signal hearability at remote 
base stations is a major challenge, and a detailed analysis of this issue was presented by 
taking into account the near-far interference usually present in CDMA cellular networks.   
 
TOA-based positioning methods are well-suited for wide deployment of radiolocation 
services since the synchronization circuits that can extract timing information are readily 
available at the base stations receiving the mobile signal.  For CDMA signals, the delay-
locked loop (DLL) is commonly used as a TOA estimation device, and a detailed analysis of 
DLL-based TOA tracking was presented taking into account the cellular network layout, cell 
loading and other-user interference, as well as RF channel shadowing and pathloss that 
affect received signal strength at the different base stations. In particular, it was shown that 
the TOA tracking error statistics can vary considerably depending on the mobile link 
conditions with respect to the base stations involved in its positioning, and soft handoff 
(SHO) links with two or three base stations for mobiles close to border-cell regions were 
found to improve the precision of mobile TOA tracking.  
 
Using TOA information, a mobile radiolocation positioning algorithm based on a 
computationally-efficient, near-optimum approximate maximum likelihood (AML) 
processing was presented, and a generalization to the case of unequal timing error variances 
at the different base stations was also derived. Numerical results were presented to quantify 
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the achievable positioning accuracy of the AML algorithms, and it was also shown that SHO 
radio links with two or particularly three base stations have a clear impact on the precision 
of mobile radiolocation. Finally, it should be noted that the problem of non-line-of-sight 
(NLOS) propagation, which constitutes another major challenge to mobile positioning 
accuracy, was not included in this study, and would be addressed in future work. 
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