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1. Introduction

Conventional water quality monitoring is expensive and time consuming. This is
particularly problematic if the water bodies to be examined are large. Conventional
techniques also bring about a high probability of undersampling (Hadjimitsis et al. 2006).
Conversely, remote sensing is a powerful tool to assess aquatic systems and is particularly
useful in remote areas such as the Amazon lakes (Alcantara et al., 2008).

Data collected using this technique can provide a synoptic overview of such large aquatic
environments, which could otherwise not be observed at a glance (Dekker et al. 1995).
However, remote sensing is not easily applied to aquatic environment monitoring mainly
because the mixture of the optically active substances (OAS) in the water. Several
approaches have been proposed to cope with this issue such as derivative analysis (Goodin
et al. 1993), the continuum removal (Kruse et al. 1993), and spectral mixture analysis (Novo
and Shimabukuro, 1994; Oyama et al. 2009).

The two first approaches are more suitable for hyperspectral images, whereas the spectral
mixture analysis can be used for both hyperspectral and multispectral images. The Spectral
Mixture Model (SMM) has largely been used for spectral mixture analysis, uncoupling the
reflectance of each image pixel (Tyler et al. 2006) into the proportion of each water
component contributing to the signal. The result of a spectral mixture analysis is a set of
fraction images representing the proportion of each water component per image pixel. This
technique has been applied to TM/Landsat images to determine the concentration of
suspended particles (Mertes et al. 1993), chlorophyll-a concentration (Novo and
Shimabukuro, 1994); as well as to MODIS images, to determine the chlorophyll-a
concentration in the Amazon floodplain (Novo et al. 2006), to characterize the composition
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of optically complex waters in the Amazon (Rudorff et al. 2007), and to study turbidity
distribution in the Amazon floodplain (Alcantara et al. 2008, 2009a).

Remote sensing data have been extensively used to detect and to quantify water quality
variables in lakes and reservoirs (Kloiber et al. 2002). One of the most important variables to
monitor water quality is turbidity, because it gives information on underwater light
availability (Alcantara et al. 2009b). Although turbidity is caused by organic and inorganic
particles, one unresolved issue is to distinguish between them using remote sensing (Wetzel,
2001). The Spectral Unmixing Model (SMM) can, however, be useful to analyze the turbidity
caused by inorganic particles and by phytoplankton cell scattering.

This chapter book shows how to improve the well know unmixing algorithm using the
spatial data modelling concept and also their applicability in limnological studies.

2. Study Area

The Amazon River basin drains an area of approximately 6x10° km?2, which represents 5% of
the Earth surface. The Central Amazon has large floodplains covering around 300,900 km?
(Hess et al. 2003), including 110,000 km?2 of the main stem ‘Varzeas’ (white water river
floodplains; Junk, 1997). At high water, the Amazon River flows into the floodplains, and
fills both temporary and permanent lakes which might merge to each other. The ‘Lago
Curuai’ floodplain (Figure 1) covers an area varying from 1340 to 2000 km?2 from low to the
high water. This floodplain is located 850 km from the Atlantic Ocean, near Obidos (Par4,
Brazilian Amazon). Formed by ‘white” water lakes (characterized by high concentration of
suspended sediments), and ‘black” water lakes (with a high concentration of dissolved
organic matter, and a low concentration of sediments; Moreira-Turcq et al. 2004). These
lakes are connected to each other and to the Amazon River. The floodplain also has ‘clear’
water lakes filled by both rainwater and by river- water drained from ‘Terra Firme’
(Barbosa, 2005).

The lakes are connected to each other and to the Amazon River. The Curuai floodplain is
controlled by the Amazon River flood pulse (Moreira-Turcq et al. 2004) which creates four
states (Barbosa, 2005) in the floodplain-river system (Figure 2): (1) rising water level
(January - February), (2) high water level (April - June), (3) receding water level (August -
October), and (4) low water level (November - December).

The exchange of water between the floodplain and the Amazon River is shown in Figure 2.
When the water level is high, there is very little flow, and the surface water circulation is
caused predominantly by wind. In the receding state, the exchange of water between the
river and the floodplain is inverted, i.e., the water flows from the floodplain to the river. The
water level then drops to the low water state, when the exchange of water between the river
and the floodplain is at a minimum. According to Barbosa (2005), during the rising water
state, the flow from the river to the floodplain starts at a channel located on its Eastern
border, and then migrates to small channels located on its Northwestern side.

The rate of inundation is influenced by the floodplain geomorphology, by the density of
floodplain channels, and by the ratio of local drainage basin area to lake area. A majority of
93% of the flooded area in the floodplain is between 2-6 m in depth (using a water level
reference of 936 cm). The deepest lake is the ‘Lago Grande’, and the shallowest are the “Agai’
and Santa Ninha Lakes (Figure 1-c). An area of about 0.04% of the floodplain is below sea
level (with the mean altitude of the floodplain at 9 m above sea level (Barbosa, 2005).
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Fig. 1. Legal Amazon location into Brazil (a); (b) Location of Curuai floodplain into Amazon
Legal; (c) Landsat-5 Thematic Mapper (normal composition) imagery showing the Curuai
Floodplain and their bathymetry. The arrows indicate the main channels of connection
Amazon River-floodplain.
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Fig. 2. Theoretical water level dynamic at the Curuai Floodplain (Source: Barbosa, 2005).

3. In-situ Measurements and Remote Sensing Data

The turbidity ground data acquisition was carried out from February 1st to February 14th
2004, during the rising water period. Turbidity measurements were taken at 215 sampling
stations using the HORIBA U-10 multi-sensor. This equipment provides turbidity
measurements in NTU (Nephelometric Turbidity Unit) with a resolution of 1 NTU. The
locations of the sampling stations were determined with the aid of spectral analyses of
Landsat/TM images taken at similar water level (Barbosa, 2005). These samples had
maximum, minimum and mean values of 569, 101 and 232.29 NTU, respectively.

A Terra/MODIS image, acquired as MOD09 product on February 27th 2004 was used in this
study. The spectral bands used in the analyses were band 1 (620-670 nm) and 2 (841-876)
with a spatial resolution of 250 m, and bands 3 (459-479 nm) and 4 (545-565 nm) with a
spatial resolution of 500 m. The two latter bands were re-sampled to 250 m using MODIS
Reprojection Tool software (MRT, 2002).

4. Methodological Approach

The turbidity distribution was assessed using fraction images derived from the Linear
Spectral Mixing Model, using four MODIS spectral bands (3 - blue, 4 - green, 1 - red and 2 -
near infrared) with a spatial resolution of 250 m. In order to evaluate the turbidity
distribution observed in the MODIS fraction images, in-situ measurements acquired during
in February 2004 (a few days apart of the MODIS acquisition) were used to apply the
Ordinary Least Square (OLS), spatial lag, and spatial error regression models. The kernel
estimation algorithm was used to verify the spatial correlation of the in-situ data before
performing the regression analyses. A summary of our methodological approach is
presented in Figure 3:
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Fig. 3. Flow chart of the methodological approach.

4.1 The SMM

The SMM estimates the proportion of the various surface components present in each image
pixel based on their spectral characteristics (Novo and Shimabukuro, 1994). The number of
spectral endmembers used in the SMM algorithm must be less than or equal to the number
of spectral bands (Tyler et al. 2006). Given these conditions, it is possible to determine the
proportion of each component by knowing the spectral responses of pixel components
according to equation 1:

n
R, = ijrij +é&; 1)
j=1
Where: R, is the reflectance at each spectral bandi of a pixel with one or more

components, ;; is the spectral reflectance of each component J in the spectral band i; fj is

the fraction of the component within the pixel; &; is an error term for each spectral band .
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Also, ] =1,2, .., n(n =number of components), and 1 =1,2,.., m(m =number of
spectral bands), with the following constraints: Z f ;= 1, and f j >0 for all

components.

4.1.1 Endmember selection

As pointed out in (Rudorff et al. 2006), mixtures of dissolved or suspended materials will
always occur in natural water bodies. The desired conceptual “‘pure’ endmembers are hence
not accessible for the OAS. Thus, the SMM results will not lead to a complete separation of
the fractions. They will rather indicate a relative proportion of each endmember in which
the relationship with the actual concentration of a certain OAS will be stronger according to
its reflectance spectral dominance.

Some authors have selected the endmembers in a spectral library or laboratory
measurements and applied them in the satellite images (Mertes et al. 1993). This approach
for selecting the most “pure pixel” for each component in the water sometimes does not
consider the actual characteristics of endmembers found in the local area (Theseira et al.
2003). Thus, some authors collect the endmembers directly in the image, the so called image
endmember (Novo and Shimabukuro, 1994).

The endemembers that will be selected in this work are the phytoplankton, inorganic
suspended particle and dissolved organic matter laden water. The phytoplankton and the
inorganic particle can cause the turbidity in the water and the dissolved organic matter, on
the other hand, is a representative manner of non-turbid water. The method of Alcantara et
al. (2008) was used to select the endmembers.
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Fig. 4. Image endmembers used as input to run the Linear Spectral Mixing Model on the
Terra/MODIS image acquired on 27th February 2004. Chl is the phytoplankton laden water,
Dom is the dissolved organic matter laden water, and Iss is the inorganic particle laden
water.
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Figure 4 shows that the spectral responses of the selected endmembers were quite different.
Chl-laden water endmember is characterized by high reflectance in the green band, typical
of phytoplankton-laden waters. Dom-laden water endmember presents low reflectance at all
wavelengths and the Iss-laden water endmember is characterized by an increasing
reflectance towards to visible wavelength, and decreasing slightly at the near infrared.

This model was used to estimate the proportion of each component in the water using the
following components: phytoplankton (Chl) laden water, dissolved organic matter (Dom)
laden water, and inorganic particle (Iss) laden water. These components (endmembers) were
selected based on the dominance of them in the surface water. Then, to estimate the
proportion of components into the water we used the following equation:

Ris = fChl rChl + fDom rDom + f]ss r[ss + gi (2)

Where, RI.S is the reflectance at the ith band at sampling station S ; f Chi v f Dom and f]ss
are the fractions phytoplankton laden water, dissolved organic matter-laden water and
inorganic matter-laden water, respectively; 7, ¥p,, and r,  are the reflectance of
phytoplankton laden water, dissolved organic matter-laden water and inorganic matter-
laden water, respectively and &, is the error at the ith spectral bands.

The main idea of this study was to estimate the proportion of each of the three components
in the surface water. Ground data of Chl, Dom, and Iss concentration in water was then
used to understand the distribution of turbidity in the Curuai floodplain lake. The results
obtained with the SMM were compared with in-situ turbidity measurements through the
interpolation, using a geostatistical method, called Ordinary Kriging.

4.2 Ordinary Kriging

A turbidity map was generated with the in-situ data, for subsequent comparison with the
fraction images generated using the SMM. Thereby, it could be verified to which extent the
two data sets matched. To produce such a reference map, Ordinary Kriging was used,
interpolating in-situ turbidity measurements, as described in (Isaaks and Srivastava, 1989).
Ordinary Kriging is a technique of making optimal, unbiased of regionalized variables at
unsampled locations using the structural properties of the semivariogram and the initial set
of data values. The calculation of the Kriging weights is based upon the estimation of a
semivariogram model, as described by equation 3:

y(h) = %Var[z(s +h)—z(s)] 3)

Where: ¥(/)is an estimated value of the semivariance for the lag h. The estimation of a

semivariogram model relies on two important assumptions: (1) the parameter ¥ (/) exists

and is finite for all choices of h and s, and that it do not depend on s. The Ordinary Kriging
estimator is presented in:
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Z(x,y) :ZWiZi (4)
i=1

Where n is the number of considered measures, zi are the corresponding attribute values,
and wi are the weights.

The experimental semivariogram was fitted with various theoretical models (spherical,
exponential, Gaussian, linear and power) using the weighted least square method. The
theoretical model that gives minimum RMSE is chosen for further analysis. In this case, the
fitted model was based on Gaussian model (Table 1).

Water  Anisotropy  Structure  Nugget Sill >range  <range  Model

level direction
1° 114 16436 &
Rising 94° 70 619 7770 17924 16436 Gaussian
3° 1480 o0 17924

Table 1. The semivariogram parameters used to interpolate the in-situ turbidity.

The adjustment on Gaussian model suggests the existence of smooth spatial variance pattern
in the of study site (Burrough and Mcdonnell, 1998). The reference map was then used to
evaluate the result obtained with the SMM. The equation 5 presents the fitted model used to
interpolate the turbidity distribution during the rising water phase.

e (h. Y he Y (b Y
h) =619 +114[G o | | e +7770[G o | 4| Lae +
7 [ a”(\/( € j (16436j )] [ a”(\/(17924j [16436} )

1480[Gau(\/(%j +(hﬂj )]

Where () is the semivariance at the lag /1, hno is the semivariance due to angles of

®)

anisotropy, & is the range of the lower anisotropy angle, and ‘Gau’ is the fitted Gaussian
fitted model.

4.3 Spatial regression between the SMM and in situ turbidity

In general, OLS models have been used in research (Tyler et al. 2006). This approach,
however, does not consider the spatial autocorrelation of samples within an aquatic system.
When spatial autocorrelation is not considered in regression analysis, the significance of
parameters can be overestimated, and the existence of large-scale variations might lead to
spurious associations (Anselin, 1988). In our study, a method called Kernel Estimation (KE)
was applied to in-situ turbidity, thereby testing for the existence of spatial autocorrelation
(which is indicative of different spatial regimes).
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The KE is a common analysis tool to determine the local density of point events and create a

field representation. The Kernel is computed, using a Gaussian function, kK, which
considers M1 events (i.e. turbidity samples) {u iaeeld; M — 1} contained in a bandwidth t

around # and the distance d between the position and the ith sampling (Figure 5), through
the functions represented by equation 6:

Auy=—3 k[M}dwi,u) <r ©
T

Fig. 5. Kernel estimation of the spatial turbidity pattern.

To improve the kernel estimation we used an adaptive bandwidth version which locally
adjusted bandwidth values at different points within the floodplain. Thereby, it ensured that
the bandwidth always contained a minimum number of samples, improving estimate
precision (Bailey and Gatrell, 1995).

The technique was also applied to the OLS, a model compiled using global in-situ turbidity
data to evaluate the spatial regression models. The OLS does not take into account spatial
dependence among samples and consequently, different spatial regimes. However, spatial
error and lag models were developed for each identified spatial regime, using the KE
algorithm, thus including spatial dependence which tends to inflate the variance of OLS
regression (Bailey and Gatrell, 1995).

To assess the relationship between the fraction images and in-situ turbidity two approaches
were adopted The first, assumes that the variance of the disturbance term is constant; we
start with the OLS model:

y=XB+e¢, with € ~ N(0,5°) 7)

Where y is an (Nx1) vector of observations on a dependent variable taken at each of N
locations, X is an (NxK) matrix of exogenous variables, [ is an (Kx1) vector of parameters,

and & is an (Nx1) vector of disturbances.
The second uses two alternative forms of spatial dependence models (Bivand, 1998), the
spatial lag model (presented in equation 8) and the spatial error (presented in equation 9).

yv=pWy+Xf+¢ (8)
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y=XP+u, withu=AWu+¢ ©)

Where A is a scalar spatial error parameter, and u is a spatially autocorrelated disturbance
vector. These two models can also be related to each other in the Common Factor model.

According to (Bivand, 1998), however the spatial lag and spatial error models can only be
combined for estimation if the neighborhood specifications (here: the W matrices of the lag
and error components) differ. The spatial lag model is clearly related to a distributed lag
interpretation, in that the lagged dependent varible, Wy, can be seen as equivalent to the
sum of a power series of lagged independent variables stepping out across the map, with
the impact of spillovers declining with successively higher powers of © (Bivand, 1998).

Conversely, the spatial error model is a special case of a regression with a non-spherical
error term, in which the off-diagonal elements of the covariance matrix express the structure
of spatial dependence (Baltaqi, 2003).

Spatial lag and spatial error dependence tests allowed determining which of the two models
was more suitable to the data. Subsequently, spatial regression models were created for each
spatial regime. Measurements of Log likelihood fit, Akaike information criteria (AIC) and
Schwarz criteria (SC) for both models (OLS and spatial models) to verify if the inclusion of
spatial parameters improve the regression model.

The Schwarz criterion addresses the problem of selecting one of a number of models of
different dimensions (Bailey and Gatrell, 1995). However, some authors (Burrough and
Mcdonnell, 1998; Bailey and Gatrell, 1995) suggest the use of AIC to evaluate the best fit. The
Akaike information criterion is expressed in equation 10 (Pan, 2001).

AIC = -2* LIK + 2k (10)

Where, LIK is the log of the maximized likelihood and k is the number of regression
coefficients. A small AIC value suggests a high suitability of the tested model.

4.4 Evaluation of turbidity estimations

Having selected the best model, the next step was to apply it to the Terra/MODIS image to
estimate the turbidity distribution. The resulting map was then used as a reference to
evaluate the model. Random positions were selected on the image to run correlation
analyses so as to assess the potential spatial model and the RSME. At each random

geographical position, a 3x3 pixel window was averaged, obtaining both the measured
and modeled value and computing the correlation.

5. Results and Discussion

Figure 6-a shows that the water, of the entire Curuai floodplain lake was rich in inorganic
matter (Iss), with a particularly high proportion in the Pocao lake (Figure 6-b). The images
illustrating the distribution of dissolved organic matter (Dom) revealed that this was
particularly apparent in the Salé lake, and in the littoral region (i.e. the region between water
and forest). This is mainly due to the fact that some organic matter in decomposition is
transported into the floodplain by the water during the rising , phase (Figure 6-c). The
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phytoplankton (Chl) fraction represented a high proportion of the ‘Grande de Curuai” and
‘Grande do Pocao’ lakes (Figure 6-d). As described in (Barbosa, 2005), the water coming
from the Amazon River was more enriched with phytoplankton than that in the Curuai
floodplain; the proportion of the water rich in Chl was found to increase from the East to the
West.

0 0.5 1
Fig. 6. Terra/MODIS imagery of the Curuai floodplain (a), and proportion images for the
tested endmembers: Iss (b), Dom (c) and Chl (d) compiled with the SMM algorithm.

The fraction images (Iss in the red channel, Dom in the blue channel, and Chl in the green
channel) unfolded a qualitative picture of the turbidity distribution within the Curuai
floodplain lake (Figure 7-a). Figure 7-b shows the SMM error image of the Region 1 (Figure
7-a) which represents the most turbid water within the floodplain. This regions has an area
of extremely high turbidity (see the circle in Figure 7-b) which actually is due to cloud cover.
Region 2 (Figure 7-a) evidence of the mixture of water masses with dominant proportions of
Chl and Iss, and low turbidity (Figure 7-b). Region 3 (Figure 7-a), finally, was dominated by
water with a high proportion of Chl, and moderate turbidity. A mixture of water masses
containing high concentrations of Chl and Iss lead to a low error of the SMM. Conversely, a
high amount of Chl entering the floodplain through the main channel from the Amazon
River leads to a moderate error in the unmixing model. Due to the occurrence of a transition
zone between the aquatic and the terrestrial environments, higher errors occurred at the
edges.

However, these results are qualitative. To obtain suitable quantitative results, an OLS
regression model was applied to the SMM results and the in situ turbidity data.
Subsequently, we checked for any signs of spatial autocorrelation between samples to
prevent the problem of spurious associations, using the result obtained by the kernel
estimator algorithm.

The results of the OLS regression model, using all 215 turbidity samples collected, and the
fractional abundance of the OAS are poorly correlated (R?>= 0.10, p <0.05). This is
presumable due to the fact that the floodplain received water from different sources (rain,
black water and white water) when the water level rose. The mixture of water masses
caused a high heterogeneity in the spectral response of the surface water, causing high
standard deviation in turbidity measurements, what highlights the importance of including
the autocorrelation factor in the regression analysis.
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Low Turbidity 7 High Turbldity
RMS=0 RMS=1.5

Fig. 7. (a) The composition of the image fractions derived from the SMM (Iss in red channel,
Chl in green and Dom in blue), in comparision with the the RMS image (b).

If spatial dependence was verified the OLS method would lose validity (Anselin, 1988). In
accordance with Bailey and Gatrell (1995) the use of the non-spatial regression models
(OLS), may or may not be suitable because it assumes a stationary water conditions in the
period of ground sampling. Also, the OLS model does not consider the presence of spatial
autocorrelation among samples distributed within the floodplain. Hence, in order not to
overestimate the significance of parameters, autocorrelation must be considered. Likewise,
large-scale variations may induce spurious associations.

To check the spatial autocorrelation between turbidity samples, we applied the Kernel
estimator, and then separated the samples of fractional abundance of the OAS and in-situ
turbidity data in spatial regimes. These cluster the turbidity data from the whole floodplain
by their spatial dependence (Bailey and Gatrell, 1995).

The KE revealed that there were four spatial regimes of the Curuai floodplain lake turbidity
at the rising water level (Figure 8-a). The kernel also shows four regions of density from
high (region 1) to low density (region 4). The region 1 was characterized by the highest
spatial dependence in the study area. In this area, the spatial regime is particularly abundant
1(Figure 8-b) and includes the largest number of samples.

Region 2 included a mixture of spatial regimes 1 and 2, and represented the second largest
spatial dependence. Region 3 was characterized by regimes 3 and 4, and region 4 included a
mixture of all regimes (Figure 8-b). The number of samples grouped in each spatial regime
was 64, 54, 51 and 45 for regimes 1, 2, 3, and 4 respectively.
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Fig. 8. (a) Spatial dependence of in-situ turbidity samples, as defined by Kernel algorithm,
(b) spatial regimes occurring within the Curuai floodplain lakes with corresponding
turbidity intervals values (NTU).

The different regimes are brought about by different types of water input when the Amazon
River enters into the floodplain. The water arrives in different ways, and at different times.
As a result, the water entering the different sections of the floodplain has variable physical
and chemical properties.

Table 2 indicates that the application of the spatial regression model increased the R? in
relation to the OLS model. This is presumably due to the turbidity data being characterized
by spatial auto-correlation, as observed in figure 8-a. The OLS model did not take into
account the spatial dependence among samples, thereby causing an overestimated
significance of the parameters.

OLS Spatial regression
Spatial Lag Model Spatial Error Model
Global Rel Re2 Re3 Re4 Rel Re2 Re3 Re4

R2 0.10 0.31 0.27 0.61 0.71 0.32 0.30 0.95 0.79

LIK -29579 -95.07 -101.88 -3597 -22.78 -9493 -101.69 -3550 -20.70

AIC 59958 20015 213.76 8194 5557 19786 211.38 79 49.41

SC 607.54 205.61 21944 8293 5453 20222 21592 79.79 4857
Table 2. Results of the OLS and spatial regression models, with R2 being the coefficient of
determination, LIK being the log of the maximized likelihood, AIC being the Akaike
information criterion, and SC being the Schwarz criterion.
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The approach to estimate the turbidity data in spatial regimes shows that in all regimes the
best fit was obtained using the spatial error model. According to Anselin (1988) the fit on the
spatial error model suggests that the spatial effect is a noise derived from the interplay of
several variables not included in the model.

The spatial regime 1 (Rel) has the poorest correlation compared to the others (R? = 0.10, p <
0.001), with LIK, AIC and SC being -295.79, 599.58, and 607.54 respectively. Conversely, the
spatial regime 3 (Re3) shows the best results with LIK = -35.50, AIC =79 and SC = 79.79, and
R2 =0.95, p < 0.001, using the spatial error model (Table 2). The equations of the four spatial
regimes (Rel, Re2, Re3, and Re4) are listed below in the equations 11, 12, 13, and 14
respectively:

Turbidity = 99.72 + 221.711ss +199.46Chl +186.53Dom (11)
Turbidity =311.61—-254.141ss —23.87Chl +22.98Dom (12)
Turbidity =327.19 +42.621ss —246.85Chl —136.06 Dom (13)
Turbidity = 428.86 —154.661ss —231.23Chl —94.05Dom (14)

Where, Iss is the inorganic-laden water fraction, Chl is the phytoplankton laden water
fraction and Dom is the dissolved organic matter-laden water fraction.

Equation 13 indicates the influence of the OAS proportion on this method to quantify
turbidity. According to equation 13, the turbidity in this region will be lower when the
water has high proportion of phytoplankton than inorganic particles. Conversely, in areas
where those types of water are particularly abundant, the modeled turbidity will be smaller.
Where the Iss fraction dominates, turbidity will be high. This suggests that the model will
perform better when turbidity is determined mainly by suspended inorganic particles.
Before applying the equation 13 to the MODIS image fractions, a sensitivity analysis was
carried out using Pearson’s correlation analysis for each spatial regime (Figure 9).

This sensitivity analysis revealed statistically significant correlations R? = 0.65 (p < 0.05, n =
20) and R? =0.40 (p < 0.05, n = 20) for the spatial regimes 3 [Figure 9 (c)] and 4 [Figure 9 (d)]
respectively. In contrast, analyses for the spatial regimes 1 [Figure 9 (a)] and 2 [Figure 9 (b)]
were not significant with R? = 0.005 (p < 0.05, n = 20) and R? = 0.004 (p < 0.05, n = 20)
respectively (Figure 9). The best fit was hence found in the spatial regime 3.
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Fig. 9. Correlation between turbidity estimated using the spatial model and observed
turbidity: (a) spatial regime 1; (b) spatial regime 2; (c) spatial regime 3; (d) spatial regime 4.

The main reason for this poor statistical performance is probably related to the
instantaneous image acquisition and the sampling turbidity design. Both cause a difference
in turbidity conditions, which makes a comparison of the image and the in-situ data
difficult. In addition, the nonlinearity presented in the relationship between the loads of
phytoplankton, dissolved organic matter, and inorganic matter in the water made the
unmixing processes difficult.

Figure 10 shows the turbidity distribution resulting from the application of this model to the
entire floodplain (Figure 10-a) as well the in-situ turbidity distribution (Figure 10-b). The
spatial distribution of the turbidity is similar, especially in regions 1, 2, and 3.

Region 1 is characterized by the highest turbidity compared to the other regions, and by
small depths when the water level rises (Barbosa, 2005), and is the main pathway from the
Amazon River into the floodplain. The water then flows through many channels, located in
the Northwest region of the floodplain, with sufficient energy to keep the inorganic particles
in suspension. Winds promote the sediment re-suspension and increment turbidity here.
Region 2 is also characterized by small depths but is protected from wind. As a result,
turbidity is related to depth rather than wind perturbation (Carper and Bachmann, 1984;
Booth et al. 2000). In Region 3, turbidity varied between 203 and 305 NTU, and the spatial
model was able to estimate turbidity values within the range measured in-situ. According to
Barbosa (2005), this is one of the regions with the highest depths in the Curuai floodplain
lake. It is not subjected to intense wind perturbation due to this characteristic. Instead,
suspended particles settle into the bottom of the lake, decreasing the possibility of re-
suspension.
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Figure 10-c indicates that the spatial model overestimated turbidity in regions 4 and 6, and
underestimated it in region 5. The overestimation in 4 can be explained by cloud cover
contamination. Region 5 is in a transition zone (natural barrier) that separates the floodplain
lake in two larger zones, (i) zone Northwest and (ii) zone Southeast (Barbosa, 2005). This
transition zone causes a turbidity underestimation due to mixture of different water masses.
The overestimation in region 6 can be related to a large mixture caused by a water inlet
owing to a rising water level. The water inlet is particularly pronounced in region 6
(Barbosa, 2005).

o

B Cloud
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[ 203.305
0 305.407
I 107500

-35 1.5 30
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Fig. 10. The turbidity distribution (NTU) in the Curuai floodplain, (a) using the spatial
regression model, using the OK algorithm (b) and (c) is in percent difference between (a)
and (b).

The samples to evaluate the spatial model were collected the entire lake, except for regions 4
(due to cloud cover), 5 (natural barrier), and 6 (overestimation due to intense water flowing
through this channel), as pointed out in Figure 7. The evaluation of the model resulted in a
value of R? = 0.90 (p = 0.05; n = 60) and RSM of 17 NTU for the turbidity model under the
spatial regime 3 (Figure 11). Previous studies of turbidity using the SMM in high water level
(Alcantara et al., 2008) show that the modeled turbidity had a correlation R? = 0.62 (p >
0.005; n = 20).

This difference in performance can be explained by the presence of different water types in
the floodplain. Their presence makes it difficult to apply one model, adapted to a given
regime for the entire region. Another possible error source is the in-situ turbidity-sampling
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scheme. Due to the size of the lake, it was not possible to get all the samples on a single day.
Instead, the data was collected during a 13-day period, in which local turbidity may have
been affected by changes in wind intensity, light field, and other environmental factors
affecting the lake hydrodynamics. The highest errors were encountered in more turbid
waters, as opposed to clear waters, presumably due to a high mixture of the OAS present in
the floodplain.
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Fig. 11. Evaluation of the turbidity estimated through the spatial model (equation 13) and in-
situ turbidity (NTU), interpolated using the OK algorithm.

Since the MODIS image was instantaneously acquired on 27 February 2007, the modeled
turbidity does not account for environmental changes, which can affect in-situ conditions. In
spite of this drawback, the unmixing model showed a good potential to assess the turbidity
in continental aquatic systems. This potential could be improved using hyperspectral remote
sensing imagery (Rudorff et al. 2007), since features in spectral responses could then be
detected in more detail (Rudorff et al., 2006; Fraser, 1998; Brando and Dekker, 2003).

6. Conclusions

This present work evaluates the suitability of the spectral unmixing model to map the
turbidity distribution in the Curuai floodplain. The main conclusions are:

1. The fraction images for the endmembers selected directly from the MODIS image based
on dominance of water components allowed assessing the turbidity in the Curuai floodplain
lake.

2. Owing to non-linearity in the Amazon floodplain waters, the unmixing model does not
work in an optimal way. This is also due to autocorrelation presented in the study area.
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3. It was clear that the presence of autocorrelation in limnological studies that use spatial
distributed samples and this paper shows the possible way to solve the problem of
autocorrelation between samples spatially distributed.

4. The spatial regression between the results obtained from MODIS fraction imaging with
the map generated from in situ data using the Ordinary Kriging approach seems to be
useful to estimate water turbidity.

5. The modeling of autocorrelation helps to improve the applicability of the SMM to map the
turbidity distribution in high complexity water bodies, such as the Amazon floodplain.
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