
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Smart	Home	Systems 1

Smart	Home	Systems

P.	LALANDA,	J.	BOURCIER,	J.	BARDIN	&	S.	CHOLLET

X
	

Smart Home Systems

P. LALANDA, J. BOURCIER, J. BARDIN & S. CHOLLET
Grenoble University

FRANCE

1. Introduction

The pervasive computing area has recently gained major importance from both industry
and academia and is changing the way we interact with our environment [1]. This
computing domain emphasizes the use of small, intelligent and communicating daily life
objects to interact with the computing infrastructure. These devices tend to blend in their
environment. This is especially true in our homes where new electronic devices such as
photo frames aim to be as decorative as powerful. Devices are then not always perceivable
by human beings. These new equipments have the ability to communicate with each other,
to configure or repair themselves, and perform context-based cognitive and physical actions.
The vision of coordinated or cooperating devices teaming up transparently to provide
human beings with services of all sorts is actually getting closer and closer.
However, the main part of research efforts has focused so far on providing hardware that
can actually enable such interactions. Consequently, plenty of devices providing this kind of
features are already commercialized, whereas very few interesting applications take
advantages of this new infrastructure.
Indeed, the complexity of building software that can actually benefit from this underlying
hardware is often underestimated. Usual software engineering techniques and tools are not
suitable. Several software engineering challenges remain to be solved before fulfilling the
vision of a true pervasive world. Notably the high degree of dynamism, distribution,
heterogeneity and autonomy of the devices involved raises important problems. Major
security and privacy concerns have also to be considered while building such systems.
Indeed, the Home Network emphasizes the envisioned environment openness to networked
entities. It is open to dynamic connections: devices may enter and leave the network
spontaneously, providing context-dependent features (e.g. according to user’s activity). It is
also open to heterogeneous devices: protocols and device types differ according to
application domains and service providers. Moreover, devices are spread over the home
space, which is not clearly delimited for wireless communicating devices.
In this chapter we describe our work dealing with the provision of a natural execution
environment simplifying the construction of pervasive applications. More specifically, we
describe our vision of smart home environments, and propose an infrastructure to support
the execution of home applications providing end user services using different features
provided on the home network.

1

www.intechopen.com

Smart	Home	Systems2

The rest of this chapter is composed of a background part on the pervasive computing
domain and its requirements. This is followed by our vision of the home environment, and
how devices, networks and applications should be organized. Then, we describe our work
on proposing a home gateway to support the home applications execution. This chapter is
then concluded by describing the lessons learned from our experience on providing high
level services in the home environment and the perspectives of this work.

2. Pervasive Computing

The pervasive or ubiquitous computing domain corresponds to a model of computing
where the user interacts naturally with his environment. The proposed model consists of
using the objects in the environment as a way of interaction between the computing system
and the user. It was introduced for the first time in 1991 by Mark Weiser in articles [1, 2]
presenting his vision of the 21st century computing.

Ubiquitous Computing

time

ub
iq

ui
ty

Computer birth

Communicating
computer

Mobility

Ubiquitous
systems

Ambient Intelligence

19
60

19
70

19
90

20
00

20
05

20
10

Interfaces Memory
& StorageProcessor

Telecom
& network

Power
alimentation

[From ”Nano-informatique et intelligence ambiante”, JB Waldner, Hermes Science Publishing. 2007]

Ubiquitous Computing

time

ub
iq

ui
ty

Computer birth

Communicating
computer

Mobility

Ubiquitous
systems

Ambient Intelligence

19
60

19
70

19
90

20
00

20
05

20
10

Interfaces Memory
& StorageProcessor

Telecom
& network

Power
alimentation

[From ”Nano-informatique et intelligence ambiante”, JB Waldner, Hermes Science Publishing. 2007]
Fig. 1. Computer evolutions since 1960

This new trend of computing is a natural corollary to the evolution of communicating
devices. Fig. 1 represents the evolution of computing devices from the 1960’s to our days
highlighting the main characteristics that lead to the development of pervasive computing.
Devices involved in pervasive computing systems must have the following characteristics:

 Miniature. As devices must be able to naturally blend or disappear in the
environment, the miniaturization of devices is necessary.

 Communication. The devices must be able to communicate and to interact with
other equipments that are present in the environment.

 Autonomy. The devices must have their own source of energy in order to be
autonomous.

The recent evolution of computing equipment has contributed to the creation of devices
which are coherent with the vision of a pervasive world. Since the invention of computing
and the first computer, vendors are engaged in a race for miniaturization and processing
power. While in the 1950’s there was one machine for multiple users, we currently have
multiple machines for one user.
Another important point is the emergence and popularization of communication
technologies between computing equipments. The advent of the Internet in the 1990’s
corresponds to a key point, forming a network of devices from all over the world, using low
cost and widespread technologies for communication. In more recent years, new
communication technologies have been developed allowing wireless communication (e.g.
Wifi, GSM, Bluetooth and RFID). These technologies are now embedded in devices allowing
them to communicate with each other thus augmenting their mobility.
The progress achieved in energy autonomy plays an important role in the emergence of this
computing domain. Some computing devices are now capable of functioning for years (e.g.
RFID sensor) using a simple battery. Device autonomy represents a key factor. If this
autonomy proved insufficient, the domain of pervasive computing would lose its interest
because its main actors (i.e. the mobile devices) would not have the required features.
In the course of a day, a user is successively immersed in different pervasive environments
and has the possibility of taking advantage of each one of these environments.
The pervasive environment in a vehicle is particularly interesting. An example scenario
would consist in automatically regulating the destinations in the vehicle’s GPS based on the
information extracted from the schedule of the day stored in the PDA. The favorite songs of
the driver can be downloaded from the MP3 player and played in the vehicle’s stereo. Either
at the expected time/mileage when the car needs a check up or due to an upcoming trip, the
vehicle can inform the user and propose dates for an appointment in the closest auto
repairer, taking into accounts the time constraints of the vehicle owner and the auto repairer
schedule and availability.
In the work environment several scenarios are envisioned. Devices used in these
environments differ according to the nature of the work. The devices may be handheld
telephones, PDAs, printers, copiers, desktops, server computers, video projectors, or even
coffee machines.
The environment of a restaurant or a bar can also offer interesting pervasive services. For
example, the customer may get an interactive restaurant menu where photos, information
and pictures of the dishes can be found. It is also possible to directly place an order by using
the PDA which would then automatically calculate the bill.
These different environments have the objective of assisting the user in their daily life. A
pervasive environment frees users from certain constraints of their daily lives by offering
different services using objects from the day to day environment. The services correspond to
the applications that execute on top of the host infrastructure of the pervasive environment.
These services could be extremely simple, such as an electronic agenda, which interacts with
single equipment, or more complex, such as a system which enables energy savings in a
home, requiring the interaction with multiple devices.

www.intechopen.com

Smart	Home	Systems 3

The rest of this chapter is composed of a background part on the pervasive computing
domain and its requirements. This is followed by our vision of the home environment, and
how devices, networks and applications should be organized. Then, we describe our work
on proposing a home gateway to support the home applications execution. This chapter is
then concluded by describing the lessons learned from our experience on providing high
level services in the home environment and the perspectives of this work.

2. Pervasive Computing

The pervasive or ubiquitous computing domain corresponds to a model of computing
where the user interacts naturally with his environment. The proposed model consists of
using the objects in the environment as a way of interaction between the computing system
and the user. It was introduced for the first time in 1991 by Mark Weiser in articles [1, 2]
presenting his vision of the 21st century computing.

Ubiquitous Computing

time

ub
iq

ui
ty

Computer birth

Communicating
computer

Mobility

Ubiquitous
systems

Ambient Intelligence

19
60

19
70

19
90

20
00

20
05

20
10

Interfaces Memory
& StorageProcessor

Telecom
& network

Power
alimentation

[From ”Nano-informatique et intelligence ambiante”, JB Waldner, Hermes Science Publishing. 2007]

Ubiquitous Computing

time

ub
iq

ui
ty

Computer birth

Communicating
computer

Mobility

Ubiquitous
systems

Ambient Intelligence

19
60

19
70

19
90

20
00

20
05

20
10

Interfaces Memory
& StorageProcessor

Telecom
& network

Power
alimentation

[From ”Nano-informatique et intelligence ambiante”, JB Waldner, Hermes Science Publishing. 2007]
Fig. 1. Computer evolutions since 1960

This new trend of computing is a natural corollary to the evolution of communicating
devices. Fig. 1 represents the evolution of computing devices from the 1960’s to our days
highlighting the main characteristics that lead to the development of pervasive computing.
Devices involved in pervasive computing systems must have the following characteristics:

 Miniature. As devices must be able to naturally blend or disappear in the
environment, the miniaturization of devices is necessary.

 Communication. The devices must be able to communicate and to interact with
other equipments that are present in the environment.

 Autonomy. The devices must have their own source of energy in order to be
autonomous.

The recent evolution of computing equipment has contributed to the creation of devices
which are coherent with the vision of a pervasive world. Since the invention of computing
and the first computer, vendors are engaged in a race for miniaturization and processing
power. While in the 1950’s there was one machine for multiple users, we currently have
multiple machines for one user.
Another important point is the emergence and popularization of communication
technologies between computing equipments. The advent of the Internet in the 1990’s
corresponds to a key point, forming a network of devices from all over the world, using low
cost and widespread technologies for communication. In more recent years, new
communication technologies have been developed allowing wireless communication (e.g.
Wifi, GSM, Bluetooth and RFID). These technologies are now embedded in devices allowing
them to communicate with each other thus augmenting their mobility.
The progress achieved in energy autonomy plays an important role in the emergence of this
computing domain. Some computing devices are now capable of functioning for years (e.g.
RFID sensor) using a simple battery. Device autonomy represents a key factor. If this
autonomy proved insufficient, the domain of pervasive computing would lose its interest
because its main actors (i.e. the mobile devices) would not have the required features.
In the course of a day, a user is successively immersed in different pervasive environments
and has the possibility of taking advantage of each one of these environments.
The pervasive environment in a vehicle is particularly interesting. An example scenario
would consist in automatically regulating the destinations in the vehicle’s GPS based on the
information extracted from the schedule of the day stored in the PDA. The favorite songs of
the driver can be downloaded from the MP3 player and played in the vehicle’s stereo. Either
at the expected time/mileage when the car needs a check up or due to an upcoming trip, the
vehicle can inform the user and propose dates for an appointment in the closest auto
repairer, taking into accounts the time constraints of the vehicle owner and the auto repairer
schedule and availability.
In the work environment several scenarios are envisioned. Devices used in these
environments differ according to the nature of the work. The devices may be handheld
telephones, PDAs, printers, copiers, desktops, server computers, video projectors, or even
coffee machines.
The environment of a restaurant or a bar can also offer interesting pervasive services. For
example, the customer may get an interactive restaurant menu where photos, information
and pictures of the dishes can be found. It is also possible to directly place an order by using
the PDA which would then automatically calculate the bill.
These different environments have the objective of assisting the user in their daily life. A
pervasive environment frees users from certain constraints of their daily lives by offering
different services using objects from the day to day environment. The services correspond to
the applications that execute on top of the host infrastructure of the pervasive environment.
These services could be extremely simple, such as an electronic agenda, which interacts with
single equipment, or more complex, such as a system which enables energy savings in a
home, requiring the interaction with multiple devices.

www.intechopen.com

Smart	Home	Systems4

3. The Home Environment

The home environment corresponds to a subset of pervasive applications that deals with the
automation of home devices control. To that end, electronic devices present in the
environment have the ability to communicate. The communication protocols used differ
according to the type of equipment. An automated home typically allows the control of
room luminosity, opening and closing of shutters, heating and air conditioning, or
multimedia systems.
Home applications main objective is the comfort and simplification of the daily life of
residents, and home support of elderly or convalescents. Several application areas are
covered ranging from applications for the supervision of convalescents at home, to home
theatre applications and energy consumption control.

3.1 Equipments
The equipment typically involved in pervasive homes include shutters, lighting devices,
appliances such as coffee machines, refrigerators, or washing machines, televisions, or
multimedia servers, which can all be controlled remotely. Micro-informatics equipment,
such as computers, PDAs, monitors, are also part of the home automation sphere. The
communication equipment is also essential in this type of system: Internet access points,
routers and mobile phones allow access to information technology that may be outside of
the home. Also, controllable electrical equipment such as remote electrical plugs, are a
centerpiece of these new environments.
These devices must be able to be remotely controlled by the applications that coordinate
their actions. Therefore, devices must provide protocols for allowing such type of
communication. Nowadays there are more than fifty communication protocols, workgroups
and standardizations of protocols for home communication. Among the most popular we
can find X10, KNX, EIB, INSTEON, Zigbee, Bluetooth, UPnP and DPWS. These protocols
allow the communication between home devices by using different transmission mediums:
dedicated communication cables, communication over power lines or transmissions by
radio frequency. Such protocols do not provide the same functionalities and hence are not
used by the same types of devices. X10, KNX, EIB, INSTEON and Zigbee are dedicated to
small devices like light dimmers and shutters. Their communication capacity is extremely
limited, but their energy consumption is also limited. However, these protocols only handle
communication and are not able to provide device discovery.
UPnP [3], Bluetooth and DPWS [4] are higher level protocols which handle not only
communication but also device discovery. Bluetooth is a standard originally conceived for
allowing wireless communication between computers and their peripherals. The goal of
UPnP and DPWS is to allow peripheral devices to easily connect to each other and to
simplify the implementation of home networks (e.g. file sharing, communication and
entertainment) and enterprises. UPnP allows such capabilities by defining its
communication and discovery protocols on top of existing Internet communication
standards such as HTTP, while DPWS basically use the standard defined by Web Services.

3.2 Applications
This section presents three applications that are representative of the field of home
computing. The first example is an application keeping convalescents or elderly at home.

This application requires the use of sensors specific to this field such as cardiac monitors,
blood pressure gauges, sensors and video surveillance cameras. These devices collect data
about the patient, and send it to an application that handles it. If a problem appears, an
alarm is automatically triggered to call for help. In normal operation conditions, reports are
built by the application and sent regularly to the hospital or to the doctors.
A second example is an application that manages a multimedia entertainment system from
the house. The application offers the residents a set of movies from the movie library, and
also offers the rental or purchase of movies from Internet service providers. The film is then
automatically projected on the screen of the room in which the user is located and the
atmosphere associated with the action of watching a video is applied: closing the shutters,
and dimming the lights. The ring of the phone is automatically cut off. Instead, the user will
have a discreet warning on their display screen on any incoming calls. He may decide to
ignore it or to take the calls and the film will be automatically paused.
The last example of application consists of managing the security and minimizing energy
consumption of the house in the absence of the user. When the user leaves his home, the
lights are turned off, the temperature of rooms is automatically lowered, the alarm system
connected and the shutters closed. In case of prolonged absence, a simulation of presence is
triggered and regularly opens the flaps and lighting lamps according to the habits of the
user. When the user returns home, the system is unplugged, the alarm is stopped; lighting
and flaps operate according to the brightness outside.

Based on our experience, we have classified these applications into three categories based on
different life cycles of these applications (see Fig. 2).

User Application

Activate

User Application

Start

Stop

User Application

Start

Scene Application Daemon

User Application

Activate

User Application

Start

Stop

User Application

Start

Scene Application Daemon

Fig. 2. The three types of home applications

A particular type of application is called scene. These applications consist of running a series
of preconfigured actions at the time they are triggered. This type of application executes all
of these actions and ends. For example, when the user wakes up, the application will open
all shutters of the house, raise the temperature of the bathroom, heat the coffee machine and
turn on the television on the favorite news channel of the user.

www.intechopen.com

Smart	Home	Systems 5

3. The Home Environment

The home environment corresponds to a subset of pervasive applications that deals with the
automation of home devices control. To that end, electronic devices present in the
environment have the ability to communicate. The communication protocols used differ
according to the type of equipment. An automated home typically allows the control of
room luminosity, opening and closing of shutters, heating and air conditioning, or
multimedia systems.
Home applications main objective is the comfort and simplification of the daily life of
residents, and home support of elderly or convalescents. Several application areas are
covered ranging from applications for the supervision of convalescents at home, to home
theatre applications and energy consumption control.

3.1 Equipments
The equipment typically involved in pervasive homes include shutters, lighting devices,
appliances such as coffee machines, refrigerators, or washing machines, televisions, or
multimedia servers, which can all be controlled remotely. Micro-informatics equipment,
such as computers, PDAs, monitors, are also part of the home automation sphere. The
communication equipment is also essential in this type of system: Internet access points,
routers and mobile phones allow access to information technology that may be outside of
the home. Also, controllable electrical equipment such as remote electrical plugs, are a
centerpiece of these new environments.
These devices must be able to be remotely controlled by the applications that coordinate
their actions. Therefore, devices must provide protocols for allowing such type of
communication. Nowadays there are more than fifty communication protocols, workgroups
and standardizations of protocols for home communication. Among the most popular we
can find X10, KNX, EIB, INSTEON, Zigbee, Bluetooth, UPnP and DPWS. These protocols
allow the communication between home devices by using different transmission mediums:
dedicated communication cables, communication over power lines or transmissions by
radio frequency. Such protocols do not provide the same functionalities and hence are not
used by the same types of devices. X10, KNX, EIB, INSTEON and Zigbee are dedicated to
small devices like light dimmers and shutters. Their communication capacity is extremely
limited, but their energy consumption is also limited. However, these protocols only handle
communication and are not able to provide device discovery.
UPnP [3], Bluetooth and DPWS [4] are higher level protocols which handle not only
communication but also device discovery. Bluetooth is a standard originally conceived for
allowing wireless communication between computers and their peripherals. The goal of
UPnP and DPWS is to allow peripheral devices to easily connect to each other and to
simplify the implementation of home networks (e.g. file sharing, communication and
entertainment) and enterprises. UPnP allows such capabilities by defining its
communication and discovery protocols on top of existing Internet communication
standards such as HTTP, while DPWS basically use the standard defined by Web Services.

3.2 Applications
This section presents three applications that are representative of the field of home
computing. The first example is an application keeping convalescents or elderly at home.

This application requires the use of sensors specific to this field such as cardiac monitors,
blood pressure gauges, sensors and video surveillance cameras. These devices collect data
about the patient, and send it to an application that handles it. If a problem appears, an
alarm is automatically triggered to call for help. In normal operation conditions, reports are
built by the application and sent regularly to the hospital or to the doctors.
A second example is an application that manages a multimedia entertainment system from
the house. The application offers the residents a set of movies from the movie library, and
also offers the rental or purchase of movies from Internet service providers. The film is then
automatically projected on the screen of the room in which the user is located and the
atmosphere associated with the action of watching a video is applied: closing the shutters,
and dimming the lights. The ring of the phone is automatically cut off. Instead, the user will
have a discreet warning on their display screen on any incoming calls. He may decide to
ignore it or to take the calls and the film will be automatically paused.
The last example of application consists of managing the security and minimizing energy
consumption of the house in the absence of the user. When the user leaves his home, the
lights are turned off, the temperature of rooms is automatically lowered, the alarm system
connected and the shutters closed. In case of prolonged absence, a simulation of presence is
triggered and regularly opens the flaps and lighting lamps according to the habits of the
user. When the user returns home, the system is unplugged, the alarm is stopped; lighting
and flaps operate according to the brightness outside.

Based on our experience, we have classified these applications into three categories based on
different life cycles of these applications (see Fig. 2).

User Application

Activate

User Application

Start

Stop

User Application

Start

Scene Application Daemon

User Application

Activate

User Application

Start

Stop

User Application

Start

Scene Application Daemon

Fig. 2. The three types of home applications

A particular type of application is called scene. These applications consist of running a series
of preconfigured actions at the time they are triggered. This type of application executes all
of these actions and ends. For example, when the user wakes up, the application will open
all shutters of the house, raise the temperature of the bathroom, heat the coffee machine and
turn on the television on the favorite news channel of the user.

www.intechopen.com

Smart	Home	Systems6

Another type of application, which will be called instanciable or simply application, runs for
a delimited period in time. These applications have the particularity of being started and
then stopped. For example, an application is activated at the time the user leaves the house.
This application consists of managing the security while minimizing the energy consumed
by the house. The application will turn off all the lights in the house, close all shutters, lower
the heating, connect the alarm system. When the user comes back home, the application is
stopped and disconnected, the alarm system is turned off and according to the
circumstances, it may reopen the shutters or turn on the lights.
The last type of application is called daemon. This type of application is started and then
runs continuously. For example, an application for the surveillance of patients in their home
will collect medical data about the patient and then send daily reports to the doctor. Such
applications are executed and never stopped.

3.3 Challenges
This domain of computing encompasses a large number of applications particularly useful
to help people in their daily life. The main challenge of pervasive computing is to provide a
coherent pervasive environment, providing useful services and applications, involving a set
of heterogeneous, distributed and dynamic equipments and software, communicating
across different protocols. In this context, several characteristics specific to the field of
pervasive computing makes this area attractive in terms of industry and users, while raising
difficult scientific problems for the development and management of these systems.
Distribution. The devices are an integral part of the environment. They are scattered in the
physical environment and are accessible through different protocols that can use cable or
wireless technologies. Applications using the capabilities of such equipment do not
necessarily run on the considered equipments and are therefore distributed.
Heterogeneity. There are currently a large number of software technologies and
communication protocols for the field of pervasive computing. Today there are no plans on
how to reach a consensus on a common and uniform communication protocol. More than
fifty protocols, working groups and specification effort are already available for home
networks. The standardization of communication protocols is not possible because the
devices can be of very different nature, having an impact on the communication protocols
used. For example, a lamp communicates through a very simple protocol, while a PDA or a
media server can use more complex communication protocols, for example considering
security. In addition, manufacturers supplying equipment and protocols have no strategic
interest in this type of uniform protocol, since they would lose control of their equipment.
Dynamism. The availability of equipment in a pervasive environment is much more volatile
than in other areas of computing. This problem is caused by several factors including: 1)
users move freely and frequently changing their location having an impact on the position
of equipment they carry; 2) users can voluntarily turn on and off the devices or they may
inadvertently run out of battery; 3) users and providers may periodically update the
deployed services.
Multiple provider. The devices in a pervasive environment generally come from different
vendors. In addition, applications deployed and running on such equipment can be
delivered by other suppliers. In this context, some applications will be established through
collaboration between different providers involving the creation of applications with several
administration authorities. It is envisaged that the equipment vendors and service providers

want to keep some control over their devices and software and thus limit the access to
external entities.
Scalability. The number of devices present in a pervasive environment can be very
important. This creates a problem of scalability in applications running in this type of
environment. Thus pervasive systems must be capable of handling a large number of
equipment that is also dynamic.
Security. Security is a key role in building pervasive environments. Indeed, such open
systems allow people in the environment to have access to the computing system. However,
access to certain devices or personal data must be highly secured. The applications running
on this type of system should guarantee the confidentiality and integrity of data. Access to
private pervasive systems such as automated homes or cars must also include access control
to ensure, for example, that a thief will not be able to disconnect the alarm system by
connecting the pervasive system.
Auto-adaptation. In addition to the dynamism of software and equipments, pervasive
systems are constantly faced with the evolution in their execution context. These evolutions
may include changes in behavior, location, mood and habits of users, as well as changes in
behavior or availability of other software. The applications running on this type of
environment must be able to adapt to these changes and develop strategies to address the
various events that may occur during their execution.
Simplicity of use. Finally, an essential characteristic of a pervasive system is the simplicity
of use and management. Indeed, this type of system is intended to be used by users who
have no knowledge in informatics. As a consequence, pervasive environments must be
accessible to any human being, and even transparent. The purpose of pervasive computing
is to make the devices disappear from the environment. This means that the access interface
to pervasive systems must be easy to use and the applications running in these systems
must be capable of adapting to different events that can intervene to maintain services
usable in all circumstances.

4. Architecture of the home environment

One of the major challenges for creating an intelligent house is the design of an open
infrastructure for implementing home automation applications. Equipment manufacturers
and Internet operators have proposed different architectures.

4.1 Current architecture
Most current systems are based on architecture similar to the one shown in Fig. 3, in which a
web server is connected to an Internet gateway using the HTTP protocol or other protocols
over IP. The objective of this Internet gateway is to bridge the local network connecting the
various equipments in the house and Internet. The home automation services are
implemented as distributed applications running on the Internet server and in house
equipments. Several gateways provided by different actors (telecom operator and electricity
suppliers, home automation equipment suppliers) may be present in one house. Although
this architecture allows the implementation of pervasive services for home, it also suffers
from some limitations. Most treatments and coordination are made on the server side,
affecting the scalability and flexibility:

www.intechopen.com

Smart	Home	Systems 7

Another type of application, which will be called instanciable or simply application, runs for
a delimited period in time. These applications have the particularity of being started and
then stopped. For example, an application is activated at the time the user leaves the house.
This application consists of managing the security while minimizing the energy consumed
by the house. The application will turn off all the lights in the house, close all shutters, lower
the heating, connect the alarm system. When the user comes back home, the application is
stopped and disconnected, the alarm system is turned off and according to the
circumstances, it may reopen the shutters or turn on the lights.
The last type of application is called daemon. This type of application is started and then
runs continuously. For example, an application for the surveillance of patients in their home
will collect medical data about the patient and then send daily reports to the doctor. Such
applications are executed and never stopped.

3.3 Challenges
This domain of computing encompasses a large number of applications particularly useful
to help people in their daily life. The main challenge of pervasive computing is to provide a
coherent pervasive environment, providing useful services and applications, involving a set
of heterogeneous, distributed and dynamic equipments and software, communicating
across different protocols. In this context, several characteristics specific to the field of
pervasive computing makes this area attractive in terms of industry and users, while raising
difficult scientific problems for the development and management of these systems.
Distribution. The devices are an integral part of the environment. They are scattered in the
physical environment and are accessible through different protocols that can use cable or
wireless technologies. Applications using the capabilities of such equipment do not
necessarily run on the considered equipments and are therefore distributed.
Heterogeneity. There are currently a large number of software technologies and
communication protocols for the field of pervasive computing. Today there are no plans on
how to reach a consensus on a common and uniform communication protocol. More than
fifty protocols, working groups and specification effort are already available for home
networks. The standardization of communication protocols is not possible because the
devices can be of very different nature, having an impact on the communication protocols
used. For example, a lamp communicates through a very simple protocol, while a PDA or a
media server can use more complex communication protocols, for example considering
security. In addition, manufacturers supplying equipment and protocols have no strategic
interest in this type of uniform protocol, since they would lose control of their equipment.
Dynamism. The availability of equipment in a pervasive environment is much more volatile
than in other areas of computing. This problem is caused by several factors including: 1)
users move freely and frequently changing their location having an impact on the position
of equipment they carry; 2) users can voluntarily turn on and off the devices or they may
inadvertently run out of battery; 3) users and providers may periodically update the
deployed services.
Multiple provider. The devices in a pervasive environment generally come from different
vendors. In addition, applications deployed and running on such equipment can be
delivered by other suppliers. In this context, some applications will be established through
collaboration between different providers involving the creation of applications with several
administration authorities. It is envisaged that the equipment vendors and service providers

want to keep some control over their devices and software and thus limit the access to
external entities.
Scalability. The number of devices present in a pervasive environment can be very
important. This creates a problem of scalability in applications running in this type of
environment. Thus pervasive systems must be capable of handling a large number of
equipment that is also dynamic.
Security. Security is a key role in building pervasive environments. Indeed, such open
systems allow people in the environment to have access to the computing system. However,
access to certain devices or personal data must be highly secured. The applications running
on this type of system should guarantee the confidentiality and integrity of data. Access to
private pervasive systems such as automated homes or cars must also include access control
to ensure, for example, that a thief will not be able to disconnect the alarm system by
connecting the pervasive system.
Auto-adaptation. In addition to the dynamism of software and equipments, pervasive
systems are constantly faced with the evolution in their execution context. These evolutions
may include changes in behavior, location, mood and habits of users, as well as changes in
behavior or availability of other software. The applications running on this type of
environment must be able to adapt to these changes and develop strategies to address the
various events that may occur during their execution.
Simplicity of use. Finally, an essential characteristic of a pervasive system is the simplicity
of use and management. Indeed, this type of system is intended to be used by users who
have no knowledge in informatics. As a consequence, pervasive environments must be
accessible to any human being, and even transparent. The purpose of pervasive computing
is to make the devices disappear from the environment. This means that the access interface
to pervasive systems must be easy to use and the applications running in these systems
must be capable of adapting to different events that can intervene to maintain services
usable in all circumstances.

4. Architecture of the home environment

One of the major challenges for creating an intelligent house is the design of an open
infrastructure for implementing home automation applications. Equipment manufacturers
and Internet operators have proposed different architectures.

4.1 Current architecture
Most current systems are based on architecture similar to the one shown in Fig. 3, in which a
web server is connected to an Internet gateway using the HTTP protocol or other protocols
over IP. The objective of this Internet gateway is to bridge the local network connecting the
various equipments in the house and Internet. The home automation services are
implemented as distributed applications running on the Internet server and in house
equipments. Several gateways provided by different actors (telecom operator and electricity
suppliers, home automation equipment suppliers) may be present in one house. Although
this architecture allows the implementation of pervasive services for home, it also suffers
from some limitations. Most treatments and coordination are made on the server side,
affecting the scalability and flexibility:

www.intechopen.com

Smart	Home	Systems8

 The server must handle the additional load when multiple gateways are added or
when the number of connected devices in a home increases. The amount of
information transmitted between the Internet gateway and the server increases
proportionally with the number of equipments in the house.

 The server must know each new equipment introduced into a home to allow the
dynamic evolution of services. Thus, the life cycle of equipment must be managed
manually because the automatic detection of equipments availability is not feasible
in a network of this scale.

Service
Provider

Web Portal

Internet
(TCP/IP, HTTP)

Internet
gateways

devices

Service
Provider

Web Portal

Internet
(TCP/IP, HTTP)

Internet
gateways

devices

Fig. 3. Usual home computing architecture

4.2 Architecture for a home environment
To overcome the various limitations of commonly used architectures in this domain, we
have proposed an innovative architecture [5] for home automation environments (Fig. 4).
This work was partially supported by the European ITEA ANSO project. The home
environments consist of various equipments from different vendors. We have classified
equipments into three categories:

 The electronic equipments available in the house (for example controllable shutters
or lamps) provide basic services to sense and act on the environment. Such
equipments can be static as lamps or shutters, or may appear and disappear
dynamically (such as cellular phones).

 Gateways provide an execution infrastructure for running high-level services or
applications aggregating the behavior of basic services provided by the previous
equipment.

 Interacting devices (such as televisions, mobile phones, or PDAs) allows users to
interact with the system and potentially to manage it. Inhabitants will use them
interchangeably to interact with their environment (depending on their habits and
their current context).

The proposed architecture is illustrated in Fig. 4. This architecture provides a middleware as
a corner stone of the home environment. This middleware provides a substrate for running

residential applications coordinating the behavior of different devices and ensuring a
natural interaction, sometimes invisible, with the user. For example, an application running
on this middleware can coordinate the behavior of specific equipments such as shutters, air-
conditioning or lighting systems.
This middleware provides an execution environment which may be distributed across
several gateways. Each gateway is usually materialized in the form of a box embedding a
computer with reduced electricity consumption. These boxes generally include a set of
physical communication facilities to enable interactions with actual devices. One of these
boxes enables Internet access and act as an Internet provider for our middleware.

Service
Providers

Web Portal

Internet
(TCP/IP, HTTP)

Internet
Gateway

Devices

Distributed Service Oriented middlewareDistributed Service Oriented middleware

Gateways with
H‐OMEGA

Middleware =
∑ H‐OMEGA

Service
Providers

Web Portal

Internet
(TCP/IP, HTTP)

Internet
Gateway

Devices

Distributed Service Oriented middlewareDistributed Service Oriented middleware

Gateways with
H‐OMEGA

Middleware =
∑ H‐OMEGA

Fig. 4. Our proposed home computing architecture

In the industrial view of such systems, one gateway belongs to an equipments vendor and
embeds physical facilities to communicate with these devices. In this vision, gateways
present in the home are strictly isolated and do not permit any interaction with their devices
or applications. Through this architecture, industrials aim to maintain a total control on their
equipments and execution infrastructures. Nonetheless, this architecture does not offer the
possibility to build an application coordinating the behavior of equipments from different
vendors. As equipment suppliers generally provide one type of equipments, the isolation
principle advocates by this architecture quickly becomes a limitation for designing
innovative applications. For example, Schneider Electric is specialized on providing
controllable lighting systems, and shutters, while Sony is specialized on providing
multimedia systems. Thus, it is not possible to implement the multimedia entertainment
system proposed in the section 3.2.
Our proposition is to take into consideration the industrial need to keep control on their
infrastructure and equipments while allowing the construction of distributed applications
involving pieces of software and physical devices from several gateways. Thus, our design

www.intechopen.com

Smart	Home	Systems 9

 The server must handle the additional load when multiple gateways are added or
when the number of connected devices in a home increases. The amount of
information transmitted between the Internet gateway and the server increases
proportionally with the number of equipments in the house.

 The server must know each new equipment introduced into a home to allow the
dynamic evolution of services. Thus, the life cycle of equipment must be managed
manually because the automatic detection of equipments availability is not feasible
in a network of this scale.

Service
Provider

Web Portal

Internet
(TCP/IP, HTTP)

Internet
gateways

devices

Service
Provider

Web Portal

Internet
(TCP/IP, HTTP)

Internet
gateways

devices

Fig. 3. Usual home computing architecture

4.2 Architecture for a home environment
To overcome the various limitations of commonly used architectures in this domain, we
have proposed an innovative architecture [5] for home automation environments (Fig. 4).
This work was partially supported by the European ITEA ANSO project. The home
environments consist of various equipments from different vendors. We have classified
equipments into three categories:

 The electronic equipments available in the house (for example controllable shutters
or lamps) provide basic services to sense and act on the environment. Such
equipments can be static as lamps or shutters, or may appear and disappear
dynamically (such as cellular phones).

 Gateways provide an execution infrastructure for running high-level services or
applications aggregating the behavior of basic services provided by the previous
equipment.

 Interacting devices (such as televisions, mobile phones, or PDAs) allows users to
interact with the system and potentially to manage it. Inhabitants will use them
interchangeably to interact with their environment (depending on their habits and
their current context).

The proposed architecture is illustrated in Fig. 4. This architecture provides a middleware as
a corner stone of the home environment. This middleware provides a substrate for running

residential applications coordinating the behavior of different devices and ensuring a
natural interaction, sometimes invisible, with the user. For example, an application running
on this middleware can coordinate the behavior of specific equipments such as shutters, air-
conditioning or lighting systems.
This middleware provides an execution environment which may be distributed across
several gateways. Each gateway is usually materialized in the form of a box embedding a
computer with reduced electricity consumption. These boxes generally include a set of
physical communication facilities to enable interactions with actual devices. One of these
boxes enables Internet access and act as an Internet provider for our middleware.

Service
Providers

Web Portal

Internet
(TCP/IP, HTTP)

Internet
Gateway

Devices

Distributed Service Oriented middlewareDistributed Service Oriented middleware

Gateways with
H‐OMEGA

Middleware =
∑ H‐OMEGA

Service
Providers

Web Portal

Internet
(TCP/IP, HTTP)

Internet
Gateway

Devices

Distributed Service Oriented middlewareDistributed Service Oriented middleware

Gateways with
H‐OMEGA

Middleware =
∑ H‐OMEGA

Fig. 4. Our proposed home computing architecture

In the industrial view of such systems, one gateway belongs to an equipments vendor and
embeds physical facilities to communicate with these devices. In this vision, gateways
present in the home are strictly isolated and do not permit any interaction with their devices
or applications. Through this architecture, industrials aim to maintain a total control on their
equipments and execution infrastructures. Nonetheless, this architecture does not offer the
possibility to build an application coordinating the behavior of equipments from different
vendors. As equipment suppliers generally provide one type of equipments, the isolation
principle advocates by this architecture quickly becomes a limitation for designing
innovative applications. For example, Schneider Electric is specialized on providing
controllable lighting systems, and shutters, while Sony is specialized on providing
multimedia systems. Thus, it is not possible to implement the multimedia entertainment
system proposed in the section 3.2.
Our proposition is to take into consideration the industrial need to keep control on their
infrastructure and equipments while allowing the construction of distributed applications
involving pieces of software and physical devices from several gateways. Thus, our design

www.intechopen.com

Smart	Home	Systems10

proposes to install on each gateway an application server dedicated to residential
computing technology called H-OMEGA [5]. This application server provides an
infrastructure for running residential applications. The set of application servers installed on
each platform forms our middleware. Each gateway is then able to communicate with each
other thanks to our middleware. Thus an application may be distributed across the different
gateways present in the house and seamlessly coordinate the behavior of a set of electronic
devices connected to different gateways.
H-OMEGA allows a uniform access to in-house equipments connected to the considered
gateway. H-OMEGA also provides a way for applications to interact with remote services
such as web services. The last feature offered by our applications server is the ability to
provide an integrated and portable human interface for controlling the home system. This
interface is either available from within the home, or remotely.

Our home environment, including both gateways and equipments, follows principles
advocated by the Service-Oriented Computing. Service-Oriented Computing (SOC) [6, 7] is
a relatively new trend in software engineering whereby services can be supplied by multiple
service providers and feature various implementations. At runtime, a service consumer is
able to invoke a service by relying only on a service specification, which specify both
functional (service interface) and non-functional (QoS) part, while not referring to the
service implementation. An important consequence of this interaction pattern is that SOC
technologies support dynamic service discovery and lazy inter-service binding. Such
characteristics are essential when building applications with strong adaptability
requirements, such as pervasive and residential applications.
We propose to build smart home applications as service-oriented applications. The H-
OMEGA application server is based on service-oriented architecture and interactions with
remote devices follow the service-oriented pattern. The use of this technology presents
several advantages. As previously stated, this technology allows the loose-coupling between
different actors which allows the use of other services without having detailed knowledge of
their implementation or the interaction protocol used to communicate with their equipment.
We propose to reify each device feature as a service on our middleware to provide an
uniform access to electronic devices. This technique addresses the problem of heterogeneity
of communication protocols between the various equipments. In addition, the use of the
service-oriented components approach provides a natural support for dynamic applications
such as the ones found in a house. Indeed, residential applications have to interact with
equipments accessible through services, which may be intermittently available. Finally the
use of such technology respect the vision of the existing protocols for home: UPnP and
DPWS which propose a service-oriented approach. The integration of devices that do not
comply with a service-oriented approach is made through the use of a third party
mechanism which makes the link between our service-oriented gateway and different
equipments.
The proposed application server also allows service providers to deploy, update and
remove services and applications remotely. Suppliers can thus control from their own
premises all applications and services deployed in all houses.

5. Our Residential Gateway Proposition

5.1 Architectural view
The architecture of our residential gateway, H-OMEGA is illustrated in Fig. 5. This
architecture is based on three basic elements used to simplify the design, implementation,
development and administration of residential applications. The main elements of this
architecture are:

 An infrastructure for service-oriented execution,
 A remote service manager (including equipments, services offered by other

gateways and web services),
 A set of facilities or commonly used services to develop this type of application.

The remote service manager can manage both the available devices in the environment of
the gateway, the services offered by other H-OMEGA gateways presents in the home and
remote software services from outside the home. The role of this entity is specifically to
manage the lifecycle of services acting as proxy for remote services either offered by remote
equipments, or remote gateways. These local representatives are able to interact directly
with the remote service. They follow the life cycle of their corresponding remote service. The
role of the manager is to ensure a coherent behavior of these proxies. Applications on our
framework have the possibility to transparently use remote services or features from remote
devices through their local representatives.

Service oriented runtimeService oriented runtime

Service Oriented
applications

Common servicesCommon services

Remote
service
Manager

Remote
service
Manager

Web Services

Devices

Devices on
another
gateway

Service oriented runtimeService oriented runtime

Service Oriented
applications

Common servicesCommon services

Remote
service
Manager

Remote
service
Manager

Web Services

Devices

Devices on
another
gateway

Fig. 5. H-OMEGA application server architecture

The commonly used services in applications are provided by the framework. The
applications running on the framework have access to these services. The goal of creating
these services is to free developers of applications from this tedious, repetitive and
sometimes complex development. The use of these services helps to reduce the bugs in this
type of application, because these services are developed once and widely tested. Our
framework currently provides:

 A persistence manager to enable applications to store and retrieve persistent data;
 A tasks scheduler for repetitive or delayed tasks;
 An event-based communications infrastructure for enabling asynchronous

communications;

www.intechopen.com

Smart	Home	Systems 11

proposes to install on each gateway an application server dedicated to residential
computing technology called H-OMEGA [5]. This application server provides an
infrastructure for running residential applications. The set of application servers installed on
each platform forms our middleware. Each gateway is then able to communicate with each
other thanks to our middleware. Thus an application may be distributed across the different
gateways present in the house and seamlessly coordinate the behavior of a set of electronic
devices connected to different gateways.
H-OMEGA allows a uniform access to in-house equipments connected to the considered
gateway. H-OMEGA also provides a way for applications to interact with remote services
such as web services. The last feature offered by our applications server is the ability to
provide an integrated and portable human interface for controlling the home system. This
interface is either available from within the home, or remotely.

Our home environment, including both gateways and equipments, follows principles
advocated by the Service-Oriented Computing. Service-Oriented Computing (SOC) [6, 7] is
a relatively new trend in software engineering whereby services can be supplied by multiple
service providers and feature various implementations. At runtime, a service consumer is
able to invoke a service by relying only on a service specification, which specify both
functional (service interface) and non-functional (QoS) part, while not referring to the
service implementation. An important consequence of this interaction pattern is that SOC
technologies support dynamic service discovery and lazy inter-service binding. Such
characteristics are essential when building applications with strong adaptability
requirements, such as pervasive and residential applications.
We propose to build smart home applications as service-oriented applications. The H-
OMEGA application server is based on service-oriented architecture and interactions with
remote devices follow the service-oriented pattern. The use of this technology presents
several advantages. As previously stated, this technology allows the loose-coupling between
different actors which allows the use of other services without having detailed knowledge of
their implementation or the interaction protocol used to communicate with their equipment.
We propose to reify each device feature as a service on our middleware to provide an
uniform access to electronic devices. This technique addresses the problem of heterogeneity
of communication protocols between the various equipments. In addition, the use of the
service-oriented components approach provides a natural support for dynamic applications
such as the ones found in a house. Indeed, residential applications have to interact with
equipments accessible through services, which may be intermittently available. Finally the
use of such technology respect the vision of the existing protocols for home: UPnP and
DPWS which propose a service-oriented approach. The integration of devices that do not
comply with a service-oriented approach is made through the use of a third party
mechanism which makes the link between our service-oriented gateway and different
equipments.
The proposed application server also allows service providers to deploy, update and
remove services and applications remotely. Suppliers can thus control from their own
premises all applications and services deployed in all houses.

5. Our Residential Gateway Proposition

5.1 Architectural view
The architecture of our residential gateway, H-OMEGA is illustrated in Fig. 5. This
architecture is based on three basic elements used to simplify the design, implementation,
development and administration of residential applications. The main elements of this
architecture are:

 An infrastructure for service-oriented execution,
 A remote service manager (including equipments, services offered by other

gateways and web services),
 A set of facilities or commonly used services to develop this type of application.

The remote service manager can manage both the available devices in the environment of
the gateway, the services offered by other H-OMEGA gateways presents in the home and
remote software services from outside the home. The role of this entity is specifically to
manage the lifecycle of services acting as proxy for remote services either offered by remote
equipments, or remote gateways. These local representatives are able to interact directly
with the remote service. They follow the life cycle of their corresponding remote service. The
role of the manager is to ensure a coherent behavior of these proxies. Applications on our
framework have the possibility to transparently use remote services or features from remote
devices through their local representatives.

Service oriented runtimeService oriented runtime

Service Oriented
applications

Common servicesCommon services

Remote
service
Manager

Remote
service
Manager

Web Services

Devices

Devices on
another
gateway

Service oriented runtimeService oriented runtime

Service Oriented
applications

Common servicesCommon services

Remote
service
Manager

Remote
service
Manager

Web Services

Devices

Devices on
another
gateway

Fig. 5. H-OMEGA application server architecture

The commonly used services in applications are provided by the framework. The
applications running on the framework have access to these services. The goal of creating
these services is to free developers of applications from this tedious, repetitive and
sometimes complex development. The use of these services helps to reduce the bugs in this
type of application, because these services are developed once and widely tested. Our
framework currently provides:

 A persistence manager to enable applications to store and retrieve persistent data;
 A tasks scheduler for repetitive or delayed tasks;
 An event-based communications infrastructure for enabling asynchronous

communications;

www.intechopen.com

Smart	Home	Systems12

 A remote administration module to easily manage deployed residential
applications from the vendor premise.

The service-oriented infrastructure allows the design of residential applications with the
benefits associated with this type of infrastructure. Applications can be opportunistically
bound to services provided on the gateway. The services available to applications through
this mechanism include the services provided by other applications, equipments and remote
services accessible through local proxies and the common services provided by the platform.

5.2 Implementation
The Fig. 6 shows the stack of technologies used to develop our applications server. Our
framework provides a Java-based environment to develop residential applications. It is
based on service-oriented technology called OSGi [8] which is a service-oriented architecture
featuring management facilities. On top of this technology, we use iPOJO [9]: a service-
oriented component runtime that aims to simplify the development of service-oriented
applications.

JavaJava
OSGiOSGi
iPOJOiPOJO

Residential applications

H‐OMEGAH‐OMEGA

JavaJava
OSGiOSGi

iPOJOiPOJO
H‐OMEGAH‐OMEGA

Gateway 1Gateway 1 Gateway 2Gateway 2
JavaJava
OSGiOSGi
iPOJOiPOJO

Residential applicationsResidential applications

H‐OMEGAH‐OMEGA

JavaJava
OSGiOSGi

iPOJOiPOJO
H‐OMEGAH‐OMEGA

Gateway 1Gateway 1 Gateway 2Gateway 2
Fig. 6. Stack of technologies used by H-OMEGA

iPOJO is a service-oriented component runtime that aims to simplify the development of
applications on top of OSGi SOC Platforms. iPOJO allows the straightforward development
of application logic based on Plain Old Java Objects (POJO). iPOJO subsequently injects
non-functional facilities into the application components, as necessary. Such facilities
include service provisioning, service dependency and lifecycle management. In addition to
providing a reusable set of non-functional capabilities, iPOJO is seamlessly extensible to
include new middleware functionalities.
The iPOJO framework merges the advantages of components with service-oriented
paradigms. Specifically, iPOJO application functionalities are implemented following the
component orientation paradigm. Each component is fully encapsulated, self-sufficient, and
provides server and client interfaces exposing its functionalities and dependencies,
respectively. As many component-oriented platforms (e.g. Java EE and .NET), iPOJO
separates a component’s application-specific business logic from its application independent
functions. As such, iPOJO components consist of a component implementation that is
managed by a reusable container (Fig. 7).

Fig. 7. Internal design of an iPOJO component

iPOJO containers provide common middleware functionalities to the component
implementations they manage (e.g. distributed communication and lifecycle management).
Each component container can be configured with a different set of middleware services,
implemented as “handlers”. Once an iPOJO component is deployed, its provided functions
are published and made available as services, in conformance with the SOC paradigm. In
order for a component’s services to become valid, all the component’s dependencies must be
resolved. For this purpose, available services corresponding to a component’s required (or
client) interfaces must be found and available.

The use of iPOJO allows us to benefit from all the facilities provided by this technology,
particularly the dependencies manager which automatically deals with the dynamic
availability of services (specifically services provided by mobile and remote devices). In
addition, the extensibility feature of iPOJO enables the specialization of the environment for
the residential application needs. We thus have developed handlers to simplify access to
commonly used features of our framework:

 A handler to describe the automatic planning of repetitive or delayed actions. This
handler (called cron handler) uses the scheduler services provided by our
framework.

 A handler to automatically save and restore the state of a service. This handler
(called persistency handler) uses the persistence service provided by H-OMEGA.

 A handler to simplify the reception and sending of asynchronous messages. This
handler (called Event Admin handler) uses the event-based communication
infrastructure provided by OSGi.

 A handler to describe the provisioning of administration features of a service. This
handler (called JMX handler) uses the JMX standard provided by the JVM to offers
this functionality.

An application developer using H-OMEGA will thus have an easy access to all these
features.

6. Examples

This work has been validated as part of the ANSO European ITEA project. The middleware
presented in this chapter has been used as a basis of the final demonstrator of the project.
ANSO means Autonomic Network for SOHO, where SOHO is used for Small Office Home
Office. The objective of this project was to develop an open source platform, intelligent and
reliable for different home automation environments to greatly accelerate the development

www.intechopen.com

Smart	Home	Systems 13

 A remote administration module to easily manage deployed residential
applications from the vendor premise.

The service-oriented infrastructure allows the design of residential applications with the
benefits associated with this type of infrastructure. Applications can be opportunistically
bound to services provided on the gateway. The services available to applications through
this mechanism include the services provided by other applications, equipments and remote
services accessible through local proxies and the common services provided by the platform.

5.2 Implementation
The Fig. 6 shows the stack of technologies used to develop our applications server. Our
framework provides a Java-based environment to develop residential applications. It is
based on service-oriented technology called OSGi [8] which is a service-oriented architecture
featuring management facilities. On top of this technology, we use iPOJO [9]: a service-
oriented component runtime that aims to simplify the development of service-oriented
applications.

JavaJava
OSGiOSGi
iPOJOiPOJO

Residential applications

H‐OMEGAH‐OMEGA

JavaJava
OSGiOSGi

iPOJOiPOJO
H‐OMEGAH‐OMEGA

Gateway 1Gateway 1 Gateway 2Gateway 2
JavaJava
OSGiOSGi
iPOJOiPOJO

Residential applicationsResidential applications

H‐OMEGAH‐OMEGA

JavaJava
OSGiOSGi

iPOJOiPOJO
H‐OMEGAH‐OMEGA

Gateway 1Gateway 1 Gateway 2Gateway 2
Fig. 6. Stack of technologies used by H-OMEGA

iPOJO is a service-oriented component runtime that aims to simplify the development of
applications on top of OSGi SOC Platforms. iPOJO allows the straightforward development
of application logic based on Plain Old Java Objects (POJO). iPOJO subsequently injects
non-functional facilities into the application components, as necessary. Such facilities
include service provisioning, service dependency and lifecycle management. In addition to
providing a reusable set of non-functional capabilities, iPOJO is seamlessly extensible to
include new middleware functionalities.
The iPOJO framework merges the advantages of components with service-oriented
paradigms. Specifically, iPOJO application functionalities are implemented following the
component orientation paradigm. Each component is fully encapsulated, self-sufficient, and
provides server and client interfaces exposing its functionalities and dependencies,
respectively. As many component-oriented platforms (e.g. Java EE and .NET), iPOJO
separates a component’s application-specific business logic from its application independent
functions. As such, iPOJO components consist of a component implementation that is
managed by a reusable container (Fig. 7).

Fig. 7. Internal design of an iPOJO component

iPOJO containers provide common middleware functionalities to the component
implementations they manage (e.g. distributed communication and lifecycle management).
Each component container can be configured with a different set of middleware services,
implemented as “handlers”. Once an iPOJO component is deployed, its provided functions
are published and made available as services, in conformance with the SOC paradigm. In
order for a component’s services to become valid, all the component’s dependencies must be
resolved. For this purpose, available services corresponding to a component’s required (or
client) interfaces must be found and available.

The use of iPOJO allows us to benefit from all the facilities provided by this technology,
particularly the dependencies manager which automatically deals with the dynamic
availability of services (specifically services provided by mobile and remote devices). In
addition, the extensibility feature of iPOJO enables the specialization of the environment for
the residential application needs. We thus have developed handlers to simplify access to
commonly used features of our framework:

 A handler to describe the automatic planning of repetitive or delayed actions. This
handler (called cron handler) uses the scheduler services provided by our
framework.

 A handler to automatically save and restore the state of a service. This handler
(called persistency handler) uses the persistence service provided by H-OMEGA.

 A handler to simplify the reception and sending of asynchronous messages. This
handler (called Event Admin handler) uses the event-based communication
infrastructure provided by OSGi.

 A handler to describe the provisioning of administration features of a service. This
handler (called JMX handler) uses the JMX standard provided by the JVM to offers
this functionality.

An application developer using H-OMEGA will thus have an easy access to all these
features.

6. Examples

This work has been validated as part of the ANSO European ITEA project. The middleware
presented in this chapter has been used as a basis of the final demonstrator of the project.
ANSO means Autonomic Network for SOHO, where SOHO is used for Small Office Home
Office. The objective of this project was to develop an open source platform, intelligent and
reliable for different home automation environments to greatly accelerate the development

www.intechopen.com

Smart	Home	Systems14

of new services in this context and to allow their compositions in innovative applications for
increase the use of services for the digital home in Europe.
In this context, we have developed several home scenarios to demonstrate the interest of our
framework. The applications developed are presented in section 3.2.
The first application is a home hospitalization application to help maintain elderly or
convalescents at home. Based on fall detectors and blood pressure sensors, our application
constantly monitors the considered person. These data are processed through complex
analyzers to detect irregularities or unexpected behaviors. In such cases, an alarm is sent to
the closest hospital emergency. In normal operational condition, this application
continuously stores information on the patient health and builds reports which are regularly
sent to the doctor in charge.

Remote
Service
Manager

Remote
Service
Manager

H‐OMEGA Application ServerH‐OMEGA Application Server

Scheduling MOMRemote
administration

HealthCare
application
HealthCare
application

Fall
detector

Fall
detector

Blood
pressure
sensor

Blood
pressure
sensor

Remote
Service
Manager

Remote
Service
Manager

H‐OMEGA Application ServerH‐OMEGA Application Server

Scheduling MOMRemote
administration

HealthCare
application
HealthCare
application

Fall
detector

Fall
detector

Blood
pressure
sensor

Blood
pressure
sensor

Fig. 8. Home hospitalization application

This application has been designed using the various features of H-OMEGA. As, we do not
have access to the real sensors, this application has been built using simulators of the real
sensors. To keep the simulation close to the real sensors, we have developed and executed
these simulated sensors on a remote computer, and we have used standard protocols such
as UPnP to remotely discover and access them. Thanks to our remote service manager,
proxies of these sensors are automatically installed on the gateway. All data are transmitted
through an event-based communication system to a service in charge of performing
anomalies recognition. Data are also stored on a persistent support through the persistency
service. The application uses the facility of the automatic planning of repetitive actions to
plan the creation of a daily report. Finally, this application uses the remote administration
feature to provide a way for the hospital to remotely tune the thresholds of the anomalies
detector in order to suit with the patient health evolution.
The second application is a home multimedia entertainment application using standard
UPnP media server and renderer devices. In this application, we do not simulate any
devices. This application aims at providing a multimedia experience to the user seamlessly
integrating several multimedia devices and the shutter and lighting system of the home.

First the user chooses a media to listen or view, and then the system uses the maximum of
its capacity to maximize the user comfort. The media follows the user while he is moving
throughout the house, and the suitable ambiance for watching media is also set in each
visited room. This application mainly benefit from the facilities provided by iPOJO to
manage the dependency between the media controller service and the available media
renderer in the home. Thus, the application is able to view the media in the room where the
user is located. This application is distributed across two gateways: one belonging to the
multimedia vendors, the other belonging to the vendor of the shutter and lighting systems.
The application mainly runs on the multimedia gateway, but uses the feature of our
middleware to access the lighting services on the other gateway.
The third application is an application aiming at minimizing the energy consumption of the
house while maximizing the security when inhabitants are away. This application is in
charge of running the alarm system, closing shutter and turning off all lights when
inhabitants leave the home. If the inhabitants’ absence last more than one day, this
application launches a service in charge of simulating the presence. This last service makes
extensive use of the planning feature offered by our middleware to simulate the inhabitants’
usual actions, such as closing shutters, turning off lights in different rooms, etc.

7. Conclusion

Developing correct and maintainable pervasive services is a real challenge today. It is clear
that most techniques currently available are not mature, hard to master and, consequently,
raise major challenges for the major players of the market.
We believe that two important aspects have to be improved: development environments
and runtime environments for pervasive services. In this paper, we have presented recent
developments in the area of service-oriented home gateways.
This chapter mainly focuses on the description of our work on a runtime addressing the
main limitations of current approach: dealing with a growing number of homes and dealing
with heterogeneous mobile devices. The design of our residential application server also
respect the industrials main will to keep the control on their own equipments, while
encompassing the main limitations of the traditional approach: entirely isolated gateways.
The work described has been implemented on top of an open source project called iPOJO
(available as an Apache Felix subproject) and is currently available as an open source project
on http://ligforge.imag.fr/projects/homega/. This work has been validated in the ITEA
ANSO project and through the creation of several applications validating the usefulness of
our framework.
This work, on providing an open infrastructure to enable the development and execution of
home applications seamlessly integrating heterogeneous and mobile devices, open several
research perspectives. We are currently working on adding autonomic features to home
applications in order to reduce the maintenance cost of such applications [10]. This work
aims at providing architecture and its corresponding runtime to support the creation of self-
configuring, self-optimizing and self-repairing applications.

www.intechopen.com

Smart	Home	Systems 15

of new services in this context and to allow their compositions in innovative applications for
increase the use of services for the digital home in Europe.
In this context, we have developed several home scenarios to demonstrate the interest of our
framework. The applications developed are presented in section 3.2.
The first application is a home hospitalization application to help maintain elderly or
convalescents at home. Based on fall detectors and blood pressure sensors, our application
constantly monitors the considered person. These data are processed through complex
analyzers to detect irregularities or unexpected behaviors. In such cases, an alarm is sent to
the closest hospital emergency. In normal operational condition, this application
continuously stores information on the patient health and builds reports which are regularly
sent to the doctor in charge.

Remote
Service
Manager

Remote
Service
Manager

H‐OMEGA Application ServerH‐OMEGA Application Server

Scheduling MOMRemote
administration

HealthCare
application
HealthCare
application

Fall
detector

Fall
detector

Blood
pressure
sensor

Blood
pressure
sensor

Remote
Service
Manager

Remote
Service
Manager

H‐OMEGA Application ServerH‐OMEGA Application Server

Scheduling MOMRemote
administration

HealthCare
application
HealthCare
application

Fall
detector

Fall
detector

Blood
pressure
sensor

Blood
pressure
sensor

Fig. 8. Home hospitalization application

This application has been designed using the various features of H-OMEGA. As, we do not
have access to the real sensors, this application has been built using simulators of the real
sensors. To keep the simulation close to the real sensors, we have developed and executed
these simulated sensors on a remote computer, and we have used standard protocols such
as UPnP to remotely discover and access them. Thanks to our remote service manager,
proxies of these sensors are automatically installed on the gateway. All data are transmitted
through an event-based communication system to a service in charge of performing
anomalies recognition. Data are also stored on a persistent support through the persistency
service. The application uses the facility of the automatic planning of repetitive actions to
plan the creation of a daily report. Finally, this application uses the remote administration
feature to provide a way for the hospital to remotely tune the thresholds of the anomalies
detector in order to suit with the patient health evolution.
The second application is a home multimedia entertainment application using standard
UPnP media server and renderer devices. In this application, we do not simulate any
devices. This application aims at providing a multimedia experience to the user seamlessly
integrating several multimedia devices and the shutter and lighting system of the home.

First the user chooses a media to listen or view, and then the system uses the maximum of
its capacity to maximize the user comfort. The media follows the user while he is moving
throughout the house, and the suitable ambiance for watching media is also set in each
visited room. This application mainly benefit from the facilities provided by iPOJO to
manage the dependency between the media controller service and the available media
renderer in the home. Thus, the application is able to view the media in the room where the
user is located. This application is distributed across two gateways: one belonging to the
multimedia vendors, the other belonging to the vendor of the shutter and lighting systems.
The application mainly runs on the multimedia gateway, but uses the feature of our
middleware to access the lighting services on the other gateway.
The third application is an application aiming at minimizing the energy consumption of the
house while maximizing the security when inhabitants are away. This application is in
charge of running the alarm system, closing shutter and turning off all lights when
inhabitants leave the home. If the inhabitants’ absence last more than one day, this
application launches a service in charge of simulating the presence. This last service makes
extensive use of the planning feature offered by our middleware to simulate the inhabitants’
usual actions, such as closing shutters, turning off lights in different rooms, etc.

7. Conclusion

Developing correct and maintainable pervasive services is a real challenge today. It is clear
that most techniques currently available are not mature, hard to master and, consequently,
raise major challenges for the major players of the market.
We believe that two important aspects have to be improved: development environments
and runtime environments for pervasive services. In this paper, we have presented recent
developments in the area of service-oriented home gateways.
This chapter mainly focuses on the description of our work on a runtime addressing the
main limitations of current approach: dealing with a growing number of homes and dealing
with heterogeneous mobile devices. The design of our residential application server also
respect the industrials main will to keep the control on their own equipments, while
encompassing the main limitations of the traditional approach: entirely isolated gateways.
The work described has been implemented on top of an open source project called iPOJO
(available as an Apache Felix subproject) and is currently available as an open source project
on http://ligforge.imag.fr/projects/homega/. This work has been validated in the ITEA
ANSO project and through the creation of several applications validating the usefulness of
our framework.
This work, on providing an open infrastructure to enable the development and execution of
home applications seamlessly integrating heterogeneous and mobile devices, open several
research perspectives. We are currently working on adding autonomic features to home
applications in order to reduce the maintenance cost of such applications [10]. This work
aims at providing architecture and its corresponding runtime to support the creation of self-
configuring, self-optimizing and self-repairing applications.

www.intechopen.com

Smart	Home	Systems16

8. References

[1] Mark Weiser, “The computer for the 21st century”, Scientific American, 265(3):66-75,
September 1991.

[2] A. Ferscha, “Pervasive computing and communications”, Beyond The Horizon Thematic
Group, IST, 2005 (http://www.cordis.lu/ist/fet/id.htm).

[3] UPnP Plug and Play Forum, "About the UPnP Plug adn Play Forum," in
http://www.upnp.org/, 1999.

[4] E. Zeeb, A. Bobek, H. Bonn, and F. Golatowski, "Lessons learned from implementing the
Devices Profile for Web Services," in Inaugural IEEE-IES Digital EcoSystems and
Technologies Conference (DEST '07) 2007.

[5] C. Escoffier, J. Bourcier, P. Lalanda, J. Yu, “Towards a home application server” 5th IEEE
Consumer Communications and Networking Conference (CCNC’08), January 2008.

[6] M. N. Huns and M. P. Singh. Service-Oriented Computing: Key Concepts and Principles.
IEEE Internet Computing, vol. 9: pages 75–81, Jan./Feb. 2005.

[7] M. P. Papazoglou and D. Georgakopoulos. Service-oriented computing. Commun. ACM,
46(10):24–28, 2003.

[8] OSGi Alliance. “OSGi Service Platform Core Specification Release 4”
 http://www.osgi.org, August 2005.
[9] C. Escoffier, R. S. Hall, P. Lalanda, “An Extensible Service-Oriented Component

Framework”, IEEE Service Computing Conference, 2007.
[10] P. Lalanda and J. Bourcier, “Towards autonomic residential gateways”, IEEE

International Conference on Pervasive Services (ICPS 2006), June 2006.

www.intechopen.com

Smart Home Systems

Edited by Mahmoud A. Al-Qutayri

ISBN 978-953-307-050-6

Hard cover, 194 pages

Publisher InTech

Published online 01, February, 2010

Published in print edition February, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Smart homes are intelligent environments that interact dynamically and respond readily in an adaptive manner

to the needs of the occupants and changes in the ambient conditions. The realization of systems that support

the smart homes concept requires integration of technologies from different fields. Among the challenges that

the designers face is to make all the components of the system interact in a seamless, reliable and secure

manner. Another major challenge is to design the smart home in a way that takes into account the way

humans live and interact. This later aspect requires input from the humanities and social sciences fields. The

need for input from diverse fields of knowledge reflects the multidisciplinary nature of the research and

development effort required to realize smart homes that are acceptable to the general public. The applications

that can be supported by a smart home are very wide and their degree of sophistication depends on the

underlying technology used. Some of the application areas include monitoring and control of appliances,

security, telemedicine, entertainment, location based services, care for children and the elderly… etc. This

book consists of eleven chapters that cover various aspects of smart home systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

P. Lalanda, J. Bourcier, J. Bardin and S. Chollet (2010). Smart Home Systems, Smart Home Systems,

Mahmoud A. Al-Qutayri (Ed.), ISBN: 978-953-307-050-6, InTech, Available from:

http://www.intechopen.com/books/smart-home-systems/smart-home-systems

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

