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Prediction of Volumetric Shrinkage in
Expansive Soils (Role of Remote Sensing)

Fekerte Arega Yitagesu, Freek van der Meer and Harald van der Werff
International Institute for Geo-information Science and Earth Observation, ITC
The Netherlands

1. Introduction

Life time, performance and environmental compatibility of civil engineering infrastructure
largely depend on the quality of geotechnical investigations. Apart from being the basis for
much of the costing (in terms of time and money both at the construction and maintenance
stages) of engineering works, safety of structures lies on information from a geotechnical
survey. Existence of expansive soils in construction sites is a great problem that need due
consideration in geotechnical investigations.

Expansive soils are weak and unstable when subjected to moisture content fluctuations
either due to seasonal climatic variations (cyclic dry and wet periods) or artificial causes.
Their presence is one of the crucial factors that can significantly impact engineering costs for
it may cause major deterioration and distresses on lightweight and shallowly founded
structures. Primary characteristics of expansive soils are their potential to swelling and
shrinkage in response to moisture content increase and decrease respectively. These
properties are adverse in civil construction works for they pose a huge damage especially on
lightweight infrastructures (small buildings, roads and airport runway pavements, pipelines
and sewerage systems etc). An increase in volume (swelling) from expansive soils can
exceed the downward pressure exerted from lightweight structures and hence cause
deformations and development of cracks. Substantial decrease in volume (shrinkage) on the
other hand is responsible for uneven settlement. Expansive soils awe their characteristics to
their mineralogical assemblage; that is presence of active clay minerals and their amount.
Damages due to volume changes of expansive soils in form of swelling and shrinkage that
cost billions of dollars are reported in various parts of the world (Al-Rawas, 1999; Erguler
and Ulusay, 2003; Gourley et al., 1993; Nelson and Miller, 1992; Ramana, 1993; Shi et al.,
2002). Hence expansive soils should be identified and sufficiently characterized at early
stages of geotechnical applications in order to guide a detailed design survey so as to avoid
or minimize unnecessary expenses and delays in the construction and maintenance of
structures.

There are a number of direct and indirect in-situ and laboratory testing procedures available
to identify expansive soils and quantify the magnitude of volume change expected.
Expansive soils can be identified by surface manifestations in the field, for they show cracks
of polygonal pattern in dry seasons (Figure 1) as a result of appreciable volume decrease.
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The depth of desiccation cracks are important in indicating the magnitude of volume change
since this depth represents the thickness in which moisture deficiency exists upon drying.
Various mineralogical identification methods such as X-ray diffraction (XRD), Transmission
Electron Micrograph (TEM), Scanning Electron Micrograph (SEM), Differential Thermal
Analysis (DTA), dye absorption and chemical analyses are important in research
laboratories for exploring the basic properties of clays. But they are costly and hence are not
commonly used in soil mechanics laboratories. Direct measurements include determination
of swelling and shrinkage potential of expansive soils. Use of consolidation apparatus and
triaxial methods are famous for measuring the swelling pressure that is required to
counteract the soil swell and swelling potential that can be exerted by the soil expansion.
These testing should be done in a sophisticated and controlled conditions with anticipated
environmental conditions fulfilled. The techniques give an opportunity of directly observing
the effects of soil expansion on different scale or magnitude of loadings that resembles the
actual conditions. Suction method can also be used to measure soil swell potential.
Volumetric shrinkage determination on the other hand provides with a measure of the
magnitude of shrinkage that the soil can undergo upon severe drying. These are the most
common and useful swell and heave prediction testing methods (Nelson and Miller, 1992).
However, it might take several days and loading steps before the swell pressure is
determined even for a single sample which in turn makes the methods expensive and
laboursome. Indirect means involve use of index parameters to identify and estimate
magnitude of swelling and shrinkage in expansive soils. Atterberg limits (Liquid limit,
plastic limit, plasticity indices, shrinkage limit and shrinkage indices) are the most popular
and frequently used index tests. Due to the simplicity of these tests and the good correlation
that they show with soil swell and shrinkage potentials, Atterberg limits are used in the
identification and classification of cohesive soils; as well as directly used in construction
specifications and standards (e.g. American Society of Testing Materials (ASTM), British
Standard Institution Specification etc) for quality controlling of materials that will be used in
fill, embankment and subbase constructions. Cation exchange capacity (CEC), Free swell,
Linear shrinkage, Coefficient of linear extensibility (COLE), expansion index (EI), California
bearing ratio swell (CBR swell) etc are also some of the index parameters. The more soil
testing that is done before hand, the easier it is to reduce risk in the design of infrastructure
and produce economically feasible as well as environmentally compatible structures.
However it is quite impractical to attempt collecting many samples over short distances and
analyze them for it is costly and time consuming.
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Fig. 1. Typical expansive soil (black cotton soil of Ethiopia) with polygonal pattern cracks as
a manifestation of considerable shrinkage in dry season. These cracks are wide (on the order

of tens of centimeters) and also deep (on the order of meters).

Considerable amount of work has been done in the past to support geotechnical
investigations of expansive soils with remote sensing techniques (Chabrillat et al., 2002;
Goetz et al.,, 2001; Kariuki et al., 2004; Yitagesu et al., 2009). While Chabrillat et al., (2002)
and Goetz et al., (2001) demonstrated potential use of optical remote sensing data for
mapping abundances of clay minerals (the three clay species which are smectite, illite and
kaolinite that are important with respect to soil swell-shrink potential) responsible for soil
swell-shrink characteristics; Kariuki et al.,, (2004) established one to one relationships
between selected engineering parameters of expansive soils and absorption feature
parameters. Yitagesu et al., (2009) on the other hand found relationships between
engineering parameters (Atterberg limits, cation exchange capacity and free swell) and
laboratory acquired spectral reflectance of expansive soils; and indicated wavelength
regions to look into in attempting to extrapolate the approach to image datasets for
quantitative mapping of soil swell-shrink characteristics.

In this chapter potential use of remote sensing data in modeling volumetric shrinkage and
related index properties of expansive soils is illustrated. We presented:

* Possibility of classifying expansive soils with respect to dominant clay mineralogy which
is a primary controlling factor in soil swell-shrink characteristics, i.e. to qualitatively
characterizing expansive soils.
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» Relationships of soil reflectance spectra with geotechnical properties of expansive soils
(shrinkage, plasticity and compaction characteristics; grading particularly clay content; and
strength or bearing capacity as evaluated by California Bearing Ration (CBR)). Mainly we
dealt with prediction of volumetric shrinkage of expansive soils from their respective
reflectance spectra.

* A multivariate calibration technique, partial least squares regression (PLSR) model for
estimating magnitude of volumetric shrinkage from laboratory acquired (ASD fullrange
spectrometer) soil reflectance spectra.

We demonstrated means of identifying soils susceptible to considerable swell and shrink,
and propose a simple way of estimating their volumetric shrinkage. Partial least squares
regression analysis method is used based on the assumption that volumetric shrinkage and
spectral signatures of soils are both a function of clay type and concentration in soil
specimens. Empirical relationship between soil volumetric shrinkage and spectral
reflectance is presented.

2. Methodology

2.1 Study area

The study area (Figure 2) is located in the central part of Ethiopia, in the upper valley of the
Awash River which drains the northern part of the Rift Valley.

Topography ranges from a relatively plain to hilly, undulating and steep mountainous
terrain; with elevation ranging from 1500 to 2500 meters above sea level. Conical-shaped
isolated hills of scoria which are products of gas rich mafic lava formed during the late
stages of volcanism are common in the study area.

Climate is moderate to wet with mean annual rainfall of 1200 mille meters, and temperature
ranging from 25 degree centigrade to 8 degree centigrade. While the temperature is high in
January, and from March to May, rainfall is heavy in July and August.

Geology (Abebe et al., 1999) at the start (around TuluDimtu) of the study area is influenced
by tertiary to quaternary volcanic formation which includes alkaline basalts, spatter and
cinder cones, ignimbrites, rhyolitic flows and domes, and trachyte. Near DebreZeyt the
formation is dominated by alluvial and lacustrine deposits which include sand, silt, clay,
diatomite and limestone. From DebreZeyt to Mojo town lacustrine deposits, and after modjo
town fall and poorly welded pyroclastic deposits dominate with ryolitic and trachytic
formations in between.

Soils in the study area are classified into vertisols, luvisols, leptosols, phaeozems and
andosols (Figure 1). According to FAO (1998) definitions vertisols are clay rich (smectitic)
expanding soils that swell and shrink with fluctuation in moisture content. Luvisols are
common soil types in flat or gently sloping land, derived from a variety of unconsolidated
material including alluvial, colluvial and eolian deposits. Leptosols are very shallow soils
over hard rock or in unconsolidated gravely material, and are most common in
mountainous areas. Phaeozems are soils that are predominantly derived from basic material
and are rich in organic matter. Andosols are young soils in volcanic regions that are usually
associated with pyroclastic parent materials.

www.intechopen.com



Prediction of Volumetric Shrinkage in Expansive Soils (Role of Remote Sensing) 351

Legend

CR T

L T R T
Magor s0il types

Rrdoium

Caarrdarmonm

L Fusnoth

& a0 E S i W TOE Lishcaohe

. Luwiming
-m

ety
e Basn

f 40TN

6" INTE

A 300N

Fig. 2. location map of the study area showing spatial distribution of various soil types,
sampling spots are shown following the new highway route to be constructed.

From engineering perspective, soil that are predominately black, highly plastic and
expansive clay (vertisol family which commonly termed as black cotton soil) are found
during the section from Addis Ababa to Modjo town covering extensive area with varying
thicknesses. Thick layers of black cotton soils, which make their susceptibility to volume
changes larger, are reported. In these soils prominent desiccation cracks (as shown in Figure
1) are evident in dry periods. While this is the case in the flat to rolling sections, the hilly to
mountainous terrains are mainly covered by fresh to partially weathered basalt with minor
rhyolitic composition.

Natural vegetation cover is in general poor since most of the area is farmland. An extensive
area is farmland with built-up areas following the existing road alignment from Addis
Ababa to Nazareth, being the major ones; Kaliti and Akaki (at the outskirts of Addis),
Dukem, DebreZeyt, Modjo and Nazareth itself. Deeply incised drainage patterns and gully
erosions are common features in the area particularly between Modjo and Nazareth.
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2.2 Sampling and laboratory testing

Expansive soils mainly distribution of black cotton soils in the study area is so areally
extensive thus sufficient detailed characterization is required to aid in formulating proper
design and construction techniques. Particularly the amount of volume change (in the form
of swelling or shrinkage) should be predicted to eliminate or minimize its detrimental effect
on the highway subgrade and associated adverse environmental impacts. Therefore the
sampling and laboratory testing strategy was tailored to achieve this aim.

Soil samples were collected following the new express highway from its starting point near
TuluDimtu to its end at Nazareth town. The sampling was part of a comprehensive
investigation and testing scheme for assessing suitability and quality of subgrade material
for the newly proposed road alignment connecting Addis Ababa with Nazareth town.
Samples were taken from open pits of one to three meters depth which is commonly the
depth at which shallowly founded structures are laid. A total of thirty exploratory pits were
excavated.

2.3 Determination of geotechnical characteristics

Atterberg limits (liquid limits, plasticity limits and plasticity indices) were determined in
accordance with ASTM D4318-05 Standard test method for liquid limit, plastic limit and
plasticity indices of soils.

Volumetric shrinkages were determined in accordance with ASTM D4943-02 standard test
method for shrinkage factors of soils by the wax method.

Maximum dry density (MDD) and optimum moisture content (OMC) were determined in
accordance with ASTM D 689 standard test method for laboratory compaction
characteristics of soil using standard effort (12400ft-1bf/{t3 (600KN-m/m3)).

The strength or bearing value of the soil specimen was determined by measuring their
California bearing ratio (CBR). Accompanying CBR swell was also measured. The ASTM
D1883-05 Standard test method for measuring CBR of laboratory compacted soils is used.
Particle size distributions were determined in accordance with ASTM D6913-04el standard
test method for particle size distribution (gradation) of soils using sieve analysis (for the
fraction passing 2mm, 0.425mm and 0.075 mm ASTM sieve openings); and ASTM D422-
63(2007) standard test method for particle size analysis of soils (hydrometer analysis of
percent passing 2 pm ASTM sieve opening which is a clay fraction of the soils).

2.4 Soil reflectance measurement

ASD fieldspec full range spectrometer (http://www.asdi.com) that covers the 350
nanometer to 2500 nanometer wavelength region of the electromagnetic spectrum was used
to collect soil reflectance spectra. The measurement was done in a laboratory, using a
contact probe method.

Spectral resolution of the ASD fieldspec FR spectrometer is 3 nanometer for the 350
nanometer - 1000 nanometer region and 10 nanometer for the 1000 nanometer - 2500
nanometer region; whereas its spectral sampling interval is 1 nanometer (ASD, 1995). The
spectrometer has three separate detectors, one in the visible near infrared region (VNIR) and
the two are in the short wave infrared (SWIR) region. Since major absorption features
associated with clay minerals are found in the SWIR wavelength region of the
electromagnetic spectrum, clay minerals are among the mineral groups that are suitable for
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ASD analysis. Additional spectral information can also be obtained from the VNIR
wavelength regions.

2.5 X-Ray Diffraction (XRD) analysis

Mineralogical composition of soil samples were examined using X-ray diffractometer (XRD).
The instrument used is Siemens D5000 diffractometer. Bulk (to determine the overall
constituents) as well as clay fractions (to quantify the major, minor and trace composition of
clay species) of the soil samples were analyzed.

2.6 A multivariate analysis Partial least squares regression (PLSR)

Partial least squares regression (PLSR) is regression by means of projections to latent
variables (Martens and Naes, 1989; Wold et al., 2001). The method was first proposed in the
1970’s, and is currently very popular in various disciplines, among which is spectroscopy. In
visible near infrared spectroscopy, PLSR has become a widely spread technology for
qualitative as well as quantitative analysis. This includes routine quality control activities; in
chemical, pharmaceutical and agro-industries, for it is found to be a fast, cheap, simple and
non-destructive technique with little or no sample preparation requirements.

PLSR is particularly important when dealing with a large number of variables that express
common information to avoid multicollinearity problems (Martens and Naes, 1989). It
reduces the impact of irrelevant X variation in the calibration modeling by balancing the
information in the X and Y spaces. This is especially the case when one acquires a large data
set using modern instrumentation like spectrometers, where, apart from having numerous
X-variables, there is also a tendency of these variables for being correlated, sometimes being
noisy and incomplete (Wold et al., 2001). On the other hand, the need to use PLSR analysis
method can arise from difficulty to obtain measurements only of the specific parameters that
one is interested in. Martens and Naes (1989) discussed problem of selectivity while trying
to take measurements of specific properties from inhomogeneous materials and presented a
multivariate calibration method, PLSR as a solution. PLSR combine principal component
analysis (PCA) and multiple linear regressions (MLR). In this technique X-variables are first
decomposed into set of orthogonal factors named latent variables. During the
decomposition the common structures between predictors and response is captured. Unlike
PCA which decomposes the X variables to eliminate multi-collinearity problems and extract
components that explain X, PLS finds components from X that are also relevant to Y. Since
PLSR considers the variation in Y when calibrating the model, the covariance structure
between the predictor and response variables is reflected (Martens and Naes, 1989; Wold et
al., 2001). This is achieved by projecting the X and Y-spaces into new coordinates T and U-
scores respectively that summarize the common structure in X and Y. Thus resulting latent
variables have the best predictive power in explaining the response. Then as in multiple
linear regression it builds a linear model Y=XB+E, where Y is an n cases by m variables
response matrix, X is an n cases by p variable predictor matrix, B is a q by m regression
coefficient matrix, and E is a noise term for the model which has the same dimensions as Y
(Wold et al., 2001).

Prior to considering the calibrated models for practical applications, i.e. the prediction and
subsequent understanding of new data set or samples, models should be validated (Wold et
al.,, 2001). This is a crucial step in PLSR modeling, for it gives an indication on how well the
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models will perform in the future and the degree of certainty that one might expect while
using the models to solve practical problems. Different types of validation methods were
discussed and presented in various literature (Martens and Naes, 1989; Wold et al., 2001). Of
which, cross validation method has found its application in cases where the data set that one
is working on is small and hence a separate or independent and representative validation
data set is unavailable (Martens and Naes, 1989). Kooistra (2005) used a full cross validation
method, which is based on a leave one out principle where one sample will be left out at a
time and the model is calibrated on the remaining samples (CAMO, 2005). This will be
repeated N times until every sample is left out once and the model is computed on the
remaining samples and the left out sample is predicted.

To avoid erroneous calibration and deterioration of models prediction ability, it is important
to detect outliers and remove or replace them by accurate values (Hocking, 2003; Martens
and Naes, 1989). Outliers are abnormal observations that show significant deviation from
the rest of the dataset in the population. They might arise both due to error in the
experiment or instrument, or represent different information other than the material of
interest and hence irrelevant. Presence of outliers in the data set is known to influence both
the calibration and validation of PLSR models. Different methods are developed to detect
sample outliers in PLSR modeling. Martens and Naes (1989) presented outlier detection
criteria based on the analysis of residuals and leverages. In PLSR modeling, residuals are of
diagnostic interest. It is possible to examine the residual variances (the variation that is left
unexplained) in the X as well as the Y-spaces. Wold et al. (2001) demonstrated that large Y-
residuals indicate that the model is poor. Normal probability plots of the residuals of a
single Y-variable are also useful for identifying outliers in the relationship between T and Y.
The X-residuals (part of X that is not used in modeling Y) are also useful for identifying
outliers in the X-space, i.e., observations that do not fit the model. In addition, uncertainty
tests e.g. Martens uncertainty limit tests (CAMO, 2005; Martens and Naes, 1989) can be used
for testing which variables are causing perturbations in the model.

3. Results and Discussions

3.1 Spectral analysis

In the spectral interpretations, spectral libraries of different sources (e.g. TSG (the spectral
geologist), ENVI and PIMA view built-in mineral libraries, USGS and JPL mineral libraries)
that are developed upon experimental investigations on minerals and verified with variety
of conventional testing methods (e.g. X-ray diffraction (XRD), Transmission Electron
Micrograph (TEM), Scanning Electron Micrograph (SEM) etc) are used.

Differences in spectral characteristics among spectra of different soil samples were used for
differentiating various clay mineral types that are present in the soil samples. Position of
absorption features, their shapes, types and number, depth intensity and asymmetry; shape
of spectral curves, differences in slopes of spectral curves and variations in reflectance
intensity of spectra were some of the important qualitative parameters that helped in
identifying spectrally dominant clay mineral from the soil reflectance spectra (Figure 3).
Some spectra show a sharp rise in slopes and variable reflectance intensity throughout the
whole wavelength region of the electromagnetic spectrum. Others show lower reflectance
intensity throughout the whole wavelength range and were on overall dark. The later also
exhibited monotonously rising convex slopes in the VNIR (visible near infrared) wavelength
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region and less variable reflectance intensity in the SWIR. Some show moderate rise in
slopes and also moderate increase in reflectance intensity from the VNIR to the SWIR
wavelength regions.

In the visible near infrared portion of the spectra changes in slopes were the prominent
features that were recognized coupled with changes in reflectance intensities. The
absorption features that are apparent on the VNIR region are relatively few, broad, wider
and less intense. Whereas, in the SWIR region the main absorption features of clay minerals
were observed with variable intensity being the prominent ones at ~ 1400 nanometer, ~ 1900
nanometer and ~ 2200 nanometer (Clark, 1999; Van der Meer, 1999).
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Fig. 3. Spectral reflectance curves of some soil samples (no offset). Note spectral
characteristic differences, reflectance and slope variability in the VNIR wavelength region
(350 nanometer - 1000 nanometer) and absorption features in the SWIR (1000 nanometer -
2500 nanometer).

3.2 Geotechnical Characteristics

As presented in the plasticity chart (Figure 4) and particle size distribution of soil samples
(Figure 6), the soil samples exhibit high plasticity and are finer grained with high
percentages of clay fraction. Generally the more plastic and finer grained soils are the
greater swell-shrink potential that they are susceptible to, though swell-shrink potential is
dictated by mineralogy and other factors as well. Majority of the soil samples are plotted
above the A-line spanning from CI to CE zones. The soils that fall in the CI zone are of
intermediate plasticity behavior, while those falling in the CH, CV and CE are of high, very
high and extremely high plasticity nature. The higher the plasticity the larger will be the
susceptibility of the soil to significant volume change characteristics. Accordingly swell-
shrink potential of soil samples in the CH, CV, and CE zones are of high, very high and
extremely high. Few samples fall below the A-line in the MV zone; these soils have high
inherent expansion potential. The “A’ line is an empirical boundary separating inorganic
clays from silty and organic soils. Soils of the same geological origin usually plot on the
plasticity chart as straight lines parallel to the ‘A’ line. "Fat" or plastic clays plot above the
line. Organic soils, silts and clays containing a large portion of "rock flour" (finely ground
non-clay minerals) plot below it.
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Fig. 4. Plasticity chart showing classes of expansion potential of soil samples.

The scattering of soil specimen in the plasticity chart show a wide range of variability in
their swell-shrink characteristics (low to extreme cases). This is important in ensuring
representativeness of samples for the intended PLSR modeling since it affects model
prediction ability (Martens and Naes, 1989). Calibration in narrow range can bring about a
risk of inability to extrapolate model into observations spanning a wider range. That is for
instance bad prediction ability in case of failing to cover a total range of variability in a new

dataset.

Proctor test results of some soil samples depicting the maximum dry density (MDD) and
optimum moisture content (OMC) are shown in Figure 5. As presented in the graph the soil
samples are also labeled with mineralogical groups obtained upon interpretation of spectral
reflectance curves of respective soil samples.
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Fig. 5. Compaction curves of selected soil samples from proctor test labeled with
mineralogical classes of soil from spectral interpretation.
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Smectite clay species dominated soils (5S4 and S5) exhibited low dry densities (MDD) with
large moisture intake as indicated by their optimum moisture contents (Figure 5). As the
grading curves (Figure 6) depicted 54 is finer than S5 with higher clay content. Accordingly
5S4 shows higher magnitudes of volumetric shrinkage and plasticity character (LL, PI) than
its similar species S5 (Table 1).

Halloysite dominated soils (S2, S3 and S6) are characterized by dry densities and moisture
intakes that seem to vary with their clay contents. While S6 has highest clay content of the
three soils followed by S3 and S2 (Figure 6), the magnitude of volumetric shrinkage and
plasticity that it exhibited is also high followed by S3 and S2 (Table 1). Dry density of S2 is the
highest followed by S3 and S6 respectively (Figure 5) in the halloysite clay dominated sols.

The quartz dominated soil (S1) attained the highest dry density with lowest moisture intake
as compared with soils dominated by halloysite and smectite clay varieties (Figure 5). This
soil is also coarser than the other soils (Figure 6) and is non-expansive (Table 1).
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Fig. 6. Particle size distributions of selected soil samples labeled with mineralogical classes
of the soil specimen obtained from spectral interpretation.

Even though the clay content of halloysite dominated soil sample S6 is higher than the clay
content of smectite dominated soil sample S5, the later is characterized by higher
magnitudes of volumetric shrinkage and plasticity, and exhibited low dry density (MDD)
coupled with high moisture intake (OMC). This observation can be attributed to the fact that
clay mineralogy dominantly controls swell-shrink characteristics of expansive soils. On the
other hand within similar clay mineralogy, amount of clay fraction seems to govern the
magnitude of volumetric shrinkage, plasticity (LL and PI) and compaction characteristics
(MDD and OMC).

Sample ID Spectrally dominating mineral Volumetric shrinkage Liquid limit Plasticity index
S4 smectite 137 103 58
S5 smectite 118 84 43
S6 halloysite 99 72 34
S3 halloysite 48 48 22
S2 halloysite 32.8 46 22
S1 quartz - Np Np

Table 1. summary of geotechnical properties of selected soil samples. NP: non plastic
material
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Variations in CBR and CBR swell of the six soil samples from different mineralogical groups
are presented in Figure 7. The CBR value is an indicator of soils strength or bearing capacity,
which is directly used in the design of subgrade, subbase and base material for pavement.
Highest CBR and lowest CBR swell values are attained by the quartz dominated soil sample,
S1. For the smectite dominated soils (5S4 and S5) lowest CBR and highest CBR swell values
are recorded. CBR of 54 and S5 are below standard (e.g. to lay an embankment directly over
or to be used as subgrade material in road construction) and their CBR swell is much higher
than allowable CBR swell values. Halloysite dominated soils (S2, S3 and S6) exhibited CBR
and CBR swell values which seems to vary according to their clay fractions. Among the
halloysitic soils S6 show low CBR which is below standard and higher CBR swell which is
higher than the allowable CBR swell value. S3 on the other hand exhibited marginal CBR
value with high though within the allowable range in different standard specifications.
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Fig. 7. CBR and CBR swell results, graphs with accompanying tables.

XRD test results show that the soil samples contain clay minerals (Figure 8) such as smectite
(mainly montmorillonite and nontronite), illite and kaolinite (halloysite and kaolinite) which
significantly influence engineering behavior of expansive soil due to their high activity; and
original minerals such as quartz, feldspar and mica are which are common constituents of
expansive soils but do not contribute to the expansiveness of soils due to their low activity.
Qualitative XRD analysis results are summarized in Table 2 and chemical analysis results
are resented in Table 3.
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Fig. 8. XRD patterns of clay fractions (< 2u) of some soil samples (Table 2 and 3 present the
mineralogical assemblage and chemical results of these three patterns in descending order).
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XRD mineralogy assignment

ID
Major Moderate Minor Trace Spectrally dominant mineralogy
kaolinite, *brookite, *rutile,
Bulk Montmorillonite  quartz, calcite, plagioclase, *goethite
Nontronite potassium feldspar,
llite Smectite
1
Clay Fraction Montmorillonite - illite, kaolinite,
(quartz), (calcite),
(potassium feldspar)
quartz, kaolinite, *brookite, *rutile,
Bulk Montmorillonite Nontronite plagioclase, *goethite
potassium feldspar, Smectite
lllite
2
Clay Fraction 1/M mixture Nontronite illite, kaolinite,
(quartz), (calcite),
(potassium feldspar)
quartz, potassium felspar,
kaolinite, ilite, plagioclase, *brookite, *pyrite,
- halloysite montmorillonite, *goethite
Bulk nontronite, I/M :
3 mixed Halloysite
(quartz), illite, *montmorillonite,
Clay Fraction Halloysite - /M mixed *(potassium

feldspar)

Table 2. Summary of Qualitative XRD results showing abundance of major (>30%),
moderate (10 -30 %), minor (2 - 10 %) and trace (<2 %) mineral constituent of soil samples.

ID Sio2 AI203 Fe203 MgO CaO Na20 K20 TiO2 P205 MnO Cr203 V205 LOI Sum
% % % % % % % % % % % % % %

1 46 13.8 714 229 566 079 146 114 008 018 0.02 0.02 214 99.98

2 50.8 16.9 8.46 1.5 133 216 253 1.03 004 024 0.01 0.02 145 99.52

3 52.9 19 795 163 03 077 186 122 015 0417 0.01 0.02 132 99.18

Table 3. Chemical analysis results.

The information obtained on the clay mineralogical assemblage of the soil samples from X-
ray diffraction analysis is in conformity with spectrally dominant mineralogical group
assignments from interpreting reflectance spectra of respective soil samples.

Major clay mineral that is responsible for swelling and shrinkage of soils in the study area is
smectite (montmorillonite and nontronite) as identified from soil spectral reflectance and
confirmed by the X-ray diffraction analysis; and mixed layer combination of
montmorillonite and illite. The hydrous variety of kaolinite group (halloysite) shows
variable, that is low to appreciable swell-shrink character. Halloysite show low bulk density
than kaolinite coupled with high porosity; its hydraulic conductivity is also reported to be
higher (West et al., 2004). Geotechnical character of halloysite dominated soils seems to vary
according to their particle size distribution (clay to coarser fraction proportions).
Montmorillonite, (Ca, Na) 0.67Al 4(Si, Al) 8 O20(OH)4 nH20, is a product of weathering of
iron and magnesium rich parent materials and is one of the most common smectite minerals
(AusSpec International, 2005; Fitzpatrick, 1980) found in soils. It also form from the
weathering of volcanic ash or primary silicate minerals such as feldspars, pyroxenes, or
amphiboles under conditions of insufficient leaching of soil profile due to low permeability
and excessive evaporation (Snethen, 1975). As indicated in the brief summary of the
Geology of the study which is covered by rocks of volcanic origin where volcanic debris and
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mafic rocks like basalt are common and abundant, occurrence of montmorillonite can be
favored by the environment. Nontronite, (Ca, Na) 0.66 Fe3+4(Si, Al) 80 20(OH) 4 nH20, is
also a common smectite mineral found in soils and weathered bedrock. Its formation is
favored by alkaline to neutral pH environments, as well as by the availability of iron and
calcium minerals (AusSpec International, 2005; Fitzpatrick, 1980). Thus its formation is also
favored by the geology of the study area. Additional prevailing environmental conditions
such as alkaline conditions coupled with high evaporation exceeding precipitation and poor
leaching which facilitate retention of magnesium and calcium in the soils contribute to the
development of smectite clays in the area.

Kaolinite, AlI2S5i205 (OH)4 is another commonly occurring clay mineral in soils. It can be
derived from almost all silicate minerals (AusSpec International, 2005), hence its formation
in the study area can be favored by the environmental conditions. Halloysite,
Al25i205(OH)4 4H20O, occurs in soils and the uppermost weathered part of bedrock
(AusSpec International, 2005) and is a common constituent of many volcanic soils
(Takahashi et al., 2001). It is a kaolinite group clay mineral formed as a result of weathering
of aluminum rich minerals that are also abundant in the study area and its surroundings.
Illites on the other hand are commonly seen in soils, and form by weathering of silicates
primarily feldspars. Generally their formation is favored by alkaline environment and high
concentrations of Aluminum and potassium (Fitzpatrick, 1980); which are conditions
fulfilled in the study area. It is common that illites appear with smectitic interlayer clays
(AusSpec International, 2005).

Some spectra show presence of iron oxides in the soil samples. Different kinds of iron
oxides, for example, goethite (aFeO+3(OH)) is present (Figure 3 and Tables 2 and 3) in the
soil samples as a result of weathering product of iron-bearing minerals. Since volcanic rocks
that are rich in iron minerals are abundant in the study area; which is coupled with the
action of chemical weathering in the humid atmosphere of the local tropical climatic
conditions; presence of goethite in the soil samples can be favored by the environmental
conditions. Spectra of some soil samples showing diagnostic features of iron oxides similar
to the spectral characteristics of goethite (Crowley et al., 2003) can be seen in Figure 3.

Figure 9 presents relationships between magnitudes of soil volumetric shrinkage; soil
mineralogical group resulted from spectral reflectance interpretation and plasticity classes
according to the plasticity chart. Mean volumetric shrinkage of smectite dominated soil
samples is higher than that of the halloysite dominated ones. The two mineralogical classes
that the soil samples are grouped into show clear separation. The halloysite dominated soils
fall into the intermediate and high plasticity classes which denoted intermediate and high
swell-shrink susceptibility. Smectite dominated soils on the other hand fall within the
extremely high and very high plasticity classes with few samples falling in the high
plasticity class signifying extremely high, very high and high swell-shrink potential
respectively. Even though few smectitic soils are noted to belong in the high plasticity class,
mean volumetric shrinkage of these soils is higher (~ 120) than the mean volumetric
shrinkage of halloysitic soil samples which is about 80. The whiskers of boxes denoting high
plasticity class of halloysite rich soils and very high class of smectite rich soils suggesting
some overlap on the magnitude of volumetric shrinkage of the two classes though fall
within different mineralogical categories. This might be related with high clay content of
halloysite rich soil samples and low clay fraction of those of smectite rich soils. Takashi
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(2001) reported halloysite rich volcanic soils with appreciable clay fraction exhibiting high
cation exchange capacity indicating high swell-shrink potential.

Plasticity
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Fig. 9. Relationships between volumetric shrinkage, mineralogy and plasticity of the soil
samples. Note an increase in magnitude of volumetric shrinkage as mineralogy changes to
highly expanding clay species (smectite) dominated soils, coupled with increase in mean

volumetric shrinkage as plasticity changes from intermediate to high, very high and
extremely high classes.

Smectite and halloysite rich soils fall into two distinct clusters while plotting the values of
liquid limit (LL) in the X-axis against the magnitude of volumetric shrinkage in the Y-axis
(Figure 9). K-means clustering (which is a procedure that attempt to identify and cluster
homogeneous groups based on distance from specified or computed cluster centers) also
gave these two clusters with LL of 65 and volumetric shrinkage of 100 as boundaries
separating the two clusters. Same kind of clustering is noted in the plots showing the
relationship between Plasticity indices (PI) versus volumetric shrinkage. Sample labeling 1
and 2 in each graph are cluster designations obtained from the K-means clustering analysis.
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Fig. 10. Scatter plots showing the relationships between volumetric shrinkage versus liquid
limit, and volumetric shrinkage versus plasticity index with samples labeled with
mineralogical classes. Sample labeling 1 and 2 are cluster designation obtained from K-
means clustering analysis.

2.5 Partial Least Squares Regression (PLSR) models

PLS1 analysis (predicting a single parameter at a time) method implemented in The
Unscrambler software (CAMO, 2005) was used for the multivariate calibration and
validation. Outlier detection was performed, since presence of outliers in the input dataset
can deteriorate models prediction ability and also their reliability. Outliers were mainly
identified manually instead of using the automatic outlier detection method. The automatic
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detection tends to include many of the extreme values (either from the lower or higher
extremes) in the outliers list. In general outlier detection was done based on using a
combination of different tests rather any single method. We used Martens uncertainty limit
tests to test the stability of all variables in the model. The stability of each predictor with
respect to the samples was examined by using stability plots.

A sufficient number of PLS factors were used, that is three PLS factors with optimal
predictive ability. Including too many PLS factors was observed to often lead to over fitting
problems (Kooistra, 2004) for it incorporates irrelevant information or noise. The number of
PLS factors used in the models were based on different tests intended for testing the
significance of PLS factors in the prediction. Among the tests are simultaneous examinations
of the residual variances and the root mean square errors (RMSE) of each factor coupled
with significance tests through cross validation. Cross validation is a practical and reliable
way of testing the predictive significance of PLS factors analysis (Martens and Naes, 1989)
that has become a standard in PLS (Wold et al, 2001). Martens and Naes (1989)
demonstrated the application of cross validation methods for determining number of PLS
factors that should be included in a model for proper explanation of the phenomena of
interest that one would like to model.

In deciding which variables, among the predictors, should be retained in the model,
Martens uncertainty limit test was used. This test is significance test in PLS analysis which is
useful in testing whether the regression coefficients used in a model are significantly
contributing to the model. Regression coefficients that are significant were then identified
and those that have got an uncertainty limits passing the origin were left out. Another
uncertainty test that was applied on the score and loading plots was stability calculation
which can be visualized in The Unscrambler as stability plots. It shows the influence of each
variable and hence its significance (CAMO, 2005) in the model. Samples far from the center
have more influence on the model than those that are near, and the uncertainty is larger on
those with larger spread implying that these variables are not significant (CAMO, 2005).

PC2 Scores

Fig. 11. Result of PLSR modeling for volumetric shrinkage showing: Scores principal
components 1 versus 2 with samples in the 95% confidence ellipse showing that there is no
particular grouping of samples, but rather a random pattern (one population) suggesting a
single model can fit the data.
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Fig. 12. Result of PLSR modeling for volumetric shrinkage showing: Regression coefficients
or statistically significant wavelength regions in predicting volumetric shrinkage from the
laboratory soil reflectance spectra.
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Fig. 13. Result of PLSR modeling for volumetric shrinkage showing: Residual variances
(blue during calibration and red during prediction) exhibiting the remaining variation that
is not taken into account by the model is minimum after fitting three PLS components
suggesting much of the variability in volumetric shrinkage is explained by the model. The
upper graph shows Y-variance and the lower graph shows the X-variances.
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Fig. 14. Result of PLSR modeling for volumetric shrinkage showing: Regression overview
showing predicted and measured volumetric shrinkage.

Note that there are no outlying samples lying outside the rest of the cloud (Figure 11). Only
one sample lies outside the ellipse; under normal situation it is expected that about 5 % of
the samples to lie outside the ellipse.

As shown in Figure 12 Relevant X variables (wavelengths from soil spectra) in predicting
volumetric shrinkage fall in the VNIR and SWIR regions. Wavelengths in the SWIR bands
are related with clay mineral diagnostic features (Clark, 1999). Wavelengths from the VNIR
can be organic matter and iron oxides related (Ben-Dor and Banin, 1994; Wan et al., 2002)
and sand or quartz related spectral features (Viscarra et al., 2006).

Figure 13 shows that most of the Y and X variances are accounted for by the three PLS
factors, reaching a minimum level (close to zero) of unexplained variances at the third PLS
factor. The blue and the red lines represent residual variances during the calibration and
validation stages respectively. Note that the two lines do not significantly differ indicating
that the calibration data are well fitted and that the model describes the validation data
equally well.

In the regression overview (Figure 14) comparing laboratory measured and corresponding
predicted (from spectral reflectance of soil samples using PLSR analysis) soil volumetric
shrinkage magnitudes, calibration and prediction points lie very close to each other
suggesting the model fitted to the calibration data set described the prediction data set as
good as possible. Note that an internal calibration, full cross validation leave one out at a
time method was used.

Apart from high coefficient of determination (~0.91), the model gives low estimation errors
during the calibration (RMSEC = 0.05) as well as the validation (RMSEP = 0.06) stages.
Standard errors of calibration (SEC = 0.05) and prediction (SEP = 0.06) which are indicators
of precision of the calibration and prediction respectively are also small. The bias which is
the average value of the difference between the predicted and measured values, is also small
(both in the calibration and prediction stages) for the given number of PLS factors indicating
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that the effect of bias is negligible (Martens and Naes, 1989). The values of offsets in the
calibration and validation stages are small showing minor deviation from an ideal line
where the measured and predicted volumetric shrinkage magnitudes are expected to be
equal. Model performance indices are presented in Table 4.

Calibration Validation
Correlation Correlation
coefficient RMSEC SEC Bias Offset coefficient RMSEP SEP  Bias Offset
0.965 0.05 0.05 0.005 0.044 0.952 0.586 0.0596 0.001 0.051
Table 4. Summary of model performance indices resulted from PLSR modeling of soil
volumetric shrinkage.

4. Conclusions

In this chapter we demonstrated that it is possible to estimate soil volumetric shrinkage
from spectral reflectance of soil. The approach can be of potential geotechnical utility
contributing to the quality of geotechnical investigations of expansive soil, playing
prominent role in planning and designing of infrastructure. This is particularly in
minimizing uncertainties through identifying geotechnically problematic areas and
estimation of critical parameters (in this case volumetric shrinkage), hence providing better
basis for decision making. This in turn present relevant information that can be useful in site
selection, route planning and search for construction materials (borrow, subbase etc)
especially in the reconnaissance and preliminary design stages of construction projects. In
summary;

. The expansive soils in this study are identified by their constituent dominant clay
mineral type and accordingly classified into two clusters. Those soils comprised of active
clay mineral smectite exhibit high swell-shrink potential as suggested by the magnitude of
volumetric shrinkage, plasticity and other related geotechnical characteristics. They also
exhibit low maximum dry densities while their optimal moisture contents are high.
Halloysite clay mineral dominated soils on the other hand show less swell-shrink
susceptibility, and variable maximum dry densities with optimum moisture contents lower
than those exhibited by the smectite dominated soil samples. Some halloysite bearing soils
can be weak and show high swell-shrink susceptibility as indicated by their geotechnical
properties. Note their CBR strengths presented in Figure 7 for the wettest likely condition
likely and the associated CBR swell that they exhibited coupled with values of volumetric
shrinkage and plasticity characters that they show. Quartz dominated soil samples on the
other hand show higher maximum dry density with low moisture intake. These soils also
attain high CBR strength and show negligible CBR swell.

. Differences in geotechnical characteristics show dependency on clay mineralogy
among different species (smectite, halloysite), and on clay fraction among similar varieties in
the studied soils. The fact that clay mineralogy is a crucial factor dictating a number of soil
geotechnical behaviors laid emphasis on the importance of qualitative clay mineralogical
assemblage analysis of expansive soils. Since spectroscopy is a cheap, rapid and non-
destructive way of analyzing soil mineralogy, it can be used for such kind of routine
analysis in order to complement quantitative analyses.
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. Coefficient of determination obtained in the PLSR analysis show that soil
volumetric shrinkage is highly correlated with spectral parameters. The low estimation and
interference errors, negligible bias and small offsets indicate spectroscopic techniques
potential to be used in routine quantitative analyses of soil shrinkage potential. The
presented empirical relations with the added valuable information on the content of major
clay minerals (from spectral interpretations) establish a simple way of characterizing
expansive soils. Despite the complex nature (comprised of various constituents other than
clay materials which are responsible for their expansive characteristics) of soil the results
proved that a remarkable amount of information about soil properties can be obtained from
their reflectance spectra.

. The current study gave an outlook for future application of optical remote sensing
to map soils susceptible to swell-shrink and variation in the magnitude of expansion and
shrinkage, provided with the availability of sufficiently high resolution (both spatially and
spectrally in order to resolve vital spectral details ) data.
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