We are IntechOpen, the world's leading publisher of Open Access books Built by scientists, for scientists

185,000

200M

Our authors are among the

TOP 1% most cited scientists

WEB OF SCIENCE

Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com

A Design for Quality Management Information System in Short Delivery Time Processes

Jing Sun

Department of Systems Engineering, The University of Electro-Communications, Human Innovation Research Center, The Aoyama Gakuin University, Japan.

1. Introduction

Recently, by the advance of IT (information technology), the IT control charts have been paid attention and been used in quality management information system, for not only putting quality into products at the production stage but also improving communication between management and manufacturing [1], [2]. Because the high quality, low cost and short delivery time are demand from customer, delivery to the multi-item small-sized production, the reduction of delivery time is emphasized. For those needs, developing the methods and designs of control chart suitable for today's work situations (For example, short delivery time process.) become a new problem for manager, which is also one research theme of control chart practical applications study group of JSQC [3].

The classical definitions of the control chart's PDCA (Plan, Do, Check and Act) procedures are known. Recently, the evaluation of the economy of this control chart's PDCA procedures is connected with "daily management".

By investigating literature cases in the activities of control chart practical applications study group, it is recognized that the act procedure is the most important in the procedures of PDCA of control chart [4]. Because the systematic investigations of control chart's PDCA design was not done in the works before, Sun, Tsubaki and Matsui defined and considered the PDCA designs based on the \bar{x} control chart [5] and P control chart [6], respectively. In addition, the PDCA design of the \bar{x} control chart with tardiness penalty is investigated [7]. However, the ACT time was not considered in above researches.

In this research, first a design of the \overline{x} control chart is presented and its mathematical formulations are shown. Then, the presented design based on the judgment rules of JIS Z 9021 [8], [9] is studied, finally, by numerically consideration using the data from real situation, the relations of key parameters and delivery time and the total expectation cost are discussed.

2. The design

When the control chart is used in short delivery time processes, the penalties for delay of the delivery time should be imposed. In this research, the PDCA design is set up based on the

Source: Process Management, Book edited by: Mária Pomffyová, ISBN 978-953-307-085-8, pp. 338, April 2010, INTECH, Croatia, downloaded from SCIYO.COM 3

case which starts from deciding the control lines of the \bar{x} control chart, in which the penalties for delay of the delivery time (*T*) have been considered.

The evaluation function of this research is the expected total cost per unit time as follows:

$$C_{t(CAPD)} = \frac{E[cost \ per \ cycle]}{E[cycle \ (PDCA)]} = \frac{E[cost \ per \ cycle]}{E[min(T_p + I_1 + O_1 + a, T)]}$$
(1)
$$= C_p + C_d + C_c + C_a.$$

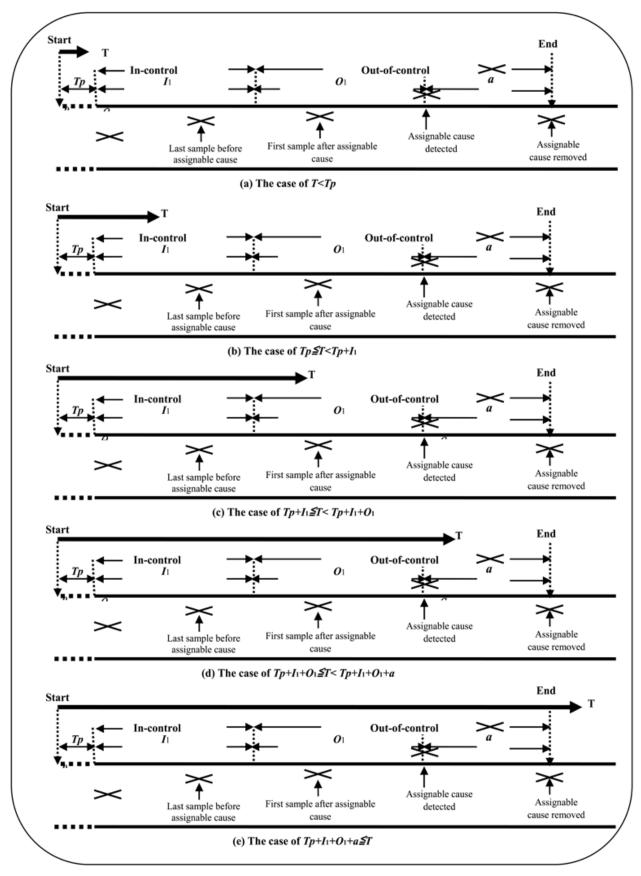
The definition of the procedures of the PDCA design and the cost elements of equation (1) are explained in Table 1.

The time variables used in the design of this research are defined by Figure 1.

Procedure	Difinition	Element of cost (per unit time)
PLAN	Constructs control lines of control chart.	Cp=Cp(p)+Cp(pe) Cp(p) cost of PLAN Cp(pe) cost of the penalty for delaying the PLAN
DO	Samples and plots on control chart for monitoring the process.	Cd=Cd(d)+Cd(pe) $Cd(d) cost of DO$ $Cd(pe) cost of the penalty for delaying the DO$
CHECK	Examines whether the points plotted on control chart are beyond the upper and lower control limits.	Cc=Cc(c)+Cc(e)+Cc(pe) $Cc(c)$ cost of CHECK $Cp(p)$ cost of type I error $Cp(pe)$ cost of the penalty for delaying the CHECK
ACT	Investigate the assignable cause and correct it.	Ca=Ca(a)+Ca(pe) $Ca(a) cost of ACT$ $Ca(pe) cost of the penalty for delaying the ACT$

Table 1. The definition and the cost elements of the design

Figure 1 shows some of the time variables used in the design of this research. At the start of the PDCA design, PLAN for deciding the control lines is made in *Tp* time. Therefore, it is thought that the PDCA model starts from the in-control state,


because the process is managed by these control lines. Let the process start at the point of Q, and let S be the point in time at which the quality characteristic shifts to an out-of-control state as shown in Figure 1. An assignable cause is detected at the point of C, and then corrected at the point of D. Here, the random variables I_1 and O_1 represent the interval from Q to S and the interval from S to C.

The assumptions of the design in this research are as follows:

1. The delivery time is short, and the process is repetitive.

2. The quality shift occurs in the middle of an interval between samples [10]

In this research, both the random variables I_1 and O_1 are assumed to be independently and exponentially distributed with mean λ_1^{-1} , μ_1^{-1} , then (1) is

A Design for Quality Management Information System in Short Delivery Time Processes

Fig. 1. Some of time variables used in the design

$$Ct = \{((c_{0} + c_{1}n) / v)[T\phi_{1} + T_{p}(1 - \phi_{1})] + c_{\beta p}\phi_{1} + [(c_{0} + c_{1}n) / v] \\ \left[\frac{1}{\lambda_{1} - \mu_{1}} \{\frac{\mu_{1}}{\lambda_{1}} (e^{-\lambda_{1}(T - T_{p} - a)} - 1) - \frac{\lambda_{1}}{\mu_{1}} (e^{-\mu_{1}(T - T_{p} - a)} - 1)\} + T_{p} + a - (T\phi_{1} + T_{p}(1 - \phi_{1}))] + c_{\beta d}\phi_{2} + (c_{2} / v)[\frac{1}{\lambda_{1} - \mu_{1}} \{\frac{\mu_{1}}{\lambda_{1}} (e^{-\lambda_{1}(T - T_{p} - a)} - 1) - \frac{\lambda_{1}}{\mu_{1}} (e^{-\mu_{1}(T - T_{p} - a)} - 1)\} + T_{p} + a - (T\phi_{1} + T_{p}(1 - \phi_{1}))] + (c_{3} / v_{1})\alpha \frac{1}{\lambda_{1}} (1 - e^{-\lambda_{1}(T - T_{p})}) + c_{\beta c}[\frac{1}{\mu_{1}} + \frac{1}{\lambda_{1} - \mu_{1}} (e^{-\lambda_{1}(T - T_{p})} - \frac{\lambda_{1}}{\mu_{1}} e^{-\mu_{1}(T - T_{p})})] + c_{4}[a + \frac{1}{\lambda_{1} - \mu_{1}} (\frac{\lambda_{1}}{\mu_{1}} e^{-\mu_{1}(T - T_{p})}(1 - e^{\mu_{1}a}) - \frac{\mu_{1}}{\mu_{1}} e^{-\lambda_{1}(T - T_{p})}(1 - e^{\lambda_{1}a}))] + c_{\beta a}[\frac{\lambda_{1}\mu_{1}}{\lambda_{1} - \mu_{1}} (-\frac{1}{\mu_{1}} e^{-\mu_{1}(T - T_{p})}(1 - e^{\mu_{1}a}) + \frac{1}{\lambda_{1}} e^{-\lambda_{1}(T - T_{p})}(1 - e^{\lambda_{1}a}))]\} / [\frac{1}{\lambda_{1} - \mu_{1}} \{\frac{\mu_{1}}{\mu_{1}} (e^{-\lambda_{1}(T - T_{p} - a)} - 1) - \frac{\lambda_{1}}{\mu_{1}} (e^{-\mu_{1}(T - T_{p} - a)} - 1)\} + T_{p} + a]$$

Where

$$\mu_1^{-1} = v(1/P_a - 1) + v/2 = v(1/P_a - 1/2).$$
(3)

3. Numerical experiments

A. Explanation of parameters from a real situation

The parameters used in this research are from A company, which is based on a real situation. Where c0=50, c1=40, c2=100, c3=2000, c4=8000, $c_{\beta a} = c_{\beta p} = c_{\beta d} = 1000000$,

 $c_{\beta c}$ =1000000, v=1day, f'=20, ϕ_1 =0.01, ϕ_2 =0.001, $1/\lambda_1$ =10days, δ =1, k=3.0, a=0.083 day. The notation used is as follows:

- *n* the sample size per each sampling
- *v* the sampling interval
- *T* delivery time
- Tp the interval of PLAN
- c_0 fixed sampling cost
- *c*₁ variable sampling cost
- *c*₂ cost of per unit time for checking the point plotted
- c_3 cost of a false alarm
- *c*₄ cost of restoring an in-control state
- $c_{\beta p}$ cost of per unit time for penalties delay of PLAN
- $c_{\beta d}$ cost of per unit time for penalties delay of DO

 $c_{\beta c}$ cost of per unit time for penalties delay of CHECK (penalties for sending the mistake information)

34

- $c_{\beta a}$ cost of per unit time for penalties delay of ACT
- *f* number of samples taken during *T*-*Tp*
- δ size of the quality shift in the mean
- *a* the ACT time
- *k* control limits width

In this research, the outside dimension of molding plate is a key quality characteristic. The difference between the outside dimension and set value is plotted on the \bar{x} control chart.

B. Investigations based on the judgment rules of JIS Z 9021

In the production process, the power (*Pa*) is different depending on the kind of the judgment rule. In this section, the presented design is considered based on the rule 1 (3σ rule) and rule 2 (9 ARL rule) of JIS Z 9021. Because sample size *n* is not only an influence element to test but also an important parameter of cost, at first, the two judgment rules are studied by the change of *n*.

From Figure 2, it can be noted that the *Pa* by the two rules increases with the increase of sample size *n*, and the speed of increase of 9 ARL rule is faster.

Next, the design based on the two judgment rules is studied by the change of *n*. From Figure 3, it can be note that when *n* is small, the expected total cost *Ct* of 9 ARL rule is cheaper.

From Figure 3, it also can be note that the expected total cost Ct of 3 σ rule is the cheapest when n is five. This result is corresponding to the sampling size actually used in A company. Therefore, it could be said that the presented design is applicability.

C. Investigations of the relations between the power and delivery time and the total expectation cost

From Figure 4, it can be understand that the expected total cost per unit time (Ct) decreases with the increase of the power (Pa). This is because that the cost of defective goods decreases by the increase of the power (Pa).

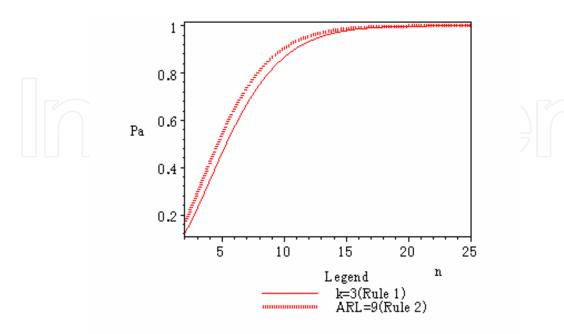


Fig. 2. Power by the two rules

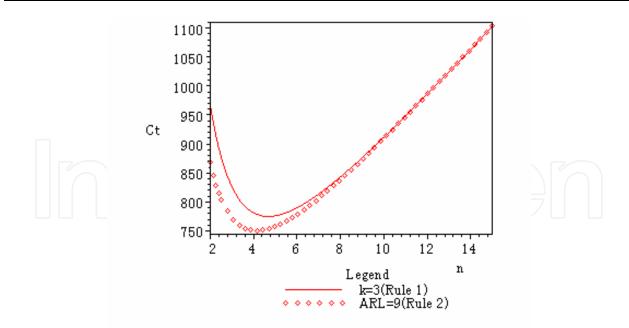
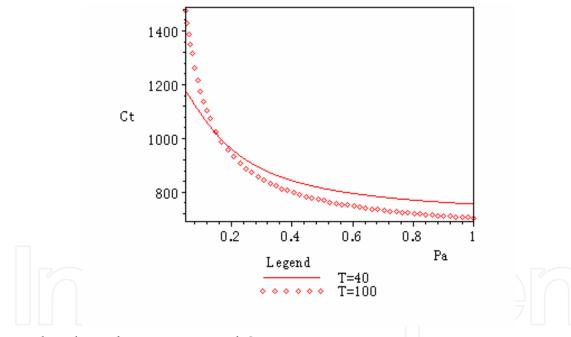
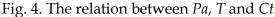




Fig. 3. Investigating the design by the two rules

From Figure 4, it also can be understand that a longer delivery time should be set when the higher power for higher quality is demanded; while a shorter delivery time should be set when the low power for not higher quality is demanded.

In addition, to understand a more detailed setting, Table 2 is shown, which is based on the case of A company. The axis of ordinate and abscissas are *Pa* and *T*.

From Tables 2, it can be understood that this tables are divided into two areas: in the colourlessness area, a longer delivery time should be set for the higher power (higher quality) being demanded; in the Blue area, a shorter delivery time should be set for the low power (not higher quality) being demanded.

D					Т				
Pa	40	50	60	70	80	90	100	110	120
0.05	1176.9	1302.2	1377.4	1422.1	1448.7	1464.6	1474.0	1479.5	1482.7
0.10	1090.8	1135.5	1155.3	1163.8	1167.3	1168.6	1169.05	1169.06	1168.9
0.15	1017.8	1023.5	1024.6	1024.8	1024.6	1024.4	1024.15	1023.88	1023.6
0.20	961.3	949.7	944.8	942.8	941.9	941.4	941.03	940.71	940.4
0.30	890.0	863.6	855.2	852.0	850.6	849.9	849.47	849.11	848.8
0.35	860.0	836.8	827.7	824.2	822.8	822.0	821.58	821.21	820.9
0.40	840.0	816.2	806.6	802.9	801.4	800.6	800.12	799.74	799.4
0.46	824.1	796.0	786.0	782.1	780.5	779.7	779.25	778.87	778.5
0.50	810.0	786.4	776.1	772.2	770.5	769.7	769.25	768.87	768.5
0.55	800.0	775.2	764.8	760.8	759.1	758.3	757.79	757.40	757.1
0.60	799.0	765.9	755.2	751.1	749.5	748.6	748.13	747.74	747.4
0.65	791.0	757.9	747.1	742.9	741.2	740.4	739.88	739.49	739.1
0.70	781.4	751.0	740.0	735.8	734.1	733.3	732.76	732.37	732.0
0.75	775.7	744.9	733.9	729.7	727.9	727.1	726.55	726.15	725.8
0.80	770.6	739.6	728.5	724.2	722.4	721.6	721.08	720.68	720.3
0.85	766.2	734.9	723.7	719.4	717.6	716.7	716.23	715.83	715.5
0.90	762.1	730.7	719.4	715.1	713.3	712.4	711.90	711.50	711.1
0.95	758.5	726.9	715.5	711.2	709.4	708.5	708.01	707.61	707.3
1.00	755.3	723.5	712.0	707.7	705.9	705.0	704.50	704.10	703.7

A Design for Quality Management Information System in Short Delivery Time Processes

Table 2. The balance of *Pa*, *T* and *Ct*

From Tables 2, it also can be understood that how much total expectation cost should be paid by the different power, when the delivery time is strictly demanded; how much total expectation cost should be paid by different delivery time, when the power of process is strictly demanded. Because Table 2 shows the relation (concrete value) of power, the delivery date and the total expectation cost, it would become a reference for business plan.

D. The balance of k, T and Ct

In this section, we study the relations between the delivery time and ACT time and the total expectation cost, then we investigate the balance of control limits width (*k*) and delivery time (*T*) and the total expectation cost (*Ct*) by numerically analyzing the above design. Where, $c_0=1$, $c_1=0.1$, $c_2=10$, $c_3=50$, $c_4=25$, $c_{\beta a} = c_{\beta p} = c_{\beta d} = 200$, $c_{\beta c} = 2400$, $n_1=4$, $v_1=0.0316$, Tp=1, $\phi_1 = 0.01$, $\phi_2 = 0.001$, $\lambda_1=1$.

Table 3 show the balance of the quality (control limits width) and delivery time and the total expectation cost of the above case, which is useful for setting the optimal delivery time and control limits width to the supplier.

ŀ								k						
-	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00	5.25	5.50	5.75	6.00
2.50	284.941	285.070	286.939	290.475	295.984	304,187	316.349	334.550	362.096	403.805	465.203	548.437	645.798	740.137
2.75	283.866	283.992	285.869	289.420	294.957	303.206	315.447	333.810	361.788	404.863	470.364	563.733	679.704	798.529
3.00	283.039	283.164	285.046	288.609	294.166	302.448	314.745	333.210	361.406	405.115	472.825	572.936	703.662	844.432
3.25	282.376	282.500	284.385	287.957	293.529	301.836	314.174	332.713	361.056	405.130	474.100	578.676	720.880	880,838
3.50	281.825	281.947	283.836	287.414	292.998	301.322	313.691	332.286	360.737	405.055	474.801	582.367	733.437	196'606
3.75	281.351	281.473	283.364	286.947	292.539	300.878	313.270	331.907	360.438	404.934	475.194	584.798	742.705	933.441
4.00	280.933	281.054	282.947	286.534	292.133	300.483	312.893	331.562	360.155	404.784	475.404	586.425	749.612	952.502
4.25	280.554	280.676	282.570	286.161	291.765	300.123	312.548	331.241	359.882	404.612	475.495	587.523	754.794	968.065
4.50	280.206	280.327	282.223	285.816	291.424	299.789	312.225	330.938	359.616	404.424	475.505	588.260	758.701	980.833
4.75	279.879	280.001	281.897	285.492	291.103	299.474	311.918	330.647	359.354	404.224	475.456	588.746	761.652	991.350
5.00	279.568	279.690	281.587	285.184	290.798	299.173	311.624	330.366	359.096	404.014	475.363	589.053	763.881	1000.038
5.50	278.980	279.102	281.000	284.600	290.218	298.599	311.062	329.821	358.585	403.572	475.085	589.309	766.817	1013.199
6.00	278.420	278.542	280.441	284.042	289.664	298.050	310.520	329.292	358.078	403.111	474.728	589.271	768.430	1022.266
6.50	277.875	277.998	279.898	283.500	289.124	297.513	309.989	328.770	357.573	402.636	474.322	589.064	769.250	1028.517
7.00	277.340	277.462	279.363	282.967	288.592	296.985	309.465	328.253	357.068	402.154	473.887	588.757	769.588	1032.807
7.50	276.809	276.932	278.834	282.438	288.065	296.460	308.944	327.738	356.563	401.666	473.434	588.391	769.632	1035.723
8.00	276.281	276.405	278.307	281.913	287.541	295.938	308.425	327.224	356.058	401.175	472.970	587.989	769.497	1037.673

Table 3. The balance of k, T and Ct

From Table 3, it can be understood that this tables are divided into two areas by the changed control limits width: in the colorlessness area, the expected total cost per unit time (Ct) increases with the increase of delivery time (T); in the blue area, the expected total cost per unit time (Ct) decreases with the increase of delivery time (T).

From Table 3 and Figure 5, it can be noted that the expected total cost per unit time (Ct) increases with the increase of control limits width (k). This is because that the cost of defective goods increases by the increase of control limits width.

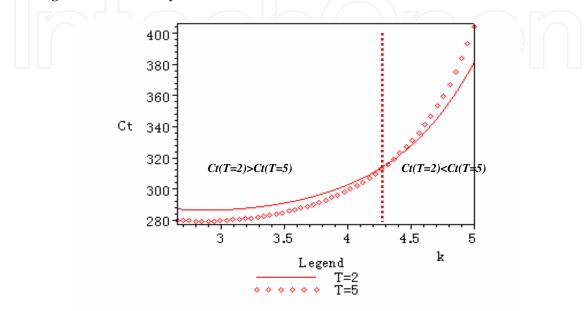


Fig. 5. The relation between *k* and *Ct* (T=2, T=5).

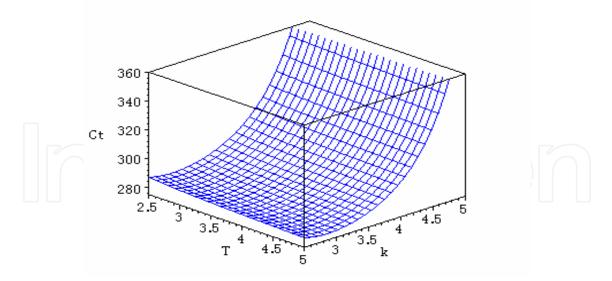


Fig. 6. The relation between *T*, *k* and *Ct*.

From Table 3, it also can be understand that a longer delivery time should be set when the high quality (when k is small) is demanded, while a shorter delivery time should be set when the low quality is demanded from an economic aspect.

In addition, to clarify it more, we also show the Figure 6 which is the same as the case of Table 3.

015 0.25 0.45 0.45 0.56 0.65 0.65 0.75 0.80 0.85 0.90 0.95 100 251694 251.491 287.45 245.52 253.992 257.612 261.473 265.877 265.875 265.875 265.875 275.942 275.942 281.462 281.463 275 220.101 244.462 255.126 257.112 256.173 265.875 265.875 265.875 265.875 275.942 275.942 281.473 283.164 375 274.462 251.266 257.174 266.173 265.767 265.875 265.875 265.875 265.875 275.942 275.942 281.475 283.143 375 274.462 257.128 255.126 257.112 266.447 267.201 275.345 275.345 278.347 281.447 375 274.462 274.462 257.265 266.447 267.261 275.345 276.342 278.347 281.473 375 244.512 <t< th=""><th>T</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>a</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	T								a						
21.040 28.745 24.532 253.90 257.612 261.164 266.465 266.337 266.393 272.060 278.363 281.046 220.101 244.402 257.171 256.171 256.171 256.171 256.171 256.171 256.171 256.171 256.933 772.060 275.632 278.393 281.046 277.383 281.046 277.383 280.070 277.383 277.383 277.383 277.383 277.383 277.383 277.383 277.383 277.383 277.383 277.383 277.383<		0.15	0.25	0.35	0.45	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00
205.160 243.98 242.000 249.31 259.11 259.41 261.164 265.807 268.993 275.122 271.80 281.046 229.311 271.191 244.462 251.266 257.612 267.693 269.549 275.122 271.383 280.070 231.681 249.162 257.632 287.112 261.619 264.47 267.201 269.549 275.532 271.383 280.070 231.512 248.162 258.163 265.163 267.603 267.632 274.492 271.110 293.31 235.513 249.161 258.183 255.516 255.16 267.633 270.134 274.492 271.10 273.345 235.515 249.161 256.316 265.316 267.633 267.633 274.442 277.105 278.347 235.515 248.171 260.347 265.316 267.633 270.432 276.432 278.343 277.345 277.345 277.345 277.345 277.343 277.246 277.346 277.346	0	221.694	230.491	238.745	1991 V 19	253.999	257.612	261.164	264.665	268.122	271.545	274.942	278.323	281.696	285.070
29.311 271.101 241.462 251.266 260.567 266.5680 269.549 275.360 275.122 277.389 280.070 231.666 291.02 246.148 255.652 268.167 267.201 269.877 275.561 277.362 277.355 277.363 277.310 231.561 240.148 255.652 265.168 267.502 270.072 275.552 274.849 277.110 279.317 235.352 241.623 281.64 265.56 265.563 267.653 267.662 267.672 274.462 276.612 279.317 235.352 249.147 260.192 265.306 267.663 267.663 267.661 274.462 276.611 279.317 235.352 249.314 250.304 262.803 265.306 267.462 276.661 276.357 277.362 276.361 277.362 277.362 277.362 277.362 277.362 277.362 277.362 277.362 277.362 277.362 277.362 277.363 277.362 277.36	5	226.160	234.398	-	-	256.171	259.474	261.164	265.877	268.993	272.060	275.087	278.080	281.046	283.992
231.68 299.192 246.148 252.632 288.712 261.619 264.471 267.301 269.887 275.512 275.681 277.598 277.358 277.355 277.365 <td< td=""><td>0</td><td>229.371</td><td>237.191</td><td>-</td><td></td><td>257.674</td><td>260.750</td><td>263.750</td><td>266.680</td><td>269.549</td><td>272.360</td><td>275.122</td><td>277.839</td><td>280.518</td><td>283.164</td></td<>	0	229.371	237.191	-		257.674	260.750	263.750	266.680	269.549	272.360	275.122	277.839	280.518	283.164
23.351 24.0610 24.738 25.417 26.198 26.4897 267.500 270.072 27.559 24.985 271.355 279.675 23.4513 24.1623 284.164 254.238 265.565 265.168 267.503 270.145 275.88 271.10 279.317 235.543 242.711 248.718 256.6159 265.366 265.765 267.169 270.146 276.862 276.862 276.862 276.862 276.862 276.862 276.862 276.862 276.862 276.867 276.867 278.371 278.371 235.512 244.759 240.067 254.895 265.306 265.316 270.366 267.762 279.369 277.346 277.346 277.366 278.361 235.512 243.154 249.047 265.869 265.316 267.355 269.369 271.366 271.362 277.342 277.342 235.543 243.647 266.348 265.317 267.355 269.365 271.365 271.366 271.366 271.366 <td>2</td> <td>231.686</td> <td>239.192</td> <td>-</td> <td>252.632</td> <td>258.712</td> <td>261.619</td> <td>264.447</td> <td>267.201</td> <td>269.887</td> <td>272.512</td> <td>275.081</td> <td>277.598</td> <td>280.070</td> <td>282.500</td>	2	231.686	239.192	-	252.632	258.712	261.619	264.447	267.201	269.887	272.512	275.081	277.598	280.070	282.500
234.533 241.623 248.164 254.28 259.878 265.546 265.168 267.55 267.143 272.410 274.682 276.862 278.985 235.554 242.311 248.718 256.306 267.757 270.134 272.440 276.862 278.985 235.554 249.766 256.030 265.306 267.757 270.146 274.492 276.611 278.671 235.902 242.759 249.344 260.304 262.867 265.306 267.537 270.146 274.492 276.611 278.671 235.902 249.344 255.013 260.304 265.306 267.535 269.940 271.487 276.511 278.671 236.424 243.154 249.341 256.306 265.317 267.335 269.782 276.461 276.611 278.671 278.671 236.483 245.617 256.317 267.373 269.782 276.461 276.461 276.461 276.461 276.461 276.461 276.461 276.461 276.461 <td>0</td> <td>233.351</td> <td>240.619</td> <td>-</td> <td></td> <td>259.417</td> <td>262.198</td> <td>264.897</td> <td>267.520</td> <td>270.072</td> <td>272.559</td> <td>274.985</td> <td>277.355</td> <td>279.675</td> <td>281.947</td>	0	233.351	240.619	-		259.417	262.198	264.897	267.520	270.072	272.559	274.985	277.355	279.675	281.947
255.354 242.311 248.718 254.647 260.159 265.346 265.346 265.346 265.346 265.346 265.346 267.751 274.492 276.611 278.671 235.902 242.759 249.067 258.033 260.346 265.344 267.740 271.462 274.922 276.511 278.671 236.242 243.154 249.260 255.013 260.345 265.310 267.353 269.940 271.482 276.101 278.608 236.242 243.154 249.334 256.033 260.307 266.970 267.132 269.597 271.748 273.328 277.796 236.438 249.317 254976 260.311 267.535 269.597 271.748 273.328 273.742 236.438 242.989 255.012 264.694 266.517 266.597 271.748 273.328 273.742 277.242 236.438 242.983 254.710 259.443 261.317 266.543 266.516 271.242 277.242 277.242 <td>S</td> <td>234.533</td> <td>241.623</td> <td>-</td> <td>254.228</td> <td>259.878</td> <td>262.565</td> <td>265.168</td> <td>267.693</td> <td>270.145</td> <td>272.528</td> <td>274.849</td> <td>277.110</td> <td>279.317</td> <td>281.473</td>	S	234.533	241.623	-	254.228	259.878	262.565	265.168	267.693	270.145	272.528	274.849	277.110	279.317	281.473
235.902 242.759 249.067 254.895 260.345 265.344 267.740 270.061 274.492 276.611 278.671 236.242 243.154 249.260 255.013 260.345 265.306 265.306 267.662 269.940 272.146 276.361 278.671 236.242 243.154 249.361 260.345 265.303 265.311 267.535 269.940 271.956 274.061 276.101 278.373 236.422 243.175 249.317 254.976 260.313 260.315 265.677 267.335 269.597 271.748 275.323 277.242 236.432 243.175 249.317 259.488 265.677 267.373 269.587 271.748 275.323 277.242 236.338 242.602 258.413 261.886 266.473 266.497 268.681 270.782 277.792 277.242 235.645 244.61 253.417 259.48 261.887 266.497 268.681 270.789 276.601 276.668 <td>0</td> <td>235.354</td> <td>242.311</td> <td>-</td> <td>254.647</td> <td>260.159</td> <td>262.775</td> <td>265.306</td> <td>267.757</td> <td>270.134</td> <td>272.440</td> <td>274.682</td> <td>276.862</td> <td>278.985</td> <td>281.054</td>	0	235.354	242.311	-	254.647	260.159	262.775	265.306	267.757	270.134	272.440	274.682	276.862	278.985	281.054
236.242 243.026 255.013 260.345 262.869 265.306 267.305 267.305 267.305 267.305 267.305 267.305 267.305 267.305 267.313 267.305 271.364 271.364 276.301 278.304 278.301 278.304 278.305 277.706 278.304 278.305 277.705 277.706 277.706 277.706 277.328 277.705 277.706 277.328 277.328 277.705 277.328 277.705 277.328 277.705 277.242 277.328 277.328 277.328 277.328 277.328 277.328 277.328 277.328 277.326 277.328 277.328 277.326 277.328 277.328 277.326 277.328 277.328 277.326 277.328 277.328 277.326 277.326 277.326 277.326 277.328 275.328 277.326 277.326 277.326 277.326 277.326 277.326 277.326 277.326 277.326 277.326 277.326 277.326 277.326 277.326 <t< td=""><td>5</td><td>235.902</td><td>242.759</td><td></td><td>1000</td><td>260.304</td><td>262.867</td><td>265.344</td><td>267.740</td><td>270.061</td><td>272.310</td><td>274.492</td><td>276.611</td><td>278.671</td><td>280.676</td></t<>	5	235.902	242.759		1000	260.304	262.867	265.344	267.740	270.061	272.310	274.492	276.611	278.671	280.676
236.424 243.154 249.334 255.033 260.308 265.211 267.535 269.597 271.956 274.061 276.101 278.080 236.482 249.317 254.976 260.211 265.070 267.373 269.597 271.748 275.843 277.796 236.482 249.317 254.976 260.211 262.635 265.070 267.373 269.597 271.748 273.828 275.322 277.796 236.338 242.989 249.087 259.488 262.335 264.694 266.970 269.166 271.287 273.328 275.322 277.796 235.963 242.602 258.940 261.376 265.983 268.163 270.267 272.825 274.794 276.698 235.450 242.602 258.940 261.376 265.983 268.163 270.267 271.763 275.626 275.325 274.762 275.626 275.426 275.426 275.626 275.426 275.426 275.626 275.626 275.225 270.617 275	0	236.242	243.026		255.013	260.345	262.869	265.306	267.662	269.940	272.146	274.284	276.357	278.371	280.327
236.482 243.175 249.317 254.976 260.211 265.670 267.373 269.597 271.748 273.828 277.343 277.342 277.342 236.338 242.989 249.087 254.700 259.886 262.335 264.694 266.970 269.166 271.287 273.338 277.342 277.342 235.963 242.602 248.685 254.281 261.886 264.234 266.497 268.681 270.789 275.322 271.242 271.342 235.963 242.602 248.685 254.281 261.886 264.234 266.497 268.681 270.267 274.792 271.242 235.9543 242.602 248.679 263.172 265.983 268.163 270.267 271.262 273.172 275.698 235.455 241.511 247.610 258.391 260.3179 265.463 267.625 269.730 271.762 273.772 275.626 234.852 241.511 247.610 257.816 260.831 267.625 269.730	10	236.424	243.154			260.308	262.803	265.211	267.535	269.782	271.956	274.061	276.101	278.080	280.001
236.338 242.989 249.087 254.700 259.886 262.335 264.694 266.970 269.166 271.287 273.338 275.322 277.242 235.963 242.602 248.685 254.281 259.448 261.886 264.234 266.497 268.681 270.789 275.325 274.794 276.698 235.953 242.093 248.179 253.776 258.940 261.376 265.433 268.163 270.267 271.763 275.698 276.6161 235.450 241.511 247.610 253.217 258.391 261.376 265.443 267.657 269.130 271.763 273.702 275.626 234.852 241.511 247.610 253.217 258.391 263.179 265.443 267.657 269.130 271.763 273.702 275.626 234.203 240.884 247.003 257.816 260.262 265.443 267.627 269.130 271.263 273.109 275.626 234.203 240.884 240.8847 267.625	0	236.482	243.175	-	254.976	260.211	262.685	265.070	267.373	269.597	271.748	273.828	275.843	277.796	279.690
235.963 242.602 248.685 254.281 259.448 261.886 264.234 266.497 268.681 270.789 272.825 274.794 276.698 235.450 242.093 248.179 253.776 258.940 261.376 263.722 265.983 268.163 270.267 274.262 276.161 235.450 241.511 247.610 253.217 258.391 263.179 265.443 267.655 269.730 271.763 273.727 275.626 234.852 241.511 247.603 253.217 258.391 260.831 263.179 265.443 267.074 271.763 273.727 275.626 234.823 240.884 247.003 252.627 257.816 260.262 262.618 264.887 267.074 269.185 271.222 273.190 275.626 234.233 240.884 247.003 252.627 257.816 260.262 264.887 267.074 269.185 271.222 273.190 275.692 233.522 240.230 246.317 </td <td>0</td> <td>236.338</td> <td>242.989</td> <td></td> <td>254.700</td> <td>259.886</td> <td>262.335</td> <td>264.694</td> <td>266.970</td> <td>269.166</td> <td>271.287</td> <td>273.338</td> <td>275.322</td> <td>277.242</td> <td>279.102</td>	0	236.338	242.989		254.700	259.886	262.335	264.694	266.970	269.166	271.287	273.338	275.322	277.242	279.102
235.450 242.093 248.179 253.776 258.940 261.376 263.722 265.983 268.163 270.267 272.299 274.262 276.161 234.852 241.511 247.610 253.217 258.391 260.831 263.179 265.443 267.625 269.730 271.763 273.727 275.626 234.852 241.511 247.003 252.627 257.816 260.262 262.618 264.887 267.074 269.185 271.222 273.190 275.092 275.092 234.203 240.884 247.003 252.627 257.816 260.262 262.618 264.887 267.074 269.185 271.222 273.190 275.092 233.522 240.230 246.372 252.018 257.225 259.681 264.321 266.516 268.633 270.677 272.651 274.559	0	235.963	242.602	-		259.448	261.886	264.234	266.497	268.681	270.789	272.825	274.794	276.698	278.542
234.852 241.511 247.610 253.217 258.391 260.831 263.179 265.443 267.625 269.730 271.763 273.727 275.626 234.203 240.884 247.003 252.627 257.816 260.262 262.618 264.887 267.074 269.185 271.222 273.190 275.092 234.203 240.884 247.003 252.627 257.816 260.262 262.618 264.887 267.074 269.185 271.222 273.190 275.092 233.522 240.230 246.372 252.018 257.225 259.681 262.044 264.321 266.516 268.633 270.677 272.651 274.559	0	235.450	242.093	248.179	120	258.940	261.376	263.722	265.983	268.163	270.267	272.299	274.262	276.161	277.998
234.203 240.884 247.003 252.627 257.816 260.262 262.618 264.887 267.074 269.185 271.222 273.190 275.092 233.522 240.230 246.372 257.018 257.225 259.681 262.044 264.321 266.516 268.633 270.677 272.651 274.559	0	234.852	241.511	247.610	253.217	258.391	260.831	263.179	265.443	267.625	269.730	271.763	273.727	275.626	277.462
233.522 240.230 246.372 252.018 257.225 259.681 262.044 264.321 266.516 268.633 270.677 272.651 274.559	0	234.203	240.884		252.627	257.816	260.262	262.618	264.887	267.074	269.185	271.222	273.190	275.092	276.932
	0	233.522	240.230	-	252.018	257.225	259.681	262.044	264.321	266.516	268.633	270.677	272.651	274.559	276.405
					2										

Table 4. The balance of *a*, *T* and *Ct*

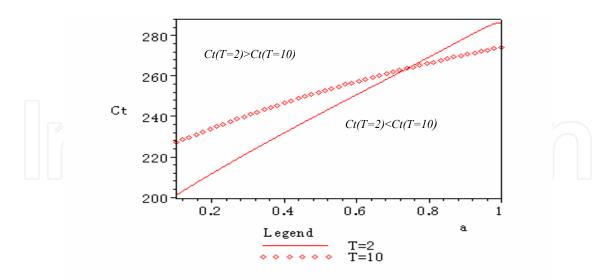
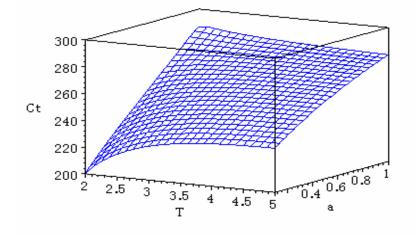



Fig. 7. The relation between *a* and *Ct* (T=2, T=10)

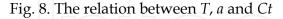


Figure 7 show the relation between the delivery time and ACT time and the total expectation cost, which is useful for setting the optimal delivery time and ACT time to the supplier.

From Figure 7, it can be understood that this tables are divided into two areas by the changed ACT time: in the colorlessness area, the expected total cost per unit time (Ct) increases with the increase of delivery time (T); in the blue area, the expected total cost per unit time (Ct) decreases with the increase of delivery time (T).

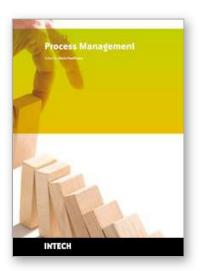
From Figure 7 and Table 5, it can be noted that the expected total cost per unit time (*Ct*) increases with the increase of Act time (*a*). This is because that the cost of defective goods increases by the increase of ACT time. Also it can be understand that a longer delivery time should be set when the ACT time is long, while a shorter delivery time should be set when the ACT time is short from an economic aspect.

In addition, to clarify it more, we also show the Figure 8 which is the same as the case of Figure 7.

4. Conclusions

In this research, from an economic viewpoint, a design of the \bar{x} control chart is analyzed for quality management information system used in short delivery time processes.

Because of competition in markets, studying the balance of quality and the delivery time and cost has become a new problem to manager. To resolve this problem, the mathematical formulations which correspond to this design were shown, and then by numerically consideration using the data from real situation, the relations of the power of process and delivery time and the total expectation cost, the balance of quality (control limits width) and delivery time and the total expectation cost, the relations between the delivery time, ACT time and the total expectation cost are discussed, respectively. Moreover, the presented design based on the judgment rules of JIS Z 9021 was studied.


Some comments are drawn as follows, which would become useful references for setting the optimal delivery time, ACT time and the power of process to manager.

- 1. The expected total cost per unit time decreases with the increase of the power of process.
- 2. The power by the two rules (3o rule and 9 ARL rule) increases with the increase of sample size *n*, and the speed of increase of 9 ARL rule is faster.
- 3. A longer delivery time should be set when the higher power for higher quality is demanded from an economic aspect.
- 4. A longer delivery time should be set when the ACT time is long, from an economic aspect.

5. References

- [1] K. Amasaka, ed., "Manufacturing Fundamentals: The Application of Intelligence Control Chart- Digital Engineering for Superior Quality Assurance", Japanese Standards Association, 2003 (in Japanese).
- [2] Y. Kanuma, and Y. Suzuki, and T. Kamagata, "Application and Efficiency of FDAS for Strengthening Real Working Front Ability", Proceedings on the 37st Research Conference of Japanese Society for Quality Control, pp.161-164, 2007 (in Japanese).
- [3] Y. Ando, "An activity report of 'control chart practical applications study group' in JSQC", *Proceedings on the 5th ANQ Quality Congress*, 2007.
- [4] S. Yasui, "On key factors for effective process control based on control charts through investigating literature cases", *Proceedings on the 37st Research Conference of Japanese Society for Quality Control*, pp.169-172, 2007 (in Japanese).
 [5] J. Sun, M. Tsubaki and M. Matsui, "The comparisons between two quality control cycles-when
- [5] J. Sun, M. Tsubaki and M. Matsui, "The comparisons between two quality control cycles-when the time of in-control and time of out-of-control is independent", *Proceedings on the 31st Research Conference of Japanese Society for Quality Control*, pp.227-230, 2003 (in Japanese).
- [6] J. Sun, M. Tsubaki and M. Matsui, "Economic considerations in CAPD Model of P Control Chart for Quality Improvement", International Conference on Quality '05-Tokyo Proceedings, pp.VI-10, 2005.
- [7] J. Sun, M. Tsubaki and M. Matsui, "Economic Models of \overline{x} Chart with Tardiness Penalty in Finite Due Time Processes," *Journal of Japan Industrial management Association*, (in Japanese), vol. 57, no.5, pp.374-387, 2006.
- [8] Japanese Industrial Standards Committee (1998): "JIS Z 9021: The Shewhart Control Chart", Japanese Standards Association (in Japanese).
- [9] Y. Katou, "Verification of judgment rules of Shewhart control chart (JIS Z 9021)", Proceedings on the 37st Research Conference of Japanese Society for Quality Control, pp.165-168, 2007 (in Japanese).
- [10] S. P. Ladany and D. N.Bedi, "Selection of the Optimal Setup Policy," Naval research Logistics Quarterly, vol. 23, pp.219-233, 1976.

42

Process Management Edited by Maria Pomffyova

ISBN 978-953-307-085-8 Hard cover, 338 pages **Publisher** InTech **Published online** 01, April, 2010 **Published in print edition** April, 2010

The content of the book has been structured into four technical research sections with total of 18 chapters written by well recognized researchers worldwide. These sections are: 1. process and performance management and their measurement methods, 2. management of manufacturing processes with the aim to be quickly adaptable after real situation demands and their control, 3. quality management information and communication systems, their integration and risk management, 4. management processes of healthcare and water, construction and demolition waste problems and integration of environmental processes into management decisions.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jing Sun (2010). A Design for Quality Management Information System in Short Delivery Time Processes, Process Management, Maria Pomffyova (Ed.), ISBN: 978-953-307-085-8, InTech, Available from: http://www.intechopen.com/books/process-management/a-design-for-quality-management-informationsystem-in-short-delivery-time-processes

INTECH

open science | open minds

InTech Europe

University Campus STeP Ri Slavka Krautzeka 83/A 51000 Rijeka, Croatia Phone: +385 (51) 770 447 Fax: +385 (51) 686 166 www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai No.65, Yan An Road (West), Shanghai, 200040, China 中国上海市延安西路65号上海国际贵都大饭店办公楼405单元 Phone: +86-21-62489820 Fax: +86-21-62489821 © 2010 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the <u>Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License</u>, which permits use, distribution and reproduction for non-commercial purposes, provided the original is properly cited and derivative works building on this content are distributed under the same license.

IntechOpen