We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 185,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



Using Semantic Technology to
Enable Behavioural Coordination of
Heterogeneous Systems

Artem Katasonov
VTT Technical Research Centre Finland

Vagan Terziyan
University of Jyviskyld Finland

1. Introduction

Coordination is one of the fundamental problems in systems composed of multiple
interacting processes (Tamma et al, 2005). Coordination aims at avoiding negative
interactions, e.g. when two processes conflict over the use of a non-shareable resource, as
well as exploiting positive interactions, e.g. when an intermediate or final product of one
process can be shared with another process to avoid unnecessary repetition of actions. A
classic example of a negative interaction from the field of agent-based systems is two robots
trying to pass thorough a door at the same time and blocking each other. A corresponding
example of a positive interaction is a robot opening and closing the door when passing it
while also letting the other robot to pass, in so saving it the need of opening/closing the
door by itself. On the Web, the coordination has not yet been treated much as traditional
Web applications and services are normally isolated from each other, run on separate
computing systems and, therefore, do not do not have other types of interaction beyond
using each other. However, as the Internet grows towards the Internet of Things, where the
physical and digital worlds will be interconnected, where e.g. Web services will control
various physical processes, the problem of coordination becomes more and more critical
also in the Web domain.

The predominant approach to coordination has been to hard-wire the coordination
mechanism into the system structure (Tamma et al., 2005). Synchronization tools such as
semaphores have been traditionally used to handle negative interactions, requiring every
process to be programmed to check the semaphore before accessing the resource (like
checking if there is an "occupied" light over a lavatory door). If a resource is occupied by a
process for a significant time, it would be clearly better for the other process to work on
another its task rather than just wait. Under the traditional approach, realizing that, as well
as attempting to exploit any positive interactions, is possible only through additional hard-
wiring: the programs of the processes must have incorporated some knowledge about the
behaviours of each other.

www.intechopen.com



136 Semantic Web

This traditional approach becomes insufficient when considering more open systems, where
the processes and resources composing the system may be unknown at design time (Decker
& Lesser, 1995). In such systems, we ideally want computational processes to be able to
reason about the coordination issues in their system, and resolve these issues autonomously
(Decker & Lesser, 1995). We would like to even allow ad-hoc interaction, where two stand-
alone independently-designed systems are able to coordinate whenever a need arises. One
way towards achieving this is to enable the relevant processes to communicate their intentions
with respect to future activities and resource utilization (Moyaux et al., 2006). Jennings at al.
(1998) present this as an issue of enabling individual agents to represent and reason about
the actions, plans, and knowledge of other agents to coordinate with them. In other words,
there is a need for the interacting processes, e.g. software agents, Web services, etc, to be
able to communicate not only about the external world, i.e. the domain, but also about their
own abilities, goals, as well as the current and intended actions.

In the case of highly heterogeneous systems, enabling such a dynamic coordination among
them is an even harder problem than more traditional problems of data-level or protocol-
level heterogeneity. Tamma and colleagues (Tamma et al.,, 2005, Moyaux et al., 2006)
developed an ontological framework for dynamic coordination. They stated the need for an
agreed common vocabulary, with a precise semantics, that is therefore suitable for
representation as an ontology. Tamma et al. (2005) provided such an ontology that defined
coordination in terms of agents carrying out activities involving some resources, which can be
non-shareable, consumable, etc. Moyaux et al. (2006) described then the rules for checking
for conflicts among activities: e.g. if two activities overlap in time and require the same
resource that is known to be non-shareable, they are mutually-exclusive. They also
described some possible coordination rules to be followed when a conflict of a certain type
is detected.

The ontology of Tamma et al. is an upper ontology, i.e. an ontology which attempts to
describe the concepts that are the same across all the domains of interest. Roughly speaking,
the idea is to make the agents to communicate their intentions and actions using the upper-

ontology concepts (i.e. "resource", "activity") rather than the domain-ontology concepts (e.g.

"printer", "printing document") and in so to resolve the problem of evolving domains or
domains not fully known at design time.

We build on this work of Tamma and colleagues. We, however, observe a few drawbacks of
the current solution:

e The traditional approach to coordination in a sense involves hard-wiring the
domain ontology concepts into both agents that want to coordinate with each
other. In the approach of Tamma et al., the upper ontology concepts are hard-wired
into both instead. The latter is better than the former, yet still requires a design-
phase ontological alignment of agents and does not support for coordination with
agents for which this was not done.

e Translating all coordination messages into the upper ontology may make them
significantly longer. Also, when considering that in some cases the agents may
actually share the domain ontology and in some other cases the receiver of the
message may be familiar with a super-class of the unknown concept used in the
message, bringing every conversation down to the upper ontology sounds
somewhat unnatural.

www.intechopen.com



Using Semantic Technology to Enable Behavioural Coordination of Heterogeneous Systems 137

On the other hand, we observe that the Semantic Web research explicitly addresses the
possibility of multi-ontology systems. In open or evolving systems, different components
would, in general, adopt different ontologies as either knowledge models of the
environment or as knowledge models of own configuration, capabilities and behaviour.
Therefore, practical Semantic Web applications have to operate with heterogeneous data,
which may be defined in terms of many different ontologies and may need to be combined,
e.g., to answer specific queries (Motta & Sabou, 2006). At present, the standard technologies
of the Semantic Web, such as RDF Schema (RDF-S) and Web Ontology Language (OWL), on
the level of hierarchies of entities’ classes, enable communications in which (we will discuss
an example in Section 2):

e The sender of a message can express it in its own domain ontology and does not
need to know any integrating upper ontology.

e  Only the receiver of the message has to know the upper ontology and to have
access to a formal definition of the domain ontology of the sender that links the
concepts from that ontology to the upper ontology.

We would like to disclaim that we do not imply here the use of any automated ontology
mapping (also known as ontology matching and ontology alignment, see Tamma & Payne,
2008; Shvaiko & Euzenatsh, 2008), which is an imprecise, e.g. statistical, process of
identifying relationships between concepts in two domain ontologies. We speak of a case
where the concepts from both domain ontologies were manually, by human designers,
linked to a single upper ontology. Then, the needed automatic process consists only of
locating, accessing and use of relevant ontology specifications. This process we refer to in
this chapter as ontology linking. The definition of a domain ontology in terms of an upper
ontology acts as an annotation, i.e., is external to the agents and therefore may be added
when an agent is already in the operation. Therefore, an intelligent agent can potentially
communicate with a "stupid" agent (e.g. from a legacy system). It is even possible to connect
two "stupid" agents by putting an intelligent middleware in between.

Our approach to ontological coordination aims at enabling exactly the same: so that an agent
can express its action intention according to its own domain ontology. Then, assuming that
this ontology has a formal definition in terms of an upper ontology such as one by Tamma
et al., the agent receiving the message will be able to interpret it and understand if there is
any conflict with its own actions or if there is a possibility to re-use any of the shareable
results. In this chapter, we describe this approach. In particular, we show how we realize it
with the Semantic Agent Programming Language (S-APL) (Katasonov & Terziyan, 2008).

2. Ontological coordination principles

Let us consider the following communication scenario, which is readily enabled by the
standard technologies of the Semantic Web, namely RDF-S and OWL. Assume there are two
agents; let us call one Enquirer and another Responder. Assume the Responder knows the
following facts: org:Mary rdf:type person:Woman ; person:hasSon org:Jack, meaning that Mary is
a woman and has a son Jack. (The syntax for RDF we use here is one of Turtle and of
Notation3, see Berners-Lee, 2000a. We assume that the namespace org: refers to all entities
related to an organization and person: denotes an ontology of people and relationships that
is used in that organization).

www.intechopen.com



138 Semantic Web

Now assume that the Enquirer issues a SPARQL (W3C, 2008) query SELECT ?x WHERE {?x
rdf:type family:Mother} (definition of prefixes is omitted), i.e. "give me all entities that belong
to the class family:Mother". The result of executing this query is an empty set - the Responder
does not have any facts that would directly match the pattern given. The Responder can,
however, analyze the query and notice that the concept family:Mother is unknown to him.
This can be done, e.g., by simply checking if he has any RDF triple involving this concept.
So, the Responder decides to look for the ontology that defines it. In the simplest and
common case, the definition of the prefix family: in the query will give the URL of the online
OWL document defining the ontology in question. So, the Responder downloads it and
obtains the information that family:Mother is a subclass of human:Human with the restriction
that it must have a property human:hasSex with the value human:FemaleSex and must also
have at least one property human:hasChild. (We assume that the namespace human: denotes
some general upper ontology for describing human beings.) This additional information
does not yet change the result of the query execution, because the Responder does not have
a definition of his own person: ontology in terms of human: ontology. However, let us assume
that he is able to locate (e.g. from a registry) and download such a definition. In so, the
Responder obtains information that person:Woman is a subclass of person:Person which is in
turn a subclass of human:Human, and that person:WWoman has a restriction to have a property
human:hasSex with the value human:FemaleSex. Also, he obtains the fact that person:hasSon is a
sub-property of human:hasChild.

Then, the application of the standard RDF-S and OWL reasoning rules will infer that
org:Mary human:hasSex human:FemaleSex (because she is known to be a woman) and also that
org:Mary human:hasChild org:Jack (because having a son is a special case of having a child).
Immediately, the OWL rules will conclude that org:Mary rdf:type family:Mother and this
information will be sent back to the Enquirer. As can be seen, the concepts from the domain
ontology used by the Enquirer were, through an upper ontology, dynamically linked to the
concepts from the domain ontology used by the Responder. In so, the Enquirer was able to
use his own concepts when formulating a question and, yet, the Responder was able to
answer the question correctly.

i Domain ontology ! i Domain ontology
family: : i person:

Definition of
person:

Definition of
family:

human:

Upper ontology
rdf:, rdfs: , owl:

rRDF—S / OWL rules

Fig. 1. The logical components of the example

www.intechopen.com



Using Semantic Technology to Enable Behavioural Coordination of Heterogeneous Systems 139

Figure 1 depicts the logical components involved in this example. There are two upper
ontologies involved. One is the ontology of RDF-S/OWL itself - one operating with
concepts such as class, subclass, property, restriction on property, etc. The other one is a
basic agreed common vocabulary about human beings. Then, there should be a specification
for each domain ontology involved - a definition that links the concepts from that ontology
to an upper ontology (human: in this case), normally using concepts from another upper
ontology (RDF-S/OWL properties in this case). Finally, at least one of the upper ontologies
(RDE-S/OWL in this case) must come with a set of rules defined. These rules, when applied
to the existing facts and domain ontologies' definitions, are supposed to infer new facts and
in so to enable the understanding between agents.

In the simple example above, the RDF graph we obtain after merging all sub-graphs in
question (data plus two ontology specifications) is a sufficiently connected one, so that all
the needed interpretations are directly possible. In many practical cases, this will not be a
case, thus requiring ontology alignment (also known as ontology matching or ontology
mapping). For example, we might not to know the fact that person:hasSon is a sub-property
of human:hasChild. Ontology alignment is an important open challenge in the Semantic Web
research (see e.g. Tamma & Payne, 2008; Shvaiko & Euzenatsh, 2008) and is outside the
scope of this chapter. Note that we include "attempt ontology alignment" in Figure 3 below
as the last resort for a case when ontology linking did not succeed; we do not discuss,
however, how this can be done.

Agent 1 Agent 2

1. | planto ‘'send’ ‘some.pdf 2. * I now Scan a document on AgPS4e
to ‘AgPS4e’ * Does Agent1’s intention concern me?
L —— 4 AgPS4e is a multi-function printer =>
— ] " Agent 1 needs only the printing part of it
7. Goon
| use only the scanning part of AgPS4e =>
" No conflict
Performing the

behavior “send” on 5 Scan utilizes only
a digital document 3 .

the scanning
component of the

device if itis a

multi-function
printer.

and a printer means
Print activity.
Print utilizes only
the printing
component of the
device if it is a multi-
function printer.

Definition of Agent2’s {

Definition of Agentl’s
domain ontology

domain ontology

Fig. 2. Ontological coordination situation

As was stated in Section 1, our goal is to enable more flexible and dynamic ontological
coordination among agents, at least at the level of how RDF-S and OWL enable dynamic
linking of entities' class hierarchies. Figure 2 depicts an example situation. Agentl informs
Agent2 that he plans to "send" some resource called "some.pdf'" to some resource called
"AgPS4e". Let us assume that Agent2 can recognize the former resource as a digital

www.intechopen.com



140 Semantic Web

document and the latter resource as a multi-function printer. Agent2 is currently utilizing
(or plans to) the scanning function of AgPS4e. So, an obvious question appears is there any
conflict between this activity and Agent1’s intention.

Following a similar workflow as in RDF-S/OWL example earlier, Agent2 could try to locate
a specification of the domain ontology of activities used by Agentl. From such a
specification, he would receive information that, in the vocabulary of Agentl, sending a
document to a printer corresponds to executing Print activity, that Print holds the printer for
the whole time of the activity, and that if a multi-function printer is in question (that can
also scan, copy, etc.) Print requires only the printing component of it. Then, if this has not
been done yet, Agent2 would have to locate the definition of his own domain ontology of
activities to obtain similar information about his own ongoing activity Scan. Finally,
combining all this information, Agent2 would infer that he and Agentl need different
components of the multi-function printer AgPS4e that can be engaged independently and,
therefore, there is no conflict.

Intention Data

{ Domain ontology
DO1 DO2 |

__________________________________________________

Definition of
DO2

Definition of
DO1

| Upper ontology:
i Coordination

| Upper ontology: |
; BDI

|TJpper ontology rules

rCoordination rules

Fig. 3. Ontological coordination framework

By the analogy with Figure 1, Figure 3 depicts the logical components needed to realize this.
Let us assume that an agent communicates to another agent his intentions with respect to
future actions, and let us assume that he does this using a vocabulary unknown to the
receiver. There are two upper ontologies involved. One is the coordination ontology, i.e. one
that operates with the concepts such as activity and resource, like one provided by Tamma
and colleagues (Tamma et al., 2005; Moyaux et al., 2006). The other upper ontology is the
ontology of mental attitudes of agents. Since the Beliefs-Desires-Intentions (BDI) architecture
(Rao & Georgeff, 1991) is quite a standard approach, Figure 3 assumes the BDI ontology in
place of this ontology of mental attitudes. The definition of a domain ontology have to
therefore link it to these two upper ontologies, in a way that will enable the upper ontology
rules to do the following;:

1. Interpret an expression of a mental attitude conveying an action intention to obtain

the identifier of the intended activity.

www.intechopen.com



Using Semantic Technology to Enable Behavioural Coordination of Heterogeneous Systems 141

2. Match the activity description in the domain ontology definition with the intention
to understand what resources will be utilized and results produced by the intended
action.

For example, in FIPA SL communication content language (FIPA, 2002), an action intention
is expressed using a construct like (I (agent-identifier :name agentl) (done (action (agent-
identifier :name agentl) (print some.pdf AgPS4e)))). In a simplest case, the upper ontology rules
have to extract the name of the activity "print" and then, from the semantic definition of that
activity, understand that "AgPS4e" is the identifier of the resource (printer) that is going to
be utilized by the intended action. As can be seen, these rules, as well as corresponding
activities” definitions, have to be tailored to a particular language used in communication. In
addition, more complex cases are likely and have to be handled, where the activity name as
modelled in the ontology is not present directly in the expressed intention but has to be
inferred from the action parameters. As in the example depicted in Figure 2, the intention
could have been given as "send some.pdf AgPS4e". Then, the fact that the printing activity is
meant has to be inferred from combining a more general and ambiguous "send" with known
classes of the resources some.pdf (a document) and AgPS4e (a printer).

In our work, we utilize the Semantic Agent Programming Language (S-APL) (Katasonov &
Terziyan, 2008) instead of SL or similar. An S-APL expression is an RDF graph itself, which
greatly simplifies describing activities in an ontology to enable the rules to match them with
expressed intentions and to do all needed interpretations (see Section 4).

Figure 3 also includes the coordination rules as the part of the framework. Those rules operate
on the output of the upper ontology rules in order to e.g. identify conflicts between activities
and propose resolution measures, like those described in Moyaux et al. (2006).

|
No Yes
Yes No
Is a registered upper ontology?

Obtain the definition of own
domain ontology in terms of
the upper ontology

Attempt one or both:
» Download online ontology definition

- may have to ask the sender for URL
» Ask the sender for the ontology definition

No Yes

Success?

Done ’ Respond: NOT UNDERSTOOD

Fig. 4. Dynamic ontology linking process

www.intechopen.com



142 Semantic Web

Assuming that an agent received a message and identified it as conveying an action
intention of another agent, the flowchart of the ontology linking process is depicted in
Figure 4. The terminator 'Done' implies only the end of this particular process. The upper
ontology rules and the coordination rules can then trigger some follow-up actions.

3. Semantic Agent Programming Language (S-APL)

The main motivation for the development of the Semantic Agent Programming Language
(S-APL) (Katasonov & Terziyan, 2008) was to facilitate the dynamic coordination of
heterogeneous systems according to the principles presented in Section 2. S-APL provides a
common medium for realizing all the stages of the ontological coordination framework
described.

S-APL is an RDF-based language that integrates the semantic description of domain
resources with the semantic prescription of the agents' behaviours. S-APL is a hybrid of
semantic rule-based reasoning frameworks such as N3Logic (Berners-Lee et al., 2008) and
agent programming languages (APLs) such as e.g. AgentSpeak(L) (Rao, 1996). From the
semantic reasoning point of view, S-APL is an extension of CWM (Berners-Lee, 200b) with
common APL features such as the BDI architecture, which implies an ability to describe
goals and commitments - data items presence of which leads to some executable behaviour,
and an ability to link to sensors and actuators implemented in a procedural language,
namely Java. From the APL point of view, S-APL is a language that has all the features (and
more) of a common APL, while being RDF-based and thus providing advantages of
semantic data model and reasoning. S-APL can be used as a programming language as well
as the content language in the inter-agent communications: in querying for data, in
requesting for action, as well as in communicating plans and intentions.

Fig. 5. Architecture of an S-APL agent

www.intechopen.com



Using Semantic Technology to Enable Behavioural Coordination of Heterogeneous Systems 143

The architecture of an S-APL agent is depicted in Figure 5. The basic 3-layer structure is
common for the APL approach. There is the behaviour engine implemented in Java, a
declarative middle-layer, and a set of sensors and actuators which are again Java
components. The latter we refer to as Reusable Atomic Behaviours (RABs). We do not restrict
RABs to be only sensors or actuators, i.e. components concerned with the agent’s
environment. A RAB can also be a reasoner (data-processor) if some of the logic needed is
impossible or is not efficient to realize with S-APL, or if one wants to enable an agent to do
some other kind of reasoning beyond the rule-based one. We also equip each agent with a
blackboard, through which RABs can exchange arbitrary Java objects, for cases where the
use of semantic data is not possible.

The middle layer is the agent’ beliefs storage. What differentiates S-APL from traditional
APLs is that S-APL is RDF-based. In addition to the advantages of the semantic data model
and reasoning, an extra advantage is that in S-APL the difference between the data and the
program code is only logical but not any principal. Data and code use the same storage, not
two separate ones. This means that a rule upon its execution can add or remove another
rule, the existence or absence of a rule can be used as a premise of another rule, and so on.
None of these is normally possible in traditional APLs treating rules as special data
structures principally different from normal beliefs which are n-ary predicates. S-APL is
very symmetric with respect to this - anything that can be done to a simple RDF statement
can also be done to any belief structure of any complexity.

As Figure 5 stresses, an S-APL agent can obtain the needed data and rules not only from
local or online documents, but also through querying S-APL repositories. Such a repository,
for example, can be maintained by some organization and include prescriptions (lists of
duties) corresponding to the organizational roles that the agents are supposed to play. In
our implementation, such querying is performed as inter-agent action with FIPA ACL
messaging but does not involve any query or content languages beyond S-APL itself. As can
be seen from Figure 5, agents also can load RABs remotely. This is done as an exception
mechanism triggered when a rule prescribes engaging a RAB while the agent does not have
it available. Thus, organizations are able to provide not only the rules to follow but also the
tools needed for that.

Our implementation of the S-APL platform is built on the top of the Java Agent
Development Framework (JADE) (Bellifemine et al., 2007). JADE provides communication
infrastructure, agent lifecycle management, agent directory-based discovery and other
standard services.

The syntax for RDF used in S-APL is one of Notation3 (N3) (Berners-Lee, 2000a) and S-APL
utilizes the syntax for rules very similar to that of N3Logic (Berners-Lee et al., 2008). N3 was
proposed as a more compact, better readable and more expressive alternative to the dominant
notation for RDF, which is RDF/XML. One special feature of N3 is the concept of formula that
allows RDF graphs to be quoted within RDF graphs, e.g. {org:room1 org:hasTemperature 25}
org:measuredBy org:sensorl. An important convention is that a statement inside a formula is not
considered as asserted, i.e., as a general truth. In a sense, it is a truth only inside a context
defined by the statement about the formula and the outer formulas. In S-APL, we refer to
formulae as context containers. The top level of the S-APL beliefs storage, i.e. what is the general
truth for the agent, we refer to as general context or just G.

The technical details of S-APL can be found in Katasonov (2008). Below, we describe the
main constructs of S-APL. We use three namespaces: sapl: for S-APL constructs, java: for

www.intechopen.com



144 Semantic Web

RABs, and p: for the parameters of standard (being a part of the S-APL platform) atomic
behaviours. The namespace org: is used for resources that are assumed to be defined
elsewhere.

The two constructs below are equivalent and define a simple belief. The latter is introduced
for syntactic reasons.

org:rooml org:hasTemperature 25.
{org:rooml org:hasTemperature 25} sapl:is sapl:true.

The next two constructs add context information:

{org:rooml org:hasTemperature 25} org:measuredBy org:sensorl.
{org:rooml org:hasTemperature 25} sapl:is sapl:true;
org:measuredBy org:sensorl.

The former states that "sensorl measured the temperature to be 25" without stating that "the
agent believes that the temperature is 25". In contrast, the latter states both. This
demonstrates a specific convention of S-APL: rather than doing several statements about
one container, "{...} P1 O1; P2 O2" leads to linking the statements inside the formula to two
separate containers. Then, using sapl:true it is also possible to link some statements to a
container and to one of its nested containers.

The goals of the agent and the things that the agent believes to be false (not just unknown)
are defined, correspondingly, as:

sapl:I sapl:want {org:rooml org:hasTemperature 25}.
{org:rooml org:hasTemperature 25} sapl:is sapl:false.

sapl:l is an indicative resource that is defined inside the beliefs of an agent to be owl:sameAs
the URI of that agent. A specific convention of S-APL is that e.g. "sapl:I sapl:want {A B C}.
sapl:I sapl:want {D E F}" is the same as "sapl:I sapl:want {A B C. D E F}". In other words, the
context containers are joined if they are defined through statements with the same two non-
container resources.

The commitment to an action is specified as follows:

{sapl:I sapl:do java:ubiware.shared.MessageSenderBehavior}
sapl:configuredAs {
p:receiver sapl:is org:John.
p:content sapl:is {org:rooml org:hasTemperature 25}.
sapl:Success sapl:add
{org:John sapl:is org:notified}

}

The java: namespace indicates that the action is a RAB. Otherwise, the action would
correspond to an S-APL plan (kind of subprogram) specified elsewhere. When the
behaviour engine finds such a belief in G, it executes the RAB and removes the commitment.
In the configuration part, one may use special statements to add or remove beliefs. The
subject can be sapl:Start, sapl:End, sapl:Success, sapl:Fail. The predicate is either sapl:add or
sapl:remove. Using such statements, one can also easily specify sequential plans: {sapl:]
sapl:do ...} sapl:configuredAs {... sapl:Success sapl:add {{sapl:I sapl:do ...} sapl:configuresAs {...}}}.
Beliefs can also be added or removed through explicit mental actions:

sapl:I sapl:remove {?x sapl:is org:notified}

www.intechopen.com



Using Semantic Technology to Enable Behavioural Coordination of Heterogeneous Systems 145

sapl:I sapl:add {org:John sapl:is org:notified}

sapl:remove uses its object as a pattern that is matched with G and removes all beliefs that
match. Use of variables (as ?x above), filtering conditions, etc. is possible. sapl:add adds its
object to G. It does not need to be normally used, since just stating something is the same as
adding it to G. This construct is only needed when one wants to postpone the creating of the
belief until the stage of the agent run-time cycle iteration when commitments are treated, or
when one uses as the object a variable holding the ID of a statement or a container (see
below).

The conditional commitment is specified as:

{
{?room org:hasTemperature ?temp} org:measuredBy ?sensor.
?temp > 30
Fo=> {00}
=> and > are shorthands for sapl:implies and sapl:gt, correspondingly. The object of sapl:gt
and other filtering predicates (>=, <, <=, =, |=) is an expression that can utilize arithmetic
operations, functions like abs, floor, random, etc. and string-processing functions like length,
startsWith, substring, etc. When the behaviour engine finds in G a belief as above and finds
out that all the conditions in the subject context container are met, it copies to G all the
beliefs from the object container substituting variables with their values. Those can be
simple beliefs and/or commitments, unconditional or conditional. S-APL allows a variable
value to substitute a part of a resource, e.g. "logs/?today/received". Such a liberty is in
contrast with, e.g., N3Logic approach where a variable value can only be a substitute for the
whole resource; however, it was shown to greatly simplify the programming.
As with any commitments, the conditional commitment is removed after successful
execution. In order to create a persistent rule, the => statement has to be wrapped as:

{ {...} => {...} } sapl:is sapl:Rule

A specific convention of S-APL is that if there are several possible solutions to the query in
the left side of =>, the right side is copied by default for the first-found solution only. One
can use sapl:All wrappings to define that the right part has to be copied several times: for
every unique value of some variable of every unique combination of the values of some
variables. These wrapping can be used in either the left or the right side:

{ {{ ... } sapl:All ?x} sapl:All 2?2y } => {...}
{...y => { {{...} sapl:All ?x} sapl:All 2y }

sapl:All on the right side is allowed to enable defining different wrappings for different (top-
level) resulting statements, e.g. {...} => {X Y Z . {{?x L ?y} sapl:All ?y. A B ?x} sapl:All ?x}. On
the left side of =>, sapl:All must always wrap the whole contents of the container.

Other solutions set modifiers are also available, namely sapl:OrderBy,
sapl:OrderByDescending, sapl:Limit, and sapl:Offset. The meaning of those are the same as of
their equivalents in SPARQL. One can also wrap a condition in the left side of => with
sapl:Optional to have the same effect as SPARQL's OPTIONAL, and connect two conditions
with sapl:or to have the same effect as SPARQL's UNION. It is also possible to specify
exclusive conditions, i.e. ones that must not be know to be true, by using the wrapping sapl:1
sapl:doNotBelieve {...}.

There are also several of alternatives to =>, including;:

www.intechopen.com



146 Semantic Web

{...} > {...} ; sapl:else {...}
{...} ==> {...}

-> and ==> are the shorthands for sapl:impliesNow and sapl:infers. -> specifies a conditional
action rather than a commitment: it is checked only once and removed even if it was false.
One can also combine it with sapl:else to specify the beliefs that have to be added if the
condition was false. ==> works almost the same as => with the following difference. If one
uses => inside a persistent rule for semantic inference (generating new facts from existing
ones), one needs to: (1) add to the head of the rule the negation of the tail the rule - to avoid
continuous non-stop execution of the rule; (2) use a set of sapl:All wrappings - for all
relevant variables - to enforce that the rule infers all possible facts in one iteration. When
using ==>, these two things are done automatically - negation of the tail is checked and the
rule is executed for every solution found.

One can also define new calculated variables:

{?person org:hasHeight ?h. ?feet sapl:expression ''?h/0.3048'"'.
?m sapl:min ?feet } => {...}

sapl:expression gives to the new variable the value coming from evaluating an expression.
sapl:min is a special predicate operating on the set of matching solutions rather than on a
particular solution - it determines the minimum value of the variable. The other predicates
from the same group are sapl:max, sapl:sum, sapl:count (number of groups when grouped by
values of one or several variables) and sapl:countGroupedBy (number of members in each
group).

Variable can also refer to IDs of statements and context containers, and one can use the
predicates sapl:hasMember, sapl:memberOf, rdf:subject, rdf:predicate and rdf:object. After
obtaining the ID of the container with ?x org:accordingTo org:Bill, one can do the following
things:

{... {?x sapl:is sapl:true} org:accordingTo org:John} => {...}
?x sapl:is sapl:true

sapl:I sapl:add ?x

sapl:I sapl:remove ?x

sapl:I sapl:erase ?x

?x sapl:hasMember {org:rooml org:hasTemperature 25}

The first construct defines a query that is evaluated as true iff any belief that is found in the
context container ?x has a match in the context container {} org:accordingTo org:John. The
second one links the statements from ?x to G, while the third copies them to G. The fourth
uses the contents of ?x as the pattern for removing beliefs from G, while the fifth erases the
container ?x itself. Finally, the sixth adds to the container ?x a new statement.

There are several ways to create a variable holding IDs of some statements:

{{?room org:hasTemperature 25} sapl:ID ?x}
org:accordingTo org:Bill
{?x rdf:predicate org:hasTemperature} org:accordingTo org:Bill
{?x sapl:is sapl:true} org:accordingTo org:Bill
?c org:accordingTo org:Bill. 7?c sapl:hasMember ?x

www.intechopen.com



Using Semantic Technology to Enable Behavioural Coordination of Heterogeneous Systems 147

The first will find all the statements inside the container {} org:accordingTo org:Bill that
match the pattern given, while the second all the statements with the predicate
org:hasTemperature. The third and the fourth will find all the statements in that container.
One can then use a query like {{?x sapl:is sapl:true} org:accordingTo org:Bill. {?x sapl:is sapl:true}
org:accordingTo org:John} => {...}, which is evaluated as true if there is at least one belief from
the first container that has a match in the second container. One can also use sapl:true,
sapl:add, sapl:remove, sapl:erase, sapl:hasMember and sapl:memberOf to do the same things
as listed above for containers, but for a single statement.

4. Defining classes of activities

In this and the following sections, we show how the general ontological coordination
framework described in Section 2 is realized with the Semantic Agent Programming
Language (S-APL) (see Section 3) plus a set of additional concepts we refer to as S-APL
Schema (SAPL-S).

In this context, we are mostly interested in one S-APL construct - intention (commitment) to
perform an action. As described in Section 3, such an intention is encoded in S-APL as:

{ sapl:I sapl:do <action name> } sapl:configuredAs
{ <parameter> sapl:is <value>. ... }

Such a construct, when found in the agent's beliefs, leads to execution of the specified action.
sapl:l is an indicative resource that is to be defined in the beliefs of an agent to be
owl:sameAs the URI of that agent. Obviously, substituting sapl:l with an URI of another
agent in the construct above would result in a description of somebody's else intention. A
simple example of an intention to send a message to another agent was provided in Section
3. Note that one can easily put a construct specifying another action intention as the contents
of the message (in place of the single triple in that example) - in order to communicate that
intention to the other agent.

An intention to perform an action, as any other S-APL construct, is just a logically connected
set of RDF triples (Notation3 allows to have a compact representation but does not change
the data model). If one wants to check if a larger S-APL dataset, e.g. the contents of a
message, includes an intention to perform a particular action, one can simply run a query
against the dataset. That query is given as a pattern, i.e. another set of RDF triples with some
of the resources being variables. For instance, the pattern matching any own action intention
is {sapl:I sapl:do ?x} sapl:configuredAs ?y. This is the same principle as followed in SPARQL for
querying general RDF datasets.

Moreover, we can make the following observations. First, a pattern that is universally
quantified by using variables can be seen as the definition of a class of S-APL constructs, i.e.
a class of agents' mental attitudes. Second, when considering inheritance (class-subclass)
hierarchies of mental attitudes, the definition of a subclass, in most cases, only introduces
some additional restrictions on the variables used in the definition of the super-class. If, e.g.
{sapl:I sapl:do ?x} sapl:configuredAs ?y is the definition of a general action, adding a statement
2x rdf:type org:PrintAction may be used to create the definition of a class of printing actions.
In S-APL, it is easy to record such patterns as data, merge patterns when needed, and use
patterns as queries against any given dataset - thus giving us all the needed means for
modelling classes of agents' activities and utilizing them in rules.

www.intechopen.com



148 Semantic Web

S-APL Schema (namespace sapls: below) defines a set of concepts needed for such
modelling. First, SAPL-S introduces a set of general classes of BDI mental attitudes, such as
a goal or an action intention. SAPL-S ontology defines these classes using the statements of
the type <class> sapl:is <pattern>. Second, SAPL-S provides a property sapls:restriction that
enables one to describe some additional restrictions on the pattern of a class to define some
subclasses of it.

An action intention is defined in SAPL-S as:

sapls:Action sapl:is {
{{?subject sapl:do ?behavior}
sapl:configuredAs ?parameters} sapl:ID ?id

}

The wrapping with the property sapl:ID is included in order to, when an action class
definition is used as a query pattern, receive the identifier of the matching action statement -
to enable removing or modifying it if wished.

One can then define a subclass of sapls:Action, for example:

org:Scan rdfs:subClassOf sapls:Action;
sapls:restriction {
?behavior rdf:type org:ScanAction.
?parameters sapl:hasMember
{org:device sapl:is ?device}.
{?device rdf:type org:ScanDevice.
?scanner sapl:expression ?device}
sapl:or {?device org:hasPart ?scanner.
?scanner rdf:type org:ScanDevice}

}

This definition specifies that org:Scan is an action intention to perform an atomic behaviour
or a plan that is known to belong to the class org:ScanAction, and that has a parameter
org:device referring to a device that either belongs to the class org:ScanDevice (a stand-alone
scanner) or has a part that belongs to that class (a multi-function printer). This definition is
made taking into account that we need to be able to specify which resource gets occupied by
the activity in question. In this case, it is one whose URI will be bound to the variable
?scanner (note that sapl:expression as used above works as simple assignment). In Section 6,
we will present the syntax for describing activities, including the resources they require.

Let us assume that we also define org:Print in exactly the same way as org:Scan, only with
org:PrintAction, org:PrintDevice and ?printer in places of org:ScanAction, org:ScanDevice
and ?scanner correspondingly. Then, we can also define org:Copy as intersection of both
without additional restrictions:

org:Copy rdfs:subClassOf sapls:Scan, sapl:Print

Logically, the pattern defining a mental attitude class is obtained by merging its own
sapls:restriction with all sapls:restriction of its super-classes and with sapl:is of the top of the
hierarchy. Therefore, an activity is classified as org:Copy if it is implemented with a plan
that is assigned to both org:ScanAction and org:PrintAction classes and that is performed on
a device that has both an org:ScanDevice part and an org:PrintDevice part. Of course, the
pattern will also match with a case where the whole device is tagged as both org:ScanDevice

www.intechopen.com



Using Semantic Technology to Enable Behavioural Coordination of Heterogeneous Systems 149

and org:PrintDevice. However, the latter would not be a good domain model since the
scanning component and the printing component of a multi-function printer are normally
independent resources, i.e., e.g., scanning a document does not block simultaneous printing
of another document by another process.

The reason for separating the base part of a pattern given as sapliis from the restrictions
given as sapls:restriction is that the base part can be evaluated against any given dataset, e.g.
the contents of a received message, while the restrictions are always evaluated against the
general beliefs base of the agent.

5. Using activity classes in policies

Before continuing discussion of the main topic of this chapter, namely dynamic coordination
over shared resources and shareable results, let us briefly discuss the utilization of the basic
definitions of activity classes in definitions of access control policies.

Semantic Web based approaches to access control policies have been developed in recent
years (Finin et al., 2008; Naumenko, 2007). In both Finin et al. (2008) and Naumenko (2007),
the access control policies are defined in terms of prohibitions or permissions for certain actors
to perform certain operations. Such policies may have a number of reasons behind them,
with one of the reasons being coordination over shared resources. Such coordination is not
dynamic, i.e. the conflicts are not resolved on per-instance basis. Rather, an agent with
authority imposes some restriction on other agents' behaviours to avoid the conflicts as
such. An example of such a policy could be "no employee other than the management is
allowed to use company printers for copying'. According to the syntax given in Finin et al.
(2008), such a policy could easily be defined by two statements (rbac: stands for role-based
access control):

org:Employee rbac:prohibited org:Copy.
org:Management rbac:permitted org:Copy

This definition assumes that org:Management is a subclass of org:Employee and that
permissions have priority over prohibitions (this is not discussed in Finin et al., 2008), i.e.
that the permission given to the management staff overrules the restriction put on a more
general class of employees.

Combining policy definitions with definitions of the activity classes (Section 3) enables
enforcement of the policies. An agent itself of an external supervisor can match the plans or
intentions of the agent with the activity classes and then check if those are in the scopes of
some defined policies. As a simplest reaction, an action that contradicts a policy can be
blocked.

Dynamic ontology linking is also enabled. This means that a policy can be formulated using
concepts originally unknown to the agent in question. For example, one may be informed
about a prohibition to org:Copy while one may not know what org:Copy means. Yet,
following the process sketched in Figure 3, one will be able to link this concept to org:Print
and org:Scan and, if those are also unknown, link them to the upper S-APL BDI concepts.

In contrast to Finin et al. (2008), Naumenko (2007) uses the concepts of prohibition and
permission as the statement classes rather than predicates. The activity class is used as the
predicate, and the policy statement is extended by specifying the class of the activity object.

www.intechopen.com



150 Semantic Web

We utilize this approach in our work and represent an access control policy as in the
example above in the form (sbac: stands for semantics-based access control):

{org:Employee org:Copy org:Printer}
sapl:is sbac:Prohibition.

{org:Management org:Copy org:Printer}
sapl:is sbac:Permission

By substituting org:Printer with e.g. org:PrinterAg4, the policy can be modified into "no
employee other than the management is allowed to use for copying printers located on the
4th floor of the Agora building". Such policy is probably more realistic than the former
because it may have a rationale that the managers use those printers for their higher-priority
tasks and want to avoid possible delays.

In order to enable such policy statements with objects, the definitions of org:Scan and of
org:Print in Section 3 have to be extended with the statement ?object sapl:expression ?device, so
that, after the matching an intention with the pattern, the variable ?object would be bound
to the activity object. Note that the variable ?subject, which is needed for both ways of
defining policies, was already included in the definition of sapls:Action.

6. Annotating activities for coordination

In terms of Figure 2, the approach to defining activity classes described in Section 4 enables
linking domain ontologies of activities to the upper BDI ontology and, therefore, the
interpretation of expressed mental attitudes. The interpretation may give information about
what activity is intended, by who (i.e. who is the subject), and on what object. As we
discussed in Section 4, the ability of making such basic interpretations can already be
utilized in policy mechanisms, such as those of access control. In order to enable more
complex and dynamic coordination schemes, however, the definition of activities have to be
also linked to the upper coordination ontology.

In this section, we describe such an ontology and show how coordination-related properties
are linked to basic definitions of the activity classes as presented in Section 4. We use the
namespace coord: to denote concepts belonging to this ontology. As was mentioned in
Section 1, with respect to a coordination ontology, we build on the work of Tamma and
colleagues (Tamma et al., 2005; Moyaux et al., 2006). Below, we first describe concepts that
correspond directly to those of Tamma et al. After that, we comment on limitations of the
ontology of Tamma et al. and present few extensions to it.

The central concepts of the coordination ontology are:

e coord:Agent - a thing that able of performing some actions that may require
coordination.

e coord:Process - something that that changes the state of the environment in some
way.

e coord:NonCoordinableActivity - a subclass of coord:Process for which coordination is
not possible. Non-coordinable activities can be natural events or other processes
that are outside of control of the agents comprising the system in question.

e coord:CoordinableActivity - a process performed by an agent that is a part of the
system in question, which therefore can be coordinated.

e coord:Resource - something that may be required to expedite an activity.

www.intechopen.com



Using Semantic Technology to Enable Behavioural Coordination of Heterogeneous Systems 151

When two activities require the same resource, the type and the effect of the interaction
depends on what resource is in question. The set of important subclasses of the class
coord:Resource are (note that Tamma et al. model these as boolean properties of
coord:Resource rather than subclasses of it):

e coord:ShareableResource. The resource that can be simultaneously used by two
activities, e.g. a computing unit. Simultaneous use normally results in activities
impeding, but not blocking, each other.

e coord:NonShareableResource. The resource that can only be used by one activity at a
time.

e coord:ConsumableResource. A special type of a non-shareable resource that is also
consumed when used, i.e. not available for any other activity afterwards.

e  coord:CloneableResource. The resource that can be duplicated for use in several
activities, e.g. an electronic document.

The set of properties used to describe activities follows:

e coord:actor - the agent performing the activity

e  coord:requires - a resource utilized by the activity.

e coord:shareableResult - a result produced by the activity that is in principle shareable
with another activities.

e coord:earliestStartDate - the earliest time at which the activity may begin; null
indicates that this information is not known. There are also similar predicates
coord:latestStartDate,  coord:latestEndDate,  coord:expectedDuration as well as
coord:actualStartDate and coord:actualEndDate.

e  coord:status - the execution status of the activity, which can be one of the following;:
requested, proposed, scheduled, continuing, suspended, failed, succeeded.

These properties have a double use: in operational data to describe the instances of
coord:CoordinableActivity and in activity ontologies to describe subclasses of sapls:Action.
The former use is straightforward, e.g:

_:act397 rdf:type coord:CoordinableActivity;
coord:requires org:AgPS4de

On the other hand, it would be uncommon for an ontological description of an activity class
to have a defined resource URI (i.e. always the same resource), defined start time, etc.
Therefore, in this use, the objects of all the properties above are allowed to be variables
which are to be initialized when matching the class definition with an expressed action
intention. For example, the org:Scan activity from Section 4 can be described with a
statement:

org:Scan coord:requires ?scanner.

As commented earlier, during the matching the variable ?scanner will be given the URI of a
stand-alone scanner or the scanning part of a multi-function printer. The statement above
simply puts that this URI corresponds to a resource that is utilized by the activity.

We could also define a subclass of org:Scan, org:ScanToFile, which allows saving the result of
scanning into a file whose name is given as the parameter org:saveTo, and then add a
description that this file is shareable with other activities and agents:

org:ScanToFile rdfs:subClassOf org:Scan;
sapls:restriction {

www.intechopen.com



152 Semantic Web

?parameters sapl:hasMember
{org:saveTo sapl:is ?file}.
}i

coord:shareableResult ?file.

Similarly, if the parameters of the action intention include the timestamp when the action is
planned to be executed, one could use a variable receiving this timestamp when annotating
the activity class with time-related properties. Here, arithmetic expressions are allowed, e.g.
?time+1000 (in milliseconds).

Given such annotations of activity classes, the interpretation rules in S-APL are to have the
basic form as follows:

{
?x rdfs:subClassOf sapls:Action.
sapls:Action sapl:is ?base.
?x sapls:restriction ?restriction.
?dataset sapl:hasMember {?base sapl:is sapl:true}.
?restriction sapl:is sapl:true.
{ ?x coord:requires ?res.
?resource sapl:expression ''valueOf (?res)''
} sapl:is sapl:Optional.

_:?id rdf:type coord:CoordinableActivity; rdf:type ?x;
coord:actor ?subject; coord:requires ?resource

}

Here, for the sake of brevity, we assume that there exist additional rules that do the pre-
processing of the activity class hierarchies. These rules extend sapls:restriction of an activity
class with sapls:restriction of its super-classes and also extend the activity class annotation
with coord:requires, coord:sharedResult, etc. of the super-classes. (It is also possible, of
course, to write a longer interpretation rule that does not require such pre-processing). The
variable ?dataset is assumed to refer to the dataset which is being searched for an action
intention, e.g. the contents of a message. sapl:Optional wraps a non-mandatory part of the
query, similarly to a corresponding construct in SPARQL. If the variable ?resource will not
get bound, the statement in the right hand of the rule that uses this variable will not be
created. In this example, the activity URI is generated as the blank node prefix _: plus the
identifier of the intention statement.

One limitation of the ontology of Tamma et al. is that it does not provide for explicit
modelling of the effect of activities on the resources they utilize. The ontology includes a
possibility to define a resource as being consumable (see above). However, there is no way of
distinguishing between activities that consume the resource, e.g. printing on paper, and
activities that reserve the resource (make unavailable to other activities) without the
consumption, e.g. transporting a package of paper from one place to another. Similarly, in
many cases, it is needed to distinguish between an activity that destroys a resource (e.g.
erases a file) and an activity that uses it (e.g. reads the file). Additionally, one may want to
be able to distinguish between consuming/destroying a resource and changing it. For
example, printing on a sheet of paper does not destroy it. It consumes it in the sense that it
makes the sheet unavailable for future printing activities; however the sheet remains usable

www.intechopen.com



Using Semantic Technology to Enable Behavioural Coordination of Heterogeneous Systems 153

for other activities that do not depend on the sheet being clean. In short, the coordination
ontology has to be extended with constructs that will enable describing the effect of an
activity on a resource or an attribute of that resource.

There is also a challenge related to increasing the flexibility of the approach by allowing
some of an activity's parameters to come from the background knowledge of the listener
agent rather than from the expressed action intention directly. For example, an agent X can
inform an agent Y about the intention to print a document without specifying the printer.
Yet, Y could know what printer X normally uses and make the interpretation based on that.
An even more interesting scenario is where X informs Y about an intention to ask some third
agent, Z (e.g. a secretary), to print a document for him. In addition, some of the resources
used by an activity might not be mentioned in the action intention. For example, a printing
intention would not normally mention paper in the expressed parameters. Yet, we may
want to be able to specify that the paper will be consumed in the activity. The ontology of
Tamma et al. does not include concepts or properties to enable this.

Finally, we may want to be able to connect the parameters of an action intention with time-
related estimates. For example, the expected duration of the printing activity is related to the
number of pages to print. Realizing this is possible by including an extra statement like ?file
org:hasPages ?pages into the activity class definition, and then by annotating the activity class
as <activity> coord:expectedDuration “?pages*1000”. We can also wrap this extra statement
with {} sapl:is sapl:Optional, so that absence of information about the number of pages of the
printed document would not lead to not counting the action as printing, but only to inability
to provide the duration estimate. However, we believe that the definition of an activity class
and its coordination-related annotation should not be mixed in such a way. Rather, a
separate construct is needed.

For these reasons above, we extended the coordination ontology with the following
properties that are to be used in activity ontologies to describe subclasses of sapls: Action:

e coord:assumption - a pattern for querying the beliefs storage of the agent to extend
the information given explicitly in the action intention. In principle, this construct
is very similar to the concept of precondition of an activity. However, the statements
given are not treated as required since we can not assume the agent to be
omniscient.

e coord:effect - the expected rational effect of the activity. Specifies changes to the
resources that the activity uses or other environment entities.

The definition below of a subclass of org:Print, org:PrintFile, provides an example of using
these two properties:

org:PrintFile rdfs:subClassOf org:Print;

sapls:restriction {

?parameters sapl:hasMember

{org:input sapl:is ?file}.

}i
coord:assumption {

?file org:hasPages ?pages.

?printer org:hasSheetsOfPaper ?sheets.

?remain sapl:expression ''?sheets-?pages''
}i
coord:expectedDuration "?pages*1000";
coord:effect {?printer org:hasSheetsOfPaper ?remain}

www.intechopen.com



154 Semantic Web

The last element in the ontological coordination framework presented in Section 2 and
depicted in Figure 3 is the coordination rules. Those rules attempt to identify conflicts
between activities and propose resolution measures. An example of a coordination rule in S-
APL follows:

{

?x rdf:type coord:Activity; coord:actor sapl:I;
coord:requires ?r.

?y rdf:type coord:Activity; coord:actor ?agent;
coord:requires ?r.

?r rdf:type coord:NonShareableResource.

?ca rdf:type org:ContractualAuthority;
org:hasSourceAgent ?agent;
org:hasTargetAgent sapl:I

} => {... postpone or suspend own activity ...}

This example uses the concept of the operational relationship from Moyaux et al. (2006). An
operation relationship is a relationship between agents that implies the priority of one over
the other. ContractualAuthority is a subclass of OperationalRelationship that implies that
the "source" agent has the priority over the "target" agent. Moyaux et al. (2006) put these
concepts as part of the coordination ontology. The operational relationship concept is
important for coordination, however, we believe that it should be a part of a larger
organizational ontology rather than embedded into the coordination ontology. This is why
in the example above we did not put these concepts into the coord: namespace.

7. Conclusions

When considering systems where the agents and resources composing them may be
unknown at design time, or systems evolving with time, there is a need to enable the agents
to communicate their intentions with respect to future activities and resource utilization and
to resolve coordination issues at run-time. In an ideal case, we would like also to allow ad-
hoc interaction of systems, where two stand-alone independently-designed systems are able
to communicate and coordinate whenever a need arises. Consider, for example, two robots
with totally unrelated goals who need to coordinate their activities when they happen to
work in the same physical space.

Enabling such a dynamic coordination among highly heterogeneous applications is an even
harder problem than more traditional problems of data-level or protocol-level
heterogeneity. While the Semantic Web technologies are designed to handle the latter
problems, they also provide a basis for handling the coordination problem.

The Semantic Web based approach presented in this chapter aims at enabling agents to
coordinate without assuming any design-time ontological alignment of them. An agent can
express an action intention using own vocabulary, and through the process of dynamic
ontology linking other agents will be able to arrive at a practical interpretation of that
intention. The definition of the domain ontology in terms of an upper ontology must be
provided. However, such a definition is external to the agents and may be added later,
when an agent is already in the operation.

In result, an intelligent agent can potentially communicate with a "stupid" agent, e.g. from a
legacy system. It is also possible to connect two "stupid" agents by putting an intelligent

www.intechopen.com



Using Semantic Technology to Enable Behavioural Coordination of Heterogeneous Systems 155

middleware in between. This work has been performed in a research project UBIWARE
(Katasonov et al., 2008) where the latter case is a major motivation. The interests of the
project industrial partners are in Enterprise Application Integration and data integration,
with an accent on enabling new intelligent business processes in systems created by
interconnecting independently-designed applications and data sources that often do not
share a common data model or even ontology.

In this chapter, we first described our general framework for dynamic ontological
coordination. Then, we showed how we realize this framework on top of the Semantic
Agent Programming Language. In so, this chapter provided a functional vertical solution.
One can develop agents with S-APL and instruct them to communicate their intentions
using S-APL as the communication content language, i.e. basically send to other agents
small pieces of their own code. Then, one can develop needed definitions of the ontologies
of activities (Section 4), extend them with coordination-related properties (Section 6) and
implement various coordination rules (Section 6), thus getting a fully working solution.
Additionally, one can specify and enforce access control policies (Section 5). Of course, the
value of the general framework goes beyond this particular S-APL implementation.

One limitation of our present approach, which poses an important challenge to be addressed
in the future work, is the following. We assumed so far that the conflicts among activities
are identifiable from the activities” descriptions alone. However, if an activity changes an
attribute of a resource, the resource may undergo some follow-up changes due to
environmental causes, thus leading to a conflict. For example, the activity of opening a food
container would not be seen as conflicting with a later activity of consuming the food in the
container, unless considering that the food in an open container will spoil faster than in a
closed one. This implies that for many practical cases the identification of conflicts has to be
performed as reasoning or planning process rather than based on straightforward rules.

8. References

Bellifemine, F. L., Caire, G. & Greenwood, D. (2007). Developing Multi-Agent Systems with
JADE, Wiley

Berners-Lee, T. (2000a) Notation 3: A readable language for data on the Web, online:
http:/ /www.w3.org/Designlssues/Notation3.html

Berners-Lee, T. (2000b) CWM: A general-purpose data processor for the semantic web, online:
http:/ /www.w3.org/2000/10/swap/doc/cwm

Berners-Lee, T., Connoly, D., Kagal, L., Scharf, Y. & Hendler ]. (2008). N3Logic: A logical
framework for the World Wide Web, Theory and Practice of Logic Programming,
Vol.8, No.3, pp. 249-269

Decker, K. & Lesser, V. (1995) Designing a family of coordination algorithms. Proceedings of
1st Intl. Conf. on Multi-Agent Systems, pp. 73-80. AAAI Press

Finin, T., Joshi, A., Kagal, L., Niu, J., Sandhu, R., Winsborough, W. & Thuraisingham, B.
(2008). ROWLBAC: Role based access control in OWL, Proceedings of ACM
Symposium on Access Control Models and Technologies, pp. 73-82

Foundation for Intelligent Physical Agents (2002). FIPA SL Content Language Specification,
online: http:/ /www .fipa.org/specs/fipa00008 /SCO0008L. pdf

Jennings, N., Sycara, K. P. & Wooldridge, M. (1998). A roadmap of agent research and
development, Autonomous Agents and Multi-Agent Systems, Vol. 1, No.1, pp.7-38

www.intechopen.com



156 Semantic Web

Katasonov, A. (2008). UBIWARE Platform and Semantic Agent Programming Language (S-APL).
Developer’s guide, online: http:/ /users.jyu.fi/ ~akataso/SAPLguide.pdf

Katasonov, A., Kaykova, O., Khriyenko, O., Nikitin, S. & Terziyan, V. (2008). Smart semantic
middleware for the internet of things, Proceedings of 5th International Conference on
Informatics in Control, Automation and Robotics, Vol. ICSO, pp. 169-178

Katasonov A. & Terziyan, V. (2008) Semantic agent programming language (S-APL): A
middleware platform for the Semantic Web, Proceedings of 2nd IEEE International
Conference on Semantic Computing, pp. 504-511

Motta, E. & Sabou, M. (2006). Next generation semantic web applications, Proceedings of
ACM Asian Semantic Web Conference, LNCS vol.4185, pp. 24-29

Moyaux, T., Lithgow-Smith, B., Paurobally, S.,, Tamma, V. & Wooldridge, M. (2006).
Towards service-oriented ontology-based coordination, Proceedings of IEEE
International Conference on Web Services, pp. 265-274

Naumenko, A. (2007). Semantics-based access control - Ontologies and feasibility study of
policy enforcement function, Proceedings of 3rd ACM International Conference on Web
Information Systems and Technologies, Vol. Internet Technologies, pp. 150-155

Rao, A. (1996). AgentSpeak(L): BDI agents speak out in a logical computable language,
Proceddings of 7th European Workshop on Modelling Autonomous Agents in a Multi-
Agent World, LNCS vol.1038, pp. 42-55

Rao, A. & Georgeff, M. (1991). Modeling rational agents within a BDI architecture,
Proceedings of 2nd International Conference on Principles of Knowledge Representation
and Reasoning, pp. 473-484

Shvaiko, P. & Euzenat, J. (2008). Ten challenges for ontology matching, Proceedings of 7th
Conference on Ontologies, Databases, and Applications of Semantics

Tamma, V., Aart, C., Moyaux, T., Paurobally, S., Lithgow-Smith, B. & Wooldridge, M.
(2005). An ontological framework for dynamic coordination, Proceedings of 4th
Semantic Web Conference, LNCS vol. 3729, pp. 638-652

Tamma, V. & Payne, T. (2008). Is a Semantic web agent a knowledge-savvy agent? IEEE
Intelligent Systems, Vol. 23, No.4, pp. 82-85

W3C (2008). SPARQL Query Language for RDF, W3C Recommendation 15 January 2008,
online: http:/ /www.w3.org/TR/rdf-sparql-query/

www.intechopen.com



Semantic Web
Semantic Web .
B Edited by Gang Wu

ISBN 978-953-7619-54-1

Hard cover, 310 pages

Publisher InTech

Published online 01, January, 2010
Published in print edition January, 2010

Having lived with the World Wide Web for twenty years, surfing the Web becomes a way of our life that cannot
be separated. From latest news, photo sharing, social activities, to research collaborations and even
commercial activities and government affairs, almost all kinds of information are available and processible via
the Web. While people are appreciating the great invention, the father of the Web, Sir Tim Berners-Lee, has
started the plan for the next generation of the Web, the Semantic Web. Unlike the Web that was originally
designed for reading, the Semantic Web aims at a more intelligent Web severing machines as well as people.
The idea behind it is simple: machines can automatically process or “understand” the information, if explicit
meanings are given to it. In this way, it facilitates sharing and reuse of data across applications, enterprises,
and communities. According to the organisation of the book, the intended readers may come from two
groups, i.e. those whose interests include Semantic Web and want to catch on the state-of-the-art research
progress in this field; and those who urgently need or just intend to seek help from the Semantic Web. In this
sense, readers are not limited to the computer science. Everyone is welcome to find their possible intersection
of the Semantic Web.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Artem Katasonov and Vagan Terziyan (2010). Using Semantic Technology to Enable Behavioural Coordination
of Heterogeneous Systems, Semantic Web, Gang Wu (Ed.), ISBN: 978-953-7619-54-1, InTech, Available
from: http://www.intechopen.com/books/semantic-web/using-semantic-technology-to-enable-behavioural-
coordination-of-heterogeneous-systems

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE BT ERL K655 LiBEPR R A RIE IMAE4058 7T
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed under
the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0
License, which permits use, distribution and reproduction for non-commercial
purposes, provided the original is properly cited and derivative works building
on this content are distributed under the same license.




