
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

21

Acromovi Architecture: A Framework for the

Development of Multirobot Applications

Patricio Nebot & Enric Cervera
Robotic Intelligence Lab, Jaume-I University

Castellón de la Plana, Spain

1. Introduction

The presented agent-based framework (Acromovi - an acronym in Spanish which stands for
Cooperative Architecture for Intelligent Mobile Robots) was born from the idea that
teamworking is an essential capability for a group of multiple mobile robots (Jung &
Zelinsky, 1999; Mataric, 1998).
In the last years, there is an increasing interest in the development of systems of multiple
autonomous robots, so that they exhibit collective behaviour. This interest is due to the fact
that having one single robot with multiple capabilities may waste resources. Different
robots, each one with its own configuration, are more flexible, robust and cost-effective.
Moreover, the tasks to achieve may be too complex for one single robot, whereas they can be
effectively done by multiple robots (Arai et al., 2002).
In this work is described the design and implementation of a distributed architecture for the
programming and control of a team of coordinated heterogeneous mobile robots, which are
able to collaborate among them and with people in the accomplishment of tasks of services
in daily environments, the Acromovi architecture.
Acromovi architecture is a framework for application development by means of embedding
agents and interfacing agent code with native low-level code. It addresses the
implementation of resource sharing among all the group of robots. Cooperation among the
robots is also made easier in order to achieve complex tasks in a coordinated way.
Moreover, in this work is emphasized the reusability of software, allowing the programmer
to seamlessly integrate native software components (vision libraries, navigation and
localization modules) , by means of agent wrappers, providing the programmer with a set of
tools for mobile robots. Also, it allows sharing the robots’ resources among the team and an
easy access to the robots’ elements by the applications. Other important characteristics of the
Acromovi architecture are the scalability and ease-of-use.
Though robot programming has been extensively done in C or C++ languages, a Java-
based multiagent development system was chosen to develop the architecture of our team
of robots (Nebot & Cervera, 2005a). Among Java strengths, those particularly pursued
were the high-level communication capabilities, and the native interface to existing
C/C++ code.
On the other hand, Acromovi architecture is a distributed architecture that works as a
middleware of another global architecture for programming robots. Though any common
agent architecture can be used, it has been implemented by means of the JADE (Java Agent

Source: Mobile Robots, Moving Intelligence, ISBN: 3-86611-284-X, Edited by Jonas Buchli, pp. 576, ARS/plV, Germany, December 2006

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

www.intechopen.com

410 Mobile Robots, moving intelligence

DEvelopment Framework), a tool for the development of multiagent systems, implemented
in JAVA, that fulfils with the FIPA specifications.
The embedded agents that constitute the Acromovi architecture work as interfaces between
the applications and the physical elements of the robots. Some agents also make easier the
handle of these elements and provide higher-level services. The embedding agents are the
key for powerful distributed applications being rapidly developed.
Multiagent systems are an important tool for the development of new robotic applications.
They are the natural environment for the development of applications which consist of more
than one robot. And they make possible the fast implementation of powerful architectures
for the specification and execution of tasks for those teams of robots.
 In Section 2, some related works in the literature are compared. Next, Section 3 describes
the different robots that make up the team. In Section 4, a description of the Acromovi
architecture is given, from the design to the implementation. Some examples of applications
implemented with the Acromovi architecture are presented in Sections 5. These applications
demonstrate the rapid development capabilities and ease-of-use of the agents implemented
with this framework. Finally, Section 6 concludes and presents some final remarks.

2. State of the art

The amount of research in the field of cooperative mobile robotics has grown steadily in
recent years (Parker, 2000; Cao et al., 1997). Some examples of these works are presented
below, emphasizing their potentials, and drawbacks, and whether they are related (or not)
with embedded agents in mobile robotics.
CEBOT (CEllular roBOTics System) is a hierarchical decentralized architecture inspired by the
cellular organization of biological entities. It is capable of dynamically reconfigurating itself
to adapt to environment variations (Fukuda & Iritani, 1995). It is composed by “cells”, in the
hierarchy there are “master cells” that coordinate subtasks and communicate among them.
On the other hand, SWARM is a distributed system made up of a great number of
autonomous robots. It has been called the term “SWARM intelligence” to define the
property of systems of multiple non-intelligent robots to exhibit a collective intelligent
behaviour. Generally, it is a homogeneous architecture, where the interaction is limited to
nearest neighbours (Johnson & Sugisaka, 2000).
Other interesting project, MICRobES, is an experiment of collective robotics that tries to
study the long time adaptation of a micro-society of autonomous robots in an environment
with humans. Robots must survive in these environments as well as cohabit with his people
(Picault & Drogoul, 2000).
In an attempt to use traditional IA techniques, the GOPHER architecture was thought to resolve
problems in a distributed manner by multirobots in internal environments (Caloud et al., 1990). A
central tasks planning system (CTPS) communicates with all the robots and disposes a global vision
of the tasks that has been done and of the availability of the robots to perform the rest of tasks.
An example of behaviour-based architecture is ALLIANCE, which is oriented to the cooperation
of a small-medium team of heterogeneous robots, with little communication among them
(Parker, 1998). It assumes that robots are relatively able to discern the effects of their actions and
those of the rest of agents, either through its perception or through communication. Individual
robots act based on behaviours or sets of behaviours to make their tasks.
ABBA (Architecture for Behaviour Based Agents) (Jung & Zelinsky, 1999) is another
behaviour-based architecture for mobile robots, whose purpose is to design an architecture

www.intechopen.com

Acromovi Architecture: A Framework for the Development of Multirobot Applications 411

to model the robot’s behaviour so that it can select reactive behaviours of low level for his
survival, to plan high level objectives oriented to sequences of behaviours, to carry out
spatial and topological navigation, and to plan cooperative behaviours with other agents.
Dynamic physical agents are considered in an architecture called DPA, being well suited for
robotics (Oller et al., 1999). A physical agent is the result of integrate a software agent in an
autonomous hardware. This hardware is frequently a mobile robot. DPA architecture shows
the agent like a modular entity with three levels of abstraction: control module, supervisor
module and agent module. The architecture’s operation is based on two basic processes for
each module: the process of introspection and the one of control, and in a protocol of
intermodular dialogue which allows the exchange of information between modules.
In order to reuse native software components, agents can be embedded in an interface level
or middleware. ThinkingCap-II (Cáceres et al., 2003) is an architecture developed, in a project
of distributed platform based on agents for mobile robots. It includes intelligent hybrid
agents, a planning system based on a visual tracking, vision components integration, and
various navigation techniques. Furthermore, it has been developed over a real-time virtual
machine (RT-Java), implementing a set of reactive behaviours.
Miro is a middleware for create autonomous mobile robot applications from the University
of Ulm. It is based on the construction and use of object-oriented robot middleware to make
the development of mobile robot applications easier and faster, and to foster portability and
maintainability of robot software (Enderle et al., 2001). This middleware also provides
generic abstract services like localization or behaviour engines, which can be applied on
different robot platforms with virtually no modifications.
The previous works implement architectures and systems so that teams of mobile robots can
make cooperative tasks. Our work consists of the implementation of an architecture of such
type, emphasizing software reuse, and adding the versatility and power of the multiagent
systems, for the resolution of cooperative tasks for a group of heterogeneous robots.

3. Description of the team of robots

In order to understand the purpose and working environment of the presented agent architecture,
their physically embedding instances are described in this section: a team of mobile robots. For the
development of this project, a team consisting of six Pioneer robots and one Powerbot robot is
used, all of them manufactured by ActivMedia Robotics, as can be seen in Fig. 1.

Fig. 1. Team of robots used in the project.

www.intechopen.com

412 Mobile Robots, moving intelligence

Though sharing the same platform, the robots exhibit different features, constituting
therefore a heterogeneous group. Within the group, dimensions of robots may vary due to
the different accessories added to robots (cameras, laser, grippers), or its own size (Pioneer
vs. Powerbot).
Particularly, only one Pioneer has a laser rangefinder system and two Pioneers carry camera
systems; moreover, the Powerbot has front and rear bumpers and front IR sensors. All the
Pioneer robots have a gripper and a front ring with 8 sonar discs, except the robot with laser
that also includes a rear sonar ring. The Powerbot has 28 sonar discs distributed 14 at front
and 14 at rear, but it does not include a gripper. Instead, a 7 d.o.f. arm is mounted on its top,
as can be seen in the last section of this work.
All robots of the team maintain the same logical design based on a microcontroller which
transfers the readings of the standard elements of the robot (ultrasound sensors, wheel
encoders) via RS232, by cable or radio, to a computer client where the applications are
executed. This computer can be located on board of the robot or not, in which case the
communication is made by radio-modem. In our team, onboard computers are only
available on three Pioneer robots (those that also carry either a camera or the rangefinder)
and the Powerbot.
Finally, the robots with onboard computing power are connected by means of a Wireless
Ethernet network, which, through several base stations, can access to the local network of
the university, and to the Internet.

4. Acromovi architecture

To establish mechanisms of cooperation between robots implies to consider a problem of
design of cooperative behaviour: given a group of robots, an environment and a task, how
the cooperation must be carried out. Such problem implies several challenges, emphasizing
among them the definition of the architecture of the group.
The multiagent systems are the natural environment for such groups of robots, making
possible the fast implementation of powerful architectures for the specification and
execution of tasks.

4.1 Design of the architecture
The robots that constitute the team have already a programming architecture with
native (C/C++) libraries for all their accessories. In the Pioneer robots, this
architecture is splitted in two layers. The lower layer is called ARIA, and it takes care
of the requests of the programs to the robot components. The upper layer -called
Saphira- provides services for range sensor interpretation, map building, and
navigation.
However, the existing native code is oriented to both local and remote processing
from only one controller, without defining collaboration mechanisms between robots
or applications. Acromovi architecture tries to overcome this problem by the
introduction of a new level over this architecture that allows an easy collaboration
and cooperation.
Also, the Acromovi architecture is able to subsume any other extra software, like the
ACTS (a colour tracking library) and the Vislib (a framegrabbing library). ACTS is a
native (C/C++) module which, in combination with a colour camera and a
framegrabber, allows the users to select regions of colour in an image. ACTS is an

www.intechopen.com

Acromovi Architecture: A Framework for the Development of Multirobot Applications 413

external program to the architecture that works as a server, and the applications work
as clients that communicate by means of an ARIA library. Vislib is a library that
provides a fast and flexible image processing and single-camera machine vision. The
image processing functions that Vislib offers are generic convolution (2D kernel),
filtering and morphological tools. Vislib also is written in the C language.
Subsuming existing C/C++ libraries is a powerful and quick method for rapidly
developing Java code and thus embedding agents with all the functionality of native
systems. Furthermore, the new code adds seamless integration with other distributed
agents, either running on remote applications, or even as applets in web pages.
Acromovi, in Fig. 2, is a middleware between the native robot architecture and the
applications, which allows sharing the resources of each robot among all the team of
robots. This middleware is based on an agent-embedding approach.

Fig. 2. General diagram of the Acromovi architecture.

This middleware level has also been divided into two layers. In the lower layer, there are a
set of components, such as the sonar, the laser, the base, and so on. The others are special
components that offer services to the upper layer, as the vision, the navigation or the
localization.
These components only perform two kinds of functions: requests processing and results
sending. Thus, they could be implemented like software components. But because of
reasons of efficiency, implementation facility and integration with the whole structure, they
have been developed as agents that encapsulate the required functionality. But one should
take into account that this implementation may vary in the future if needed.
The upper layer of the middleware comprises a great variety of embedded and
supervising agents, e.g. agents that monitor the state of the agents/components of the
lower layer, agents that provide services of subscription to a certain component, agents
that arbitrate or block the access to a component, and any other type of agent which might

www.intechopen.com

414 Mobile Robots, moving intelligence

offer a service that can be of interest for the whole architecture or for a particular
application. These agents act as links between the applications and the agents that access
the components of the robot.
The structure of the entire middleware layer can be seen in the Fig. 3.

Fig. 3. The middleware layer: lower & upper layers.

The presented middleware has made feasible the change from an abstraction based
on library functions for the handling of the robot -that are available in compilation
and not consider multiplicity of systems- to an abstraction based on embedded
agents -that are available in execution and natively distributed. One major design
guideline was the distribution requirements and the communication between various
platforms.
Because of the heterogeneous character of the team, there are different middleware layers
for the robots, depending on the configuration of each robot of the team. These middleware
layers are generated in execution time according to the elements that each robot has active at
the moment of its execution. Therefore, each middleware layer will have active those agents
that permit the access to the own components of the robot. In the Fig. 4, several examples of
different configurations of the middleware layer are depicted. Only the agents of the lower
layer are presented in each configuration, due to the agents of the upper layer depends on
these agents.
The applications layer is on top of the middleware layer. These applications can be
implemented as agents too. The applications, in order to access to the components of the
robots, must communicate with the agents of the middleware, which then access to the
bottom layer that controls the robot.
Once an application has been tested, and if it is useful for the whole architecture, it can be
converted in a new agent of the upper layer of the middleware. Thus, each application done
can increase our system to make applications more difficult and more interesting, following
a bottom-up design.

4.2 Implementation of the architecture
Due to the fact that the middleware is just a set of embedded agents, a multiagent systems
programming tool has been selected for its implementation.

www.intechopen.com

Acromovi Architecture: A Framework for the Development of Multirobot Applications 415

Middleware for a robot

without external systems
Middleware for a robot

with camera system

Middleware for a robot

with laser system
Middleware for the

Powerbot robot

Fig. 4. The different middleware layers of the Acromovi architecture.

The multiagent tool chosen was JADE (Java Agent DEvelopment Framework). It is a
software framework to develop agent-based applications in compliance with the FIPA
specifications for interoperable intelligent multi-agent systems. It is fully
implemented in Java language and simplifies the implementation of multiagent
systems through a middle-ware and through a set of graphical tools that supports the
debugging and deployment phases. The agent platform can be distributed across
machines (which not even need to share the same OS). The JADE middleware
implements an agent platform for execution and a development framework. It
provides some agent facilities as lifecycle management, naming service and yellow-
page service, message transport and parsing service, and a library of FIPA interaction
protocols ready to be used.
The agent platform can be distributed on several hosts. Only one Java application, and
therefore only one Java Virtual Machine (JVM), is executed on each host. Each JVM is
basically a container of agents that provides a complete runtime environment for agent
execution and allows several agents to concurrently execute on the same host.
The communication architecture offers flexible and efficient messaging, where JADE creates
and manages a queue of incoming ACL messages, private to each agent. The transport

www.intechopen.com

416 Mobile Robots, moving intelligence

mechanism is like a chameleon because it adapts to each situation, by transparently
choosing the best available protocol.
JADE supports also scheduling of cooperative behaviours, where JADE schedules these
tasks in a light and effective way. The runtime includes also some ready to use behaviours
for the most common tasks in agent programming, such as FIPA interaction protocols,
waking under a certain condition, and structuring complex tasks as aggregations of simpler
ones
Having all in mind, the Acromovi architecture is implemented. Each robot of the team is a
main container, thus, there are seven main containers, one in each robot that works as host
of the distributed network. In each container, there is a group of agents. These agents are
created in execution time depending on the robot configuration. Each of these agents
represents one of the elements that in that moment has active the robot. So, in that way, the
heterogeneity mentioned in the generation of the middleware layer of Acromovi is
implemented. All this, can be seen in the Fig.

Fig. 5. Structure of the architecture implementation.

Because of the fact that ARIA and Saphira are implemented in C++ and JADE in Java, it has
been necessary to use a mechanism to integrate such different programming languages. For
this reason, JNI (Java Native Interface) has been used, thus allowing managing C++ code in
Java programs.
The robot elements are represented and managed by agents. These agents communicate
with the native layer of the global architecture by means of JNI.

5. Examples of applications developed with the Acromovi architecture

In this section, some applications implemented and tested with the Acromovi architecture
are explained. These applications demonstrate that the Acromovi architecture is suitable for
such tasks for it was developed. Also, they demonstrate the rapid development capabilities
and ease-of-use of the agents implemented with this framework. Only the main idea and the
operation of each application are shown here. For more details, consult the bibliography
annexed.

www.intechopen.com

Acromovi Architecture: A Framework for the Development of Multirobot Applications 417

5.1 Remote vision

This application consists of a graphical user interface (GUI), in Fig. 6, which allows the user to
send commands to the vision and camera agents and displays the results. Such commands
include the capture and display of the current image grabbed by the robot camera, the
pan/tilt/zoom motions of the camera, and the image processing operations provided by the
Vislib and Java 2D libraries. Such libraries provide low-level operations like thresholding,
blurring, edge detection, as well as high-level ones as colour or motion tracking.

Fig. 6. Graphical user interface of the remote vision application.

The graphical interface is built around pure Java Swing components, thus resulting in a
cross-platform application, capable of running in any operating system running the Java
virtual machine.
The remote vision GUI just sends messages to the agents, which take care of the operations in the
own robot. The agents return the appropriate result in another message to the GUI agent, which
then displays the image (in grabbing and image processing operations) or just indicates whether
the operation has been made correctly or not, in the case, e.g., of camera motions.
The main drawback of this application is responsiveness. Agent communications of images
is quite surely not the best efficient way of sending data through a network. However,
flexibility and ease of use are its main advantages.

5.2 Robot following

In this application one robot equipped with local vision pursuits another one. The leader
robot is assumed to navigate through an indoor environment, controlled either by a user or
by its own navigation algorithms. The follower robot uses its PTZ vision system to
determine the position and orientation of the leader robot, by means of a colour pattern
target, in Fig. 7, consisting of three rectangles (Renaud et al., 2004).

Fig. 7. Target used in the robot following application.

Such target, together with the local visual parameters, allows to easily computing the distance
and relative orientation of the leader robot with regard to the follower-observer one.

www.intechopen.com

418 Mobile Robots, moving intelligence

An example of execution is depicted in Fig. 8. The application may be extended to more robots in
a line formation, provided that each robot follows its predecessor, and it is equipped with a
vision system.

Fig. 8. Some images from a robot following experiment.

Colour tracking is provided by the ACTS server, which needs to be trained with the colours
of the target. The ACTS Agent works as link between the ACTS server and the Robot
Following Application.
The application always tries to have centred the target in the centre of the image (and thus,
always visible for the follower robot). To do so, it determines the blob centroid, computes
the motion needed by the camera and compensates the camera and robot motions.
When the target is centred, the application calculates the leader robot orientation and
position. With these information is easy to calculate the path to the target of the leader robot
by means of a Bézier curve, with two intermediate Bézier’s curve control points and the
initial and final points (the positions of the follower and leader robots).
When the curve is defined, motion commands are sent to the robot to perform the real motion.
In Fig. 9, the trajectory of two robots in an indoor environment is shown. The follower robot
(red trajectory, named Happy) follows a smoother trajectory than that of the leader robot
(blue, named Sneezy), as a result of the algorithm based on Bézier curves.

Fig. 9. Trajectory followed by two robots in a real robot following run.

www.intechopen.com

Acromovi Architecture: A Framework for the Development of Multirobot Applications 419

It is important to remark that the whole process does adds a very small processing
overhead, thus demonstrating the capabilities of Java-based agent architectures for fast real-
time vision-based tasks, as long as no image transmission is needed.
Also, it is important to point out that the system is robust enough to respond to sudden
changes in the position or orientation of the leader robot, thanks to the real-time tracking
system, and the small processing overhead.

5.3 Optical flow navigation

The purpose of this application is to use the optical flow technique to allow a mobile robot
equipped with a colour camera navigates in a secure way through an indoor environment
without collide with any obstacle. It reacts to the environment by itself. The objective is that
the robot be able to avoid obstacles in real-time (Nebot & Cervera, 2005b).
The optical flow is the distribution of the apparent velocities of movement of the brightness
pattern in an image, and arises from the relative movement of some objects and a viewer. As
the robot is moving around, although the environment is static, there is a relative movement
between the objects and the camera onboard the robot.
The visual information coming from the camera of the robot is processed through the optical
flow technique, which provides the information the robot needs to safely navigate in an
unknown working-environment.
From the optical flow generated in this way the robot can get an inference on how far an
object present in a scene is. This information is embedded in the time to crash (or time to
collision) calculated from the optical flow field. Using only optical measurements, and
without knowing one’s own velocity or distance from a surface, it is possible to determine
when contact with a visible surface will be made.
The application, first of all, must to capture the input image frames. The video from the camera
on board the robot is captured using the Java Media Framework (JMF). Next, the optical flow
derived from the new image is calculated, and from it, the time-to-contact vector is calculated. In
Fig. 10, there is an example of the optical-flow field and the time-to-contact graphic.

Fig. 10. Frame with the optical flow and the time-to-contact graphic associated.

Once the time-to-contact vector is calculated, an agent decides which situation is done in the
environment, and depending on the situation decides the movements associated to perform
by the robot.
In this case, the experimental results have shown that the robot is effectively able to avoid
any obstacle, in real-time, based only on the information from the optical-flow and the time-
to-contact agents.

www.intechopen.com

420 Mobile Robots, moving intelligence

6. Conclusion

In this work, the Acromovi architecture has been explained. This architecture is the support
for all the programming and interaction of the agents that manages our team of robots.
The Acromovi architecture is basically an agent-based distributed architecture for the
programming and controlling of teams of mobile robots. This architecture allows the use of
native components, by means of agent wrappers. The agents add the distributed
capabilities, with message interchange for cooperation between robots. This makes possible
an important reutilization of code, this being a basic principle in software engineering.
Also, it allows the scalability of the system. That is, if one tested application is of interest for
the whole system, it can easily converted in a new agent of the architecture, to serve as basis
for new applications more complex.
Moreover, it implements another concept, the resources sharing. This means that all the
elements of one of the robots of the team can be easily accessed by all the other robots of the
teams by means of the agents that control each of the other robots.
Finally, Acromovi architecture allows the quick development of multirobot applications with the
advantages of the multiagent systems. The users need very little time to develop new
applications for the team of robots. In just a few weeks, a student with very low Java skills is able
to program agents and develop the necessary testing procedures. In this aspect also is important
the first concept of the framework, the reusability of the agents previously implemented.
For these reasons, this architecture is very appropriate for the implementation and execution
of tasks that require collaboration or coordination by part of the robots of a team.
As future work, it has been now implemented a new application for the team of robots. This
application tries to form multirobot formations. Taking the example of the robot following,
robots in line formation, it is possible that the each follower robot could internally add a fixed
displacement to its leader position. As can be in Fig. 11, each robot computes a virtual point
instead of the leader position. These virtual points can be calculated simply displacing the leader
position in the correct form. Now, the followers do not follow the leader, but these virtual points.

Fig. 11. Triangular multirobot formation using virtual points.

At the end, an interesting application domain would be the use of a team of robots to
perform automatic, distributed surveillance tasks in indoor environments, or tasks of
vigilance in buildings like factories.

www.intechopen.com

Acromovi Architecture: A Framework for the Development of Multirobot Applications 421

7. Acknowledgements

Support for this research is provided in part by “Ministerio de Educaci´on y Ciencia”, grant
DPI2005-08203-C02-01, and by “Generalitat Valenciana”, grant GV05/137.

8. References

Arai, T.; Pagello, E. & Parker, L. E. (2002). Guest Editorial: Advances in MultiRobot Systems.
IEEE Transactions on Robotics and Automation, Vol. 18, No. 5, October 2002, 655-661,
1042-296X.

Cáceres, D.A.; Martínez, H.; Zamora, M.A. & Balibrea, L.M.T. (2003). A Real-Time
Framework for Robotics Software, Proceedings of Int. Conf. on Computer Integrated
Manufacturing (CIM-03), Wisla (Poland), 2003.

Caloud, P., et al. (1990). Indoor Automation with many Mobile Robots, Proceedings of
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS’90), pp. 67-72, Ibaraki
(Japan), July 1990.

Cao, Y.U.; Fukunaga, A.S. & Kahng, A.B. (1997). Cooperative Mobile Robotics: Antecedents
and Directions. Autonomous Robots, Vol. 4, No. 1, March 1997, 7-23, 0929-5593.

Enderle, S.; Utz, H.; Sablatnög, S.; Simon, S.; Kraetzschmar, G.K. & Palm, G. (2002). Miro:
Middleware for Mobile Robot Applications. IEEE Transactions on Robotics and
Automation, Vol. 18, No. 4, August 2002, 493-497, 1042-296X.

Fukuda, T. & Iritani, G. (1995). Construction Mechanism of Group Behavior with
Cooperation, Proceedings of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS’95), pp. 535-542, 0-8186-7108-4, Pittsburgh (USA), August 1995.

Johnson, J. & Sugisaka, M. (2000). Complexity Science for the Design of Swarm Robot Control
Systems, Proceedings of 26th Annual Conference of the IEEE Industrial Electronics Society
(IECON), pp. 695-700, 0-7803-6456-2, Nagoya (Japan), October 2000.

Jung, D. & Zelinsky, A. (1999). An Architecture for Distributed Cooperative Planning in a
Behaviour-based Multirobot System. Journal of Robotics and Autonomous Systems
(RA&S), Vol. 26, No. 2/3, February 1999, 149-174, 0921-8890.

Mataric, M. J. (1998). New Directions: Robotics: Coordination and Learning in Multirobot
Systems. IEEE Intelligent Systems, Vol. 13, No. 2, April 1998, 6-8, 1094-7167.

Nebot, P. & Cervera, E. (2005a). A Framework for the Development of Cooperative Robotic
Applications, Proceedings of 12th International Conference on Advanced Robotics
(ICAR’05), pp. 901–906, 0-7803-9178-0, Seattle (USA), July 2005.

Nebot, P. & Cervera, E. (2005b). Optical Flow Navigation over Acromovi Architecture,
Proceedings of 15th International Symposium on Measurement and Control in Robotics
(ISMCR 2005), Brussels (Belgium), November 2005.

Oller, A.; del Acebo, E. & de la Rosa, J.Ll. (1999). Architecture for Co-operative Dynamical
Physical Systems, Proceedings of 9th European Workshop on Multi-Agent Systems
(MAAMAW’99), Valencia (Spain), July 1999.

Parker ,L. E. (1998). ALLIANCE: An Architecture for Fault Tolerant Multi-Robot
Cooperation. IEEE Transactions on Robotics and Automation, Vol. 14, No. 2, April
1998, 220-240, 0882-4967.

Parker, L.E. (2000). Current State of the Art in Distributed Autonomous Mobile Robotics,
Proceedings of the 5th International Symposium on Distributed Autonomous Robotic
Systems (DARS2000), pp. 3-14, 4-431-70295-4, Knoxville (USA), October 2000.

www.intechopen.com

422 Mobile Robots, moving intelligence

Picault, S. & Drogoul, A. (2000). The Microbes Project, an Experimental Approach towards
Open Collective Robotics, Proceedings of 5th International Symposium on Distributed
Autonomous Robotic Systems (DARS’2000), pp. 481-482, 4-431-70295-4, Knoxville
(USA), October 2000.

Renaud, P.; Cervera, E. & Martinet, P. (2004). Towards a Reliable Vision-based Mobile Robot
Formation Control. Proceedings of IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS045), pp. 3176-3181, 0-7803-8464-4, Sendai (Japan), September 2004.

www.intechopen.com

Mobile Robotics, Moving Intelligence

Edited by Jonas Buchli

ISBN 3-86611-284-X

Hard cover, 586 pages

Publisher Pro Literatur Verlag, Germany / ARS, Austria

Published online 01, December, 2006

Published in print edition December, 2006

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book covers many aspects of the exciting research in mobile robotics. It deals with different aspects of the

control problem, especially also under uncertainty and faults. Mechanical design issues are discussed along

with new sensor and actuator concepts. Games like soccer are a good example which comprise many of the

aforementioned challenges in a single comprehensive and in the same time entertaining framework. Thus, the

book comprises contributions dealing with aspects of the Robotcup competition. The reader will get a feel how

the problems cover virtually all engineering disciplines ranging from theoretical research to very application

specific work. In addition interesting problems for physics and mathematics arises out of such research. We

hope this book will be an inspiring source of knowledge and ideas, stimulating further research in this exciting

field. The promises and possible benefits of such efforts are manifold, they range from new transportation

systems, intelligent cars to flexible assistants in factories and construction sites, over service robot which assist

and support us in daily live, all the way to the possibility for efficient help for impaired and advances in

prosthetics.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Patricio Nebot and Enric Cervera (2006). Acromovi Architecture: A Framework for the Development of

Multirobot Applications, Mobile Robotics, Moving Intelligence, Jonas Buchli (Ed.), ISBN: 3-86611-284-X,

InTech, Available from:

http://www.intechopen.com/books/mobile_robotics_moving_intelligence/acromovi_architecture__a_framework

_for_the_development_of_multirobot_applications

© 2006 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

