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Abstract

This chapter provides an exploration of the rough set theory and particle swarm
optimization for multispectral image classification. The rough set theory, particle swarm
optimization and K-means clustering algorithm are briefly described. Two multispectral
image classification algorithms based on the rough set theory and particle swarm
optimization are proposed: Algorithm 1 is a multispectral image classification approach
based on the rough set theory which uses upper and lower bounds for the class description,
and Algorithm 2 is a hybrid rough K-means algorithm for image classification. The rough
set theory is used to extract classification rules and establish the lower and upper bounds for
data clustering with the K-means algorithm. This algorithm is able to deal with vagueness in
image date, but since its ability to determine some key parameters is limited, partial swarm
optimization must subsequently be used to locate optimal values for those parameters.
Experimental results show that the proposed algorithms perform well and improve the
classification in the blurred and vague areas of the image. A comparison of Algorithm 1
with the parallelepiped classifier, where the former uses the concept of cuts and the later
uses the maximum and minimum values, is performed. Preliminary experimental results
show that the proposed classifiers are effective for multispectral image classification.

1. Introduction

In the real world, data representation is most often imperfect, in the sense that the data may
be either incomplete or redundant. Philosophers, logicians and mathematicians have dealt
with this problem for a long time. In recent years, propelled by the advent of the computer,
the problem of imperfect knowledge has been becoming an important topic for computer
scientists engaged in artificial intelligence research, especially those involved with
knowledge discovery from databases, expert systems, and pattern recognition.

Our research is focused on rough set as a tool for image processing, or more precisely, for
image segmentation. Many techniques for image segmentation have been developed over
time. There are clustering, edge detection, region growing and even more advanced
techniques that use neural networks. In general, image segmentation techniques can be

www.intechopen.com



570 Advances in Geoscience and Remote Sensing

categorized as supervised or unsupervised. Supervised techniques require previously
known truth data for training purposes, while unsupervised techniques have no such
requirement

In this chapter, the classical rough set theory is reviewed in section 2. Particle swarm
optimization is then introduced in section 3. The Davies-Bouldin measure for cluster
validity is also described in this section. The K-means algorithm is briefly sketched in
section 4. Multispectral image classification using rough set theory is discussed in section 5.
A hybrid algorithm which combines the K-means algorithm, rough set and particle swarm
optimization is given in section 6. Experimental results are shown in section 7. The
conclusion and future work then follow.

2. Rough Set Theory

Rough set theory [5] is a mathematical tool that deals with the uncertainty of the data. The
theory consists of finite sets, equivalence relations and cardinality concepts. As the theory
matures and more applications reap the benefits of the concept, an abundance of related
theorems and algorithms are being incorporated to extend rough sets theory.

It was introduced by Pawlak in the early 1980’s and has been argued to overlap with other
theories, such as statistics, evidence theory and fuzzy set. Furthermore, rough set is said to
complement fuzzy set, a theory introduced by Zadeh in the early period. Rough set and
fuzzy set were both introduced to deal with imprecise information however; fuzzy set deals
with vagueness, while rough set deals with coarseness. Rough set does not need as much
preliminary knowledge about the data where as fuzzy set requires knowledge of the
possible values in advance. Basically, when using rough set, the data itself is used to come
up with the approximation in order to deal with the imprecision within. It can therefore be
considered a self-sufficient discipline.

Rough set mainly deals with data analysis in table format. The approach is generally to pre-
process the data in the table and then to analyze them. Reducts are extracted with an
algorithm and finally rules are generated based on the reducts. Rough set does not support
analog values in the table attributes; therefore discretization must be performed in advance
in order to evaluate the table. The following subsections will use a simple example to
illustrate the concept of rough set theory.

2.1 Information Systems

In essence, an information system is a set of objects represented in a data table (attribute -
value system). Each row contains an object and each column represents a measurable
attribute for each object. Formally, an information system is a pair A = (U, A) where U is a
non- empty finite set of objects representing the universe and A is a non-empty finite set of
attributes such that a: U—»V, for every a € A. The set V.is the set of values for a.
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Object Index | Salary | Age
U1 80 30
Uz 30 23
us 80 40
Uq 50 45
us 80 55
Ue 50 45
uz 30 60
Us 100 35

Table 1. shows an information system which is a collection of salary and age attributes.

2.2 Decision Systems

If an information system has an additional attribute, namely a decision attribute, then it
becomes a decision system. The decision attribute is associated with the object classification
outcome, and it may depend on several other attributes. Formally, a decision system is a
piece of information whose form is A = (U, A U {d}), where d €A is the decision attribute. A
decision attribute called “Class” has been added as shown in Table 2, where M and E denote
Manager and Employee, respectively. The table was modified from the original [12].

Object Index Salary Age Class
us 80 30 M
uz 30 23 M
us 80 40 E
Uy 50 45 M
Us 80 55 E
Us 50 45 E
uz 30 60 M
Us 100 35 E

Table 2. A decision system where each row is classified into a class. Salary and Age are the
condition attributes, while class is the decision attribute.

2.3 Indiscernibility

Objects in information and decision systems may be indistinguishable from one another
based on a set of attributes B that belongs to A (B < A). A set of objects is indiscernible or
equivalent when their attributes are related by an equivalence relation. An equivalence
relation is a relation on a set B when it is:

1. Reflexive (if a R a, then R is reflexive).
2. Symmetric (if a R b then b R a, then R is symmetric).
3. Transitive (if a Rband b R ¢, then a R ¢, thus R is transitive).

For an information system A = (U, A), there is an equivalence relation for any of the sets B <
A. The equivalence relation can be formalized as

IND,(B) ={(x,x")eU* |VaeB, a(x)=a(x")}
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Referring to table 4, the IND relations for Salary can be written as shown.
]ND(Salarjy) = {{ul ,I/l3 aus aus}a{u2>u4au63u7 }}

It is impossible to write the IND relations for Salary until discretization is completed.

2.4 Discretization

Discretization is not directly related to rough set theory. It is simply a preprocessing
technique. Discretization is associated with information loss. In general, when it is too
coarse (i.e. longer interval), there is too much information loss or noise in the data.
However, it is better for the classification capability of unseen objects. When the
discretization is more fine (i.e. shorter interval), less noise exists in data, but classification
capability of unseen objects may be impaired.

In our decision system table, both Salary and Age need to be discretized. The set of
possible Salary and Age values, respectively referred to as s and a from here on, is given
by

Vs = [15, 120)

Va =18, 65)

The lower and upper bounds of the attribute’s interval are extended to cover possible
values. For example, the Age attribute is extended to include likely working ages from
age 18 through 65.

The set of values of s and 4 in U is

s(U) = {30,50,80,100}
a(U) = {23, 30, 35, 40, 45, 55, 60}

The intervals obtained for s are

[30, 50); [50, 80); [80, 100)

The intervals obtained for a are

[23, 30); [30, 35); [
5,5

[ 35, 40);
[40, 45); [45, 55); [55

, 60).

Boundary intervals such as [15, 30) and [100, 120) should not be used since one can not
discern anything for this data set.

The intervals introduce a set of cuts, which are defined as (s, c) where ¢ €V, and (a, c) where

¢ € V,. If the cut is taken based on the mid-point of each interval, the set of cuts P obtained
for s and a are respectively
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(s, 40); (s, 65); (s, 90);
(a, 26.5); (a, 32.5); (a, 37.5);
(a, 42.5); (a, 50); (a, 57.5)

The next step is to find the set of minimal cuts that can discern all of the objects that are
needed. It turns out that the problem of finding the irreducible set of cuts P in the decision

system is NP-complete while the effort to find the optimal set of cuts P in a decision system
is NP-hard [5].

However, there are heuristics that can be used to find the optimal set of cuts P in practical
time. One of them is the Maximal Discernability heuristic [1], [5], which is demonstrated
here. The algorithm to construct table A* from A is listed in the following steps:

1. Each column in table A*is a Boolean variable of the corresponding column in A. If each
pair of objects can be discerned by the Boolean variable, then assign value 1, else assign
0.

2. Choose a column from A* that has a maximal number of 1’s and delete all the rows
which contain a 1 in the selected column.

3. Repeat step 2 and continue until all columns and rows are consumed.

N a

AT p | ps | P | o
ul, u3
ul, ud
ul, ué
ul, u8
u2, u3
u2, ud
u2, ub
u2, u8
u3, u4
u3, u7
u4, ud
u4, ub
u4, u8
us, u7
uo, u7
u7, u8
new 0
Table 3. Decision System
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0
0
1
0
1
1
0
1
1
1
1
0
1
1
0
1
0
A¥*.

The following example clarifies the process of constructing table A* from A mentioned in
step 1 of the algorithm. Each cut previously obtained is assigned a Boolean variable, which
in turn is used as a condition attribute in table A*.
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For example, (s, 40) is assigned Boolean variable Pi . Each object pair in A% is derived from
table A by looking at the decision attribute. Objects that do not have the same decision
attribute should be paired up. For example, u; and us are paired up since they have different
decision values (i.e. M and E).

The resulting table A* created from A is shown in Table 3.

The optimal cut chosen is (s, 65), (a, 32.5) and (a, 50). These cuts are then used to discretize
the decision table 2. The rank can be assigned using the following rules:

1 If s <65, value 0 is assigned to s, else assign value of 1.

2 Ifa<325, value 0 is assigned to a.

3 If (32.5<a <50), value 1 is assigned to a.

4 Ifa>>50, value 2 is assigned to a.

A discretized table can be produced by applying the condition to each analog value in the
table.

Index Salary
U1
uz
us
Us
Us
Us
uz
Us
Table 4. Discretized Decision System.

Q
®
@
)
[7)]
(2]

_\M_\[\)_\_\oob
mmm|ImiZ(Z

2.5 Lower and Upper Approximations in Rough Set and Accuracy

Let U be the non-empty finite set and R be an equivalence relation. The pair A = (U, R) is an
approximation space. The equivalence relation R on U leads to a partition of the objects in
the universe U. The idea here is to partition the objects that have the same outcome, or in
other words, to partition objects that have the same decision attribute. However, this may
not always be as easy as stated. There will be objects with the same condition attributes (in
the same equivalence class), but different decision attributes. Therefore one can not define
every set precisely.

In cases where the set can not be defined precisely, it can be approximated. This is where
rough set emerges. Let us assume that there is an information system A= (U, A), a set of
attributes B < A, and a set of objects X < U. Using the set of attributes B, one can
approximate the objects X into:

1. Lower Approximation: the set of objects that can be classified as member X with
certainty. Formally stated as

B(X)=|J{E, e U":E c X} 21)
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2. Upper Approximation: the set of objects that can possibly be classified as a member X.
Formally stated as

BX)=|J{E e UPE.nX#{}) (2.2)

Between the lower and upper approximation, one can define the set of objects that cannot be
classified into X decisively. This set is also known as the B-boundary region of X.

There is a coefficient that reflects the accuracy of approximation,

BOX)

X ==
a,(X) ‘B(X)|

2.3)

where |X| denotes the cardinality of X # &. When % = 1, the X is crisp with respect to B,
otherwise, X is rough with respect to B.

For our example, the boundary region would be for object 14 and us since they can not be
discerned. The lower and upper approximations can be written as

B(M) = {u,,u,,u,,u,}
B(M) = {u|5u23u43u69u7}

BOD| 4
B(M)| S

In general, the value of « reflects the accuracy of decision rules obtained.

a,(M)= 0.8

2.6 Reducts

One way to increase computation efficiency is to reduce the size of data by reducing
attributes that need to be taken into account. Only attributes that do not contribute to the
classification result can be omitted such that the indiscernibility relation remains intact. The
set of remaining attributes is the minimal set and is called a reduct.

Although finding the equivalence class is a relatively straightforward computation process,
finding reducts with minimal attributes is known to be NP-hard. Fortunately, there are
heuristics that allow minimal reducts to be computed in reasonable time.

2.7 Discernibility Matrix
Computing the reducts of an information system A = (U, A) can be started by creating the

indiscernibility matrix. This matrix is a symmetric n x n matrix where each entry ¢, is
defined as

c; =taeAla(x)#a(x))} for i,j=1..,n (2.4)
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Each cell in the matrix holds the set of attributes where objects X; and X are discernable.

The cell would have empty set when:

1 X; =X Iz that is case for diagonal cells.

2 For decision systems, when the decision attribute of objects X; and X, are equal, or

formally, d(x,) =d(x,).

2.8 Discernibility Functions
Based on the discernibility matrix, a discernibility function can be immediately obtained. It
is constructed using Boolean expressions from the discernibility matrix, defined as

fia) sna,) = A {v c; [1<j<is<n, ¢; #{}} 25)

where q;,...,a, are related to attributes a,,...,a,, . The attributes may be transformed during

. . . * * . .
discretization process. ¢; ={a |a €c;} is the set of Boolean variables.

Once the discernibility function f, is formed, it can be further developed using Boolean
algebra simplification.

2.9 Decision Rules

When applying rough set for supervised learning, we need to construct a set of rules from
the training data, such that new or unseen objects can be separated into known classes.

A basic method for forming the decision rules is begun by finding the reducts of the

decision table. Then for each reducts R = {r,,....7,}, we generate the decision rule by taking

the conjunction (1, =7 (u)) A....A(r, =1,(4)) as the predecessor. Next we take the decision

attribute d with value d(#) as the successor and format the predecessor and successor
values as

(5 = @) A A (1, = 1) = d = (1) 26)

Rule induction is about deciding which attributes should be included in the predecessor of
the rule. Rules obtained can always be minimized, but it will introduce noise and may
poorly classify the unseen objects.

Once the rules are obtained, they can be used to classify the objects that were unseen before.
The basic steps involved can be outlined as follows [1].

1. Apply the existing rules to the new objects so that it can determine which rules
actually are a fit to the new objects.

2. If none of the rules are matched, then fallback a must be chosen, or the objects
would be classified as undefined.

3. If more than one rule is applicable, then a negotiation among the rules must be
performed to decide which one to be used.
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For the discernibility function extracted from the decision table 2, we obtain the following
sets of decision rules by:

1. If(a<325) thend =M

2. If(s>65)and (32.5<a<50), thend =E
3. If(s<65)and (32.5<a<50), thend =M
4. If (s>65)and (a=50), thend =E

5. If (s <65) and (32.5 <a<50), thend = E
6. If (s <65)and (a>50), thend =M

3. Particle Swarm Optimization

PSO was originally introduced by Kennedy and Eberhart [21]. The algorithm was inspired
by a sociological observation of a flock of birds behavior while searching for food. Each
member of the flock moves with a direction and speed influence by its own previous state
and that of the as a whole flock.

PSO consists of a swarm (collection) of particles searching through the solution space. Each
particle holds information that can potentially become the solution. Each particle has a
position and velocity that are mutually affecting those of other particles. Each particle will
adjust its parameter according to the swarm’s best outcome, while still considering its own
experience. Therefore, at any instance, the following information is maintained by each
particle.

e  x; the current position of the particle;

e  vj the current velocity of the particle; and

e y; the personal best position of the particle (pbest); the best position visited so far by the
particle.

e 1, the global best position of the swarm (gbest); the best position visited so far by the
entire swarm.

The search performed by the swarm is either to maximize or minimize the objective function

f(x). The personal best position (pbest) is obtained by evaluating the following.

(41 = {yf () S S0

X+ i f( D) < S, (0) &1
The global best position (gbest) is obtained by using
(&) ey, »,- =min{ /' (y,(?)), f (¥, (), .., f (¥, (1))} (3.2)
After each iteration, the current position (x;) and velocity (v;) are recalculated using
v, (1 +1) = v, (1) + e (D (3, (1) = x,) + ey () (P() — x, (1)) (33)
X, (0 +1) = x,(£) + v, (t + 1) (3.4)
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where o is the inertia weight which reflects the memory of previous velocities. yi(t) - x;
(cognitive component) represents the particle’s own experience as to where the best solution
is. §j(#)-xi (social component) represents the direction of the entire swarm towards the best
solution. The ¢; and ¢, are acceleration constants. r;(t) , r2(t) are in the distribution of U(0,1)
which will be a random number between 0 and 1.

In image classification, the PSO algorithm is used to optimize the objective functions that are
mainly to:

e  Minimize the distance between pixels and cluster means for each cluster.
e Maximize the distance between clusters.

In unsupervised training, there is no prior knowledge of the number of clusters. Therefore
the cluster validity is determined by the objective functions. In the algorithm, the Davies-
Bouldin index is used as the means to evaluate the result of each iteration.

3.1 Cluster Validity — Davies-Bouldin Index.

The accuracy or validity of the classification results need to be measured using certain
criteria. As a prerequisite, a set of objects needs to possess a natural group structure. In our
image classification algorithm outlined in section 5, the Davies-Bouldin (DB) index is used
as the aid in parameter tuning. Our objective function is to minimize the DB index, since a
smaller index value indicates compact and well-separated clusters. The similarity index
between two clusters Ciand Cjcan be expressed as [17]

s+, (3.5)

where s; and s; are a measure of distance within a cluster, and d;; is the distance between
cluster i and j. The s; is defined as [17]

S, :(—Z”X_mi

1
n,- xeC;

B (3.6)

where 1, is the number of pixels in the cluster C; .The distance between two clusters d; is
defined as [17]

i q
d, =) |m,—m,| )" (3.7)
k=1

where [ is the number of clusters and m represents the mean distance.
Let R;be defined as [17]

R = maxR,, i=1,.,m (3-8)

i =l m, i

Then the DB index is defined as [17]
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DB, =—>'R, (3.9)

4. The K-means algorithm for multispectral image classification

The K-means algorithm is one of the simplest and most efficient unsupervised learning
algorithms to solve clustering problems in image segmentation. In this algorithm, random
cluster means are assigned and repeatedly modified throughout the process in order to
minimize the squared error function. Suppose there are N pixels in an image to be

classified into m clusters. Each pixel v, , where 1<i<N , is assigned to one of the

clusters ¢ I where 1< j <m, based on squared Euclidean distance of each pixel to each

cluster mean.

m

dv,c)= Z (v, - c_/.)2 (3.10)

i=1 j=1

Upon the completion of the assignment, each new cluster mean is calculated using

S
i
__ vec

n

. (3.11)

where | <i < N, and 7 is the number of pixels in cluster ¢ ;- The process ends when ¢

stabilizes.

The weakness of K-means is that it is dependent on the initial selection of the cluster means
and it may be trapped into locally optimal results. However, running the algorithm
repeatedly and randomly selecting different sets of cluster means may offset the problem. In
a paper by Hung and Germany [19] it is shown that the local optimal results may also be
avoided by assigning the cluster means based on distribution of patterns in histogram of an
image.

5. Multispectral Image Classification using Rough Set Theory

Multi-spectral images can be analyzed using rough set theory. However, since all the
attribute values are analog, the discretization process is required. Multispectral images
contain multiple bands, for example the RGB color band.
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Object Index | R G B Class
Uy 149 | 148 | 143 1
Uy 154 | 155 | 150 1
Us 159 | 160 | 155 1
Uy 174 [ 171 | 164 2
Us 164 | 161 | 154 2
Us 179 | 183 | 186 3
Uy 159 | 165 | 163 3
Ug 178 | 184 | 182 3

Table 5. Decision System Table for multi-spectral image.

The values of the condition attributes are obtained from the image data shown in figure 1,
while the values of the decision attributes are obtained from 'ground truth' data..
Each object has three condition attributes, Red (R), Green (G) and Blue (B) which are
associated with a decision attribute. The decision attributes signify the following:

1 Class 1 represents land

2 Class 2 represents village

3 Class 3 represents water.

The value of each attribute ranges from 0 to 255, hence the training data from Table 5 can be
expressed as:

Vr={0, 149, 154, 159, 164, 174, 178, 179, 255}
Vc={0, 148, 155, 160, 161, 165, 171, 183, 184, 255}
Ve={0, 143, 150, 154, 155, 163, 164, 182, 186, 255}

Based on the above intervals, the following set of cuts are obtained.

For the R attribute:

(r, 151.5); (r, 156.5); (r, 161.5); (r, 169); (r,176); (r,178.5)

For the G attribute:

(g, 151.5); (g, 157.5); (g, 160.5); (g, 163); (g, 168); (g, 177); (g, 183.5)
For the B attribute:

(b, 146.5); (b, 152); (b, 154.4); (b, 159); (b,163.5); (b, 173); (b, 184)

The optimal set of cuts needs to be selected now. There are many ways to perform the
selection. For decision table A = (U, A U {d}), a local method can be used as [1]:

Input: The consistent decision table A.

Output: The semi-minimal set of cuts D consistent with A.

Method: Initialize the binary tree variable T with the empty tree. Label the root by the set of
all objects U and fix the status of the root to be unready.
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while there is a leaf marked by unready do
begin for any unready leave N of the tree T
begin
if objects labeling N have the same decision value then
begin
Replace the object set at N by its common decision
Change the status of N to ready.
end
else
begin
Compute the value WN (a,c) for all cuts from Ca and search for cut
(a* c*) maximizing the function WN(.) i.e.
(a*,c*)=arg Z?fl)x w"(a,c)

Replace the label of N by (a% c*) and mark it as ready;
Create two new nodes N1 and N2 with status unready as the left and right
subtrees of N, where:
N ={ueN:a*u)<c*} ond
N,={ueN:a*(u)zc*}
end
end
end
return T

By applying the algorithm above to the image data as shown in Table 6, the following
details are derived. For each cut of the R, G and B attributes, we find the cut that yields the
maximum number of pairs. The search gives us (g, 160.5) as the optimal solution which
yields 15 pairs.

The cut (g, 160.5) divides the set into two, X1 = {u1, uz, us} and Xz = {uy, us, us, uy, us}. Notice
that X; actually consists of objects of the same class, so the search ends. The search continues
for X». Three sets of cuts are found from the R, G and B attributes for X,. All of the cuts, (r,
176), (g, 177) and (b, 173) yield the same number of objects (4 pairs). We only need to select
one, and the one chosen is (r, 176). Again, this cut divides the set into two, Y1 = {u4, us, uz}
and Yz = {ue, us}. Y2 consists of objects of the same class, so the search ends. The search
continues for Yi. The cut that can discern the most from Y1 is (r, 161.5).

The cut (r, 161.5) divides Y; into two sets, Z1 = {us, us} and Z> = {uy}. The search ends since
both sets contain objects of the same class.

The set of cuts selected are:

(r, 161.5); (r, 176.0)
(g, 160.5)

It appears that our data set only requires two attributes to be fully discerned. Note that
different discretization methods will obtain different results. For example, if a naive
algorithm was used, the B attribute will be considered in generating the cuts.
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Using the cuts, a discretized table is subsequently generated. The asterisk in the B column
indicates that it is not needed to discern the classes. This, however, will not be the case when
the training set grows larger.

Object Index B Class
U1
Uz
us
Uy
Us
Us
Uz
Us
Table 6. Discretized Decision System Table for multispectral image.

M=V EYES =) =] [=1/"]
—‘—‘—*—-\—\OOOG)
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Based on Table 6, the following rules are generated:
1 If(g<160.5), thend =1.

2 If(161.5<r<176), thend = 2.

3 If(r=176), thend =3.

4 If (r <161.5) and (g = 160.5), then d = 3.

6. The Hybrid Rough K-means Algorithm and Particle Swarm Optimization for
Multispectral Image Classification

The K-means clustering method is categorized as a hard clustering method. Using K-means
to classify images that have obscured or blurred boundaries will not bring a satisfactory
result. There are many methods proposed to deal with this. The fuzzy C-means [22] and
genetic K-means [23] algorithms are two examples.

Rough K-means is a recently proposed method that deals with the coarseness of the
information. In gray image classification the challenge is on segmenting the blurred
boundaries between clusters. Using rough sets theory, an image can be represented as sets
of lower and upper approximation. The rough K-means model for our proposed image
segmentation algorithm is adapted from [20].

V. - V. —
wz|A—“|+wz—“—“” i A(x) - A(x) = @
o A() |4(0) - A(x) 61)

J
Zex

j )
* ,otherwise

w lower | A (x)|

Each image pixel can be classified into lower or upper approximations. Following basic
rough set properties:
e A pixel can be part of only one lower approximation
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e If a pixel is part of a lower approximation, then it is also part of the upper
approximation

e If a pixel does not belong to any lower approximation, then it belongs to two or more
upper approximations.

Applying rough set into K-means requires the formula to include lower and upper
approximations. The formula, as shown below, includes the weighing factor wiower and

Wupper - Let v be a pixel vector and d(v,c,) be the distance between the pixel and the mean of

cluster i. Let

d(v,c,)=min__ d(v,c)) 6.2)

1< <k
and
T={j:d(v,c;)-d(v,c,) < threshold andi= j} (6.3)

In order to correctly classify a pixel, the following classification criteria are used:

1. If T is not an empty set, then the pixel is classified as an upper approximation of both
clusters i and j.

2. If T is an empty set, the pixel is classified as a lower approximation for cluster i. It will
also be classified as an upper approximation for cluster i.

To summarize, the following are steps to perform the rough K-means algorithm [26]:

Initialize K clusters randomly.

Select wiower and a threshold value.

For each cluster, find d using Equation 6.2 and T using Equation 6.3.

Classify the pixel using the classification criteria.

Calculate the new cluster center (mean) using Equation 6.1.

If every cluster converges, then stop. Otherwise, repeat step 3.

BN

The parameters involved are wiower, Wupper and the threshold. The sum of wiower and wWuypper
will always be one. These parameters are set manually by trial and error. Since it is not
trivial to come up with good parameter values, this is the major disadvantage for this
method. In order to adjust these parameters automatically, this algorithm needs to be
improved using automatic tuning mechanism. The PSO algorithm alleviates the limitation
by automatically searching and modifying the parameters during the image segmentation
process.

The proposed algorithm that combines rough K-means and PSO algorithm is outlined as
follows [26]:

1. Initialize the mean of each cluster.
2. Initialize a number of particles where each of the particles is randomly assigned with
Wiower and the threshold.
3. Find the minimum pair of distance of x to all clusters, d(x-c;)). Then assign the pixel
according to the following criteria.
e If the difference of the distance d(x-c;) - d(x-cj) is less than the threshold, then
the pixel belongs to upper approximation of both clusters ¢; and c;.
e  Otherwise, the pixel x belongs to lower approximation of cluster c;.
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4. Calculate the DB index of each particle. Save the DB index of each particle and compare
them with those of other particles. Find the global best index and tune the lower
approximation and thresholds of each particle according to the following guidelines.

e If the personal best DB index equals the global best DB index, then lower the
threshold so that it includes only the pixels that are definitely in the lower
approximation.

e If the personal best DB index is greater than the global best DB index, then
adjust the wiower and the threshold toward the particle with the global best DB
index.

5. Calculate the new mean for each cluster.

6. Repeat steps 3, 4 and 5 until all particles converge.

7. Experimental Results

To test the effectiveness of the proposed algorithms, multispectral and artificial images were
used in our experiments. The original image is processed to obtain the multispectral
information. Then the Rough Set Exploration System (RSES) software was used to process
the image data [24]. A selected percentage of the image pixels were sampled for training
purpose. Finally MATLAB was used to make the results viewable as an image.
Experimental results are described in section 7.1. The experiment on the rough K-means
algorithm is intended to show the effect of parameter selection on the results of the
classification. Experimental results on the algorithm are shown in section 7.2.

7.1 Experimental Results on the Rough Set Theory

Due to the size of the table in our training sample (in the range of over 80,000 pixels), we
need to resort to the decomposition tree feature of the RSES. This feature allows us to break
the table into sections no larger than a predefined size. In this case, a size of 500 samples is
selected as the maximum size of each leaf in the decomposition tree. These methods are
further elaborated in [3] and [4]. During the decomposition process, the table is also
discretized. A local method like the one outlined in Section 2 is chosen as the method for
selecting the optimal cuts. Each leaf of the decomposition tree contains a set of rules that
was dynamically created. The rules are then used to classify the unseen objects. Using RSES,
there are two formats of output that the user can select: confusion matrix or classification
results in table format.

After applying the rules to the pixels and obtaining the classification result, the reverse
process is done using MATLAB to get the classified image. All pixels, including the
unclassified ones, are assigned a specific color for visualization. The original image as
shown in Figure 1(a) is a terrain image that has land, water and village. After the
classification using rough set theory, the classified result is obtained in Figure 1(b). The
confusion matrix with an average accuracy of 0.79 is shown in Table 7.
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(@) (b)
Fig. 1. (a) An original satellite image, and (b) the classified result using the rough set theory.
The color blue represent land, the red represents water and green represents village.
Undefined objects are left as black pixels.

Classified
Actual 1 2 3
1 181,838 | 2,264 | 1,052
2 960 1,631 | 90
3 2,083 124 67,381
True Pos Rates 0.98 0.41 0.98

Table 7. Rough set classification accuracy assessment.

With the parallelepiped classification algorithm [25], the ordering of the classes affects the
final result. The experimental results are shown in Figure 2. First we show the result of
classification, where the order of classes are 1, 2, and 3 (respectively land, village and water).
It is apparent that the RGB spectral signatures for village and water overlap. Since the order
of analysis begins with village (2), most pixels of water (3) were classified as village. The
confusion matrix for the results in Figure 2 is shown in Table 8 with an average accuracy of 0.6.

Fig. 2. A classification result of Figure 1(a) using the parallelepiped method.
Ordering of the classification for classes 1, 2, 3 (land, village and water)
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Classified
Actual 1 2 3
1 188,043 | 38 0
2 2,113 1,305 0
3 361 40,661 | 29,626
True Pos Rates 0.99 0.38 0.42

Table 8. Parallelepiped classification accuracy assessment.
The classification ordering is class 1, 2, and 3 (land, village, and water)

The experiment is repeated for the parallelepiped classifier. The ordering is now started
with classes 1, 3 and 2 (respectively land, water and village). Contrary to the result in Figure
2, now most pixels of the village area are classified as water. The confusion matrix for the
result in Figure 3 is shown in Table 9 with an average accuracy of 0.72. The increase in the
average accuracy, because of the misclassification of village, is mitigated by the number of
its pixels overall.

Fig. 3. A classification result of Figure 1(a) using the parallelepiped method. ordering 1,3 ,2

Classified
Actual 1 3 2
1 188,043 | 38 0
3 361 70,237 | O
2 2,113 689 616
True Pos Rates 0.99 0.99 0.18

Table 9. Parallelepiped classification accuracy assessment.
The classification ordering is class 1, 3, and 2 (land, water, and village)

The following experiment requires ground truth data for accuracy assessment. The remote
image sensing truth data was obtained from Dr. Su in the National Central University in
Taiwan, while the ground truth data for the artificial images were created using custom
software written in Java. The decision rules, which are required for classification of the
image, are facilitated by RSES [24]. The process for remotely sensed images begins by
sampling 30% of the image pixels as training data to create decision rules. The process to
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create decision rules follows the outline in Section 2. After obtaining the rules with RSES,
they are used to classify the image. The image consists of approximately 262,000 pixels.
Referring to Figure 4(a), class 1 is land, class 2 village and class 3 water. The average
accuracy for the classification is 79%. The confusion matrix is shown in Table 10. The most
difficult pixels to classify are the village pixels, as indicated by the small value of its true
positive rate. The ground truth data and classified result are shown in Figure (b) and (c).

(@) (b) (©)

Fig. 4. (a) An original remote sensing image, (b) Ground Truth Data, and (c) Classification

result.

Classified
Actual 1 2 3
1 181,838 2,264 1,052
2 960 1,631 90
3 2,083 124 | 67,381
True Positive Rates 0.98 0.41 0.98

Table 10. Rough set classification accuracy assessment for remote sensing image.

The other experiment is performed on the artificial image that consists of several shapes,
namely, a cube, a serpentine, two airbrush shapes and a round shape (Figure 5). Similarly,
30 % of the pixels in the image are used for training. After obtaining the decision rules, the
image is classified. The artificial image has a total of 10000 pixels. Referring to Table 11, class
1 is the cube, class 2 is the connector of the airbrush images, class 3 is the airbrush images,
class 4 is the round shape and class 5 is the background. Some difficulties occur while trying
to obtain the ground truth, due to the inherent limitations of the image processing software.
The results however, indicate that class 3, the airbrush shapes, has the most incorrectly
identified pixels. The total accuracy is still about 99% as shown in Table 11.

www.intechopen.com



588 Advances in Geoscience and Remote Sensing

(@) (b)

Fig. 5. (a) Original artificial shapes (b) Image truth (c) Classification result

Classified

Actual 1 2 3 4 5
1 833 0 0 0 1
2 5 884 3 7 3
3 0 13 907 3 2
4 0 3 0 1,434 8
5 0 0 2 3 5,878

True Positive Rate 0.99 0.98 0.99 0.99 1

Table 11. Rough set classification accuracy assessment for artificial shapes.

7.2 Experimental Results of the Hybrid Rough K-Means and PSO

In the experiment shown in Figure 6.1 (b), the parameter wjwer is set to 0.55 and the
threshold 0.45. The first parameter weights how much the previous calculated mean will
affect the new mean and the second parameter adjusts the boundary region. In other words,
the second parameter is the criteria limiting whether a pixel should be included in the upper
approximation of a class. The higher the value of the threshold, the more less the criteria is
constrained.

The experiment was done for several different combinations of wiwwer and the threshold
value. After careful inspection on the results shown in Figure 6(b) through Figure 6(f), it
turns out that a monotonic increase or decrease of wiower and the threshold does not
guarantee improvement in the classification results. From Figure 6(b) to (c), the accuracy
decreased. Although the threshold was reduced, the boundary area between land, village
and river actually turns blurred. In the result of Figure 6(d) the accuracy improves. Also,
from Figure 6(d) to (e) the accuracy decreases again, although not as badly as between
Figure 6(b) to (c). The accuracy improves again in the results of Figure 6(f). These are strong
indications that varying the parameters (wiower and the threshold) do not guarantee that the
best results can be predicted easily. As a matter of fact, the most optimal parameters can
only be found empirically. This is exactly the shortcoming of the rough K-means algorithm
and the problem is addressed using PSO to tune the parameters.
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Fig. 6. Rough K-Means for remote sensing image. (a) Ground Truth, (b) wiowe= 0.55 and
Threshold = 0.45 Accuracy = 44.95 %, (c) Wiower = 0.65 and Threshold = 0.35 Accuracy =
38.54 %, (d) wiower = 0.75 and Threshold = 0.25 Accuracy = 49.18 %, (€) Wiower = 0.85 and
Threshold = 0.15 Accuracy = 46.62 %, and (f) wiower = 0.95 and Threshold = 0.05 Accuracy =
51.42 %

Results with similar consistency are obtained for the image in Figure 7. From Figure 7(b) to
7(c), we can see improvement visually. As the parameters change in one direction, the
accuracy drops as shown in Figure 7(d). Finally the best value for the experiment is shown
in figure 7(f). Looking at those classified results, it may lead us into thinking that increasing
the wiower and decreasing the threshold gives a better result. That is not necessarily the case,
since doing so means that we are counting on the lower bound more and reducing the
threshold value, while at the same time discounting the upper bound. At the extreme, where
Wiower is almost 1 and threshold is almost zero, roughness is actually removed, and the set
becomes crisp. This is also formulated in Equations 6.1, 6.2 and 6.3 earlier.

www.intechopen.com



590 Advances in Geoscience and Remote Sensing

Fig. 7. Rough K-Means for artificial image. (a) Ground Truth, (b) wiower = 0.55 and Threshold
= 0.45 Accuracy = 68.17 % (c) wiower = 0.65 and Threshold = 0.35 Accuracy = 82.83 %, (d)
Wiower = 0.75 and Threshold = 0.25 Accuracy = 78.92 % (e) wiower = 0.85 and Threshold = 0.15,
Accuracy = 85.11 %, and (f) wiower = 0.95 and Threshold = 0.05, Accuracy = 89.54 %.

Experiments using the K-means and rough K-means PSO algorithms are performed. For the
comparison, the number of iteration is limited to 50 and the tolerance is set to 0.001. The
result shown in Figure 8 is selected from the best outcome of 20 runs of the K-means and
rough K-means algorithms. For the rough K-means PSO, 10 particles are used to explore the
search space. Comparing the results of the K-means, rough K-means and rough K-means
PSO algorithms, it reveals that although the improvement can be made, it is in the order of
more or less 5 %. It is not very significant, but we should note that the rough K-means PSO
achieve the optimal results independent of initial mean selections.
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@ 0 ©
Fig. 8. Comparison of the results. (a) K-Means Accuracy = 56.26 %, (b) Rough K-Means wiower
= 0.95 and Threshold = 0.05, Accuracy = 51.42 %, and (c) Rough K-Means PSO, Accuracy =

59.96 %.

While running, the algorithm is tuned by keeping track of the DB index and adjusting the
PSO particle accordingly to calculate the new mean. Figure 9 shows the DB index tracking
for Figure 8(a) and 8(c).

Remote Sensing Image

0.5
04 /\'k

0:3 N~ \AS ——RKMPSO
0.2 ,I K-Means
0.1
0 T e e T e T

- O IO N O O ™M O
- N N O < W

DB Index

Iterations

Fig. 9. K-means and rough K-means PSO DB index tracking for Figure 8(a) and 8(c).

Referring to Figure 9, it is apparent that the K-means algorithm eventually converges and
locks into a certain mean value. The rough K-means PSO shows a better capability to search
for solutions, because there are about 10 particles to keep track of global best and adjust the
velocity towards the best solution in every iteration. Similar results are obtained from the
remaining tests performed. The resulting improvement, however, is not as obvious as those
shown in the artificial image (Figure 10). Part of the reason is because the artificial image
does not have enough roughness. Hence, it is not difficult for K-means to perform well in
this case. Figure 11 shows the tracking of the DB index.
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(b)
Fig. 10. Comparison of the results. (a) K-means Accuracy 90.12 %, (b) Rough K-means wiower
= 0.95 and Threshold = 0.05, Accuracy = 89.55 %, and (c) Rough K-means PSO, Accuracy =

90.65 %
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Fig. 11. The K-means and rough K-means PSO DB index tracking for the artificial image
shown in Figure 10.

For the planet image, there is no ground truth data available. However, the visual inspection
reveals improvement. Based on the results shown in Figure 12, we can see that the K-means
algorithm actually has some difficulty in the segmentation of the blurred or rough
boundaries. The rough K-means PSO however, appears to be able to discern the rough
boundaries, and therefore comes up with a much more rounded shape for the planet. The
outer shape of the planet appears sharper, more rounded and less distorted. Figure 13
shows the DB index tracking of the planet image.
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(@) ©)

Fig. 12. Experimental results for planet image, (a) K-means, (b) rough K-means wjswer = 0.95
Threshold = 0.05, and (c) rough K-means PSO.
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Fig. 13. The K-means and rough K-means PSO DB index tracking for the planet image
shown in Figure 12.

8. Conclusions and Future Work

Image classification and segmentation by applying rough set theory may be approached
from two different perspectives: unsupervised or supervised methods. From the
experiment, it is generally shown that a supervised classification achieves better results as
compared with the unsupervised methods. However, it should be noted that unsupervised
classification may be preferred because it requires less prior knowledge. The K-means
algorithm can be enhanced by using the rough set theory for image classification, however it
has a practical limitation by itself, since the parameters (Wiower and the threshold value) are
difficult to tune manually. To solve this problem, the PSO is used for tuning these
parameters. The algorithm is tested on several and in general its improved noise immunity
can be seen in the results especially when the images have rough boundaries or noisy
details. For future work, the ant colony optimization and differential evolution algorithms
will be explored for tuning the parameters in the rough K-Means algorithm.
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