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82334, Weßling, Germany

1. Introduction

On-orbit servicing space robot is one of the challenging applications in space robotic field.
Main task of the on-orbit space robot involves the tracking, the grasping and the positioning
of a target. The dynamics in operational space is useful to achieve such tasks in Cartesian
space. The operational space dynamics is a formulation of the dynamics of a complex branch-
ing redundant mechanism in task or operational points. Khatib proposed the formulation of a
serial robot manipulator system on ground in (Khatib, 1987). Russakow et. al. modified it for
a branching manipulator system in (Russakow et al., 1995). Chang and Khatib introduced effi-
cient algorithms for this formulation, especially for operational space inertia matrix in (Chang
& Khatib, 1999; 2000).
The operational space dynamics of the space robot is more complex than that of the ground-
based manipulator system since the base-satellite is inertially free. However, by virtue of no
fixed-base, the space robot is invertible in its modeling and arbitrary operational points to con-
trol can be chosen in a computational efficient manner. By making use of this unique character-
istic, we firstly propose an algorithm of the dynamics of a single operational point in the space
robot system. Then, by using the concept of the articulated-body algorithm(Featherstone,
1987), we propose a recursive computation of the dynamics of multi-operational points in the
space robot. The numerical simulations are carried out using a two-arm space robot shown in
Fig. 1.
This chapter is organized as follows. Section 2 describes basic dynamic equations of free-
flying and free-floating space robots. Section 3 derives the operational space formulation of
both types of space robots. Section 4 briefly introduces spatial notation to represent complex
robot kinematics and dynamics, which is used for the derivation of the proposed algorithms.
Section 5 describes recursive algorithms of the generalized Jacobian matrix(Xu & Kanade,
1993), that is a Jacobian matrix including dynamical coupling between the base body and the
robot arm. Section 6 proposes computational efficient algorithms of the operational space
dynamics. Section 7 shows the simulation example of the proposed algorithms. Section 8
summarizes the conclusions.

2. Basic Equations

This section presents basic dynamic equations of the space robot. The main symbols used in
this section are defined in table 1.

�
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Fig. 1. Chaser-robot and target scenario

2.1 Linear and Angular Momentum Equations

The motion of the space robot is generally governed by the principle of the conservation of
momentum. When the spatial velocity of the base body, ẋb = (vT

b , ωT
b )

T ∈ R6×1, and the

motion rate of the joints, φ̇ ∈ Rn×1 , are considered as the generalized coordinates, total linear
and angular momentum, M0 ∈ R6×1 , are expressed as follows:

M0 = Hb ẋb + Hbmφ̇ . (1)

Note that M0 represents the total momentum around the center of mass of the base body.
In the absence of external forces, the total momentum is conserved. From eq. (1), the motion
of the base body is expressed by φ̇ and M0 as:

ẋb = J∗b φ̇ + H−1
b M0 ∈ R6×1, (2)

where
J∗b = −H−1

b Hbm ∈ R6×n (3)

represents the generalized Jacobian matrix of the base body (Yokokohji et al., 1993). By in-
troducing the kinematic mapping of the i-th operational point, ẋei = Jbi

ẋb + Jmi
φ̇, eq. (1)

provides the velocity of the operational point as follows:

ẋei = J∗mi
φ̇ + Jbi

H−1
b M0 ∈ R6×1, (4)

where
J∗mi

= Jmi
− Jbi

H−1
b Hbm ∈ R6×n (5)

is called the generalized Jacobian matrix of the operational point (Umetani & Yoshida, 1989).
The above generalized Jacobian matrix, (5), is for the case that a single point is selected as an
operational point. This matrix is simply extended to the case of the multi-operational points
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n : number of joints

p : number of operational points

ẋb ∈ R6×1 : linear and angular velocity of the base.

φ̇ ∈ Rn×1 : motion rate of the arms.

ẋe =

⎡
⎢⎢⎢⎣

ẋe1

...

ẋep

⎤
⎥⎥⎥⎦ ∈ R6p×1 : linear and angular velocity of the operational points (i =

1 · · · p).

Hb ∈ R6×6 : inertia matrix of the base.

Hm ∈ Rn×n : inertia matrix of the arms.

Hbm ∈ R6×n : coupling inertia matrix between the base and the arms.

cb ∈ R6×1 : non-linear velocity dependent term of the base.

cm ∈ Rn×1 : non-linear velocity dependent term of the arms.

Fb ∈ R6×1 : force and moment exerted on the base.

Fe ∈ R6p×1 : force and moment exerted on the operational points.

τ ∈ Rn×1 : torque on joints.

Jbi
∈ R6×6 : Jacobian matrix of the base in terms of the i-th operational

point.

Jmi
∈ R6×n : Jacobian matrix of the arms in terms of the i-th operational

point.

J∗b ∈ R6×6 : Generalized Jacobian matrix of the base body.

J∗mi
∈ R6×n : Generalized Jacobian matrix of the arms in terms of the

i-th operational point.

Table 1. Main Notation

by augmenting the Jacobian matrix of each operational point. In section 5, we derive recursive
calculations of the matrices, (3) and (5).

2.2 Equations of Motion

The general dynamic equation of the space robot is described by the following expression (Xu
& Kanade, 1993):

[
Hb Hbm

HT
bm Hm

] [
ẍb

φ̈

]
+

[
cb

cm

]
=

[
Fb

τ

]
+

[
JT

b
JT

m

]
Fe. (6)

where ẋb = (vT
b , ωT

b )
T ∈ R6×1, and the motion rate of the joints, φ̇ ∈ Rn×1 are considered

as the generalized coordinates. When Fb is actively generated (e.g. jet thrusters or reaction
wheels etc.), the system is called a free-flying robot. If no active actuators are applied on the
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base, the system is termed a free-floating robot. The integral of the upper part of eq. (6) de-
scribes the total linear and angular momentum around the center of mass of the base body
and corresponds to the equation (1).

2.3 Dynamics of a Free-Floating Space Robot

The dynamic equation of the free-floating space robot can be furthermore reduced a form
expressed with only joint acceleration, φ̈, by eliminating the base body acceleration, ẍb, from
eq. (6):

H∗
mφ̈ + c∗m = τ + J∗T

b Fb + J∗T
m Fe (7)

where H∗
m = Hm − HT

bm H−1
b Hbm ∈ Rn×n and c∗m = cm − HT

bm H−1
b cb ∈ Rn×1 represent

generalized inertia matrix and generalized non-linear velocity dependent term, respectively.

3. Operational Space Formulation

The operational space dynamics is useful to control the system in the operational space, which
represents the dynamics projected from the joint space to the operational space. The two types
of space robot dynamics are described in the following subsections. One is for the free-flying
space robot and the other is for the free-floating space robot. This section derives the equations
of motion for the space robots consisting of n-links with p operational points.

3.1 Free-Flying Space Robot

The operational space dynamics of the free-flying space robot is described in the following
form:

Γe ẍe + µe = F in
e +Fe , (8)

where [
Fb

τ

]
= JT

e F
in
e .

Fe ∈ R6p×1 consists of the 6 × 1 external force of each of p operational points. Je ∈

R6p×(6+(n−1)) consists of Jacobian matrix of each operational point.

Fe =

⎡
⎢⎣

Fe1

...
Fep

⎤
⎥⎦ and Je =

⎡
⎢⎣

Jb1
, Jm1

...
...

Jbp
, Jmp

⎤
⎥⎦ .

The operational space inertia matrix of the free-flying space robot, Γe, is an 6p × 6p symmetric
positive definite matrix. Its inverse matrix can be expressed as :

Γ
−1
e = Je H−1 JT

e , H =

[
Hb Hbm

HT
bm Hm

]
. (9)

The operational space centrifugal and Coriolis forces, µe, is expressed as :

µe = JT+
e

[
cb

cm

]
− Γe

d

dt
Je

[
ẋb

φ̇

]
, (10)

where J+e is the dynamically consistent generalized inverse of the Jacobian matrix Je for the
free-flying space robot to minimize the instantaneous kinetic energy of the space robot:

J+e = H−1 JT
e Γe. (11)
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Fig. 2. Notation Representation

3.2 Free-Floating Space Robot

In the free-floating space robot, no active forces exist on the base (e.g. Fb = 0). Then, the
system can be described as the reduced form in the joint space by using eq. (7). Its operational
space dynamics can be derived from eqs. (5) and (7):

Γe ẍe + Γeµ = ΓeΛ
−1 J∗T+

m τ +Fe , (12)

where
Γ
−1
e = Λ

−1 + Λ
−1
b ∈ R6p×6p ,

Λ
−1 = J∗m H∗−1

m J∗T
m , Λ

−1
b = Jb H−1

b JT
b .

The matrix, (Λ−1 + Λ
−1
b ), corresponds to the inertia matrix described in eq. (9). The vector, µ,

expresses the bias acceleration vector resulting from the Coriolis and centrifugal forces as:

µ = Λ
−1 J∗+m c∗m − J̇

∗
mφ̇ −

d

dt
(Jb H−1

b )M0 ∈ R6p×1.

where
J∗+m = H∗−1

m J∗T
m Λ (13)

represents the dynamically consistent generalized inverse of the Jacobian matrix J∗m for the
free-floating space robot. Compared with eq. (8), the relationship Γeµ = µe is obtained. Note
that each dynamic equation described in this section is expressed in the inertial frame. Section
6 describes the efficient algorithms for the operational space dynamics represented in this
section.

4. Spatial Notation

The Spatial Notation is well-known and intuitive notation in modeling kinematics and dynam-
ics of articulated robot systems, introduced by Featherstone (Featherstone (1987); Chang &
Khatib (1999)). This section concisely reviews the basic spatial notation. The main symbols
used in the spatial notation are defined in Table 2. The symbols are expressed in the frame
fixed at each link. (See. Fig. 2).
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vi ∈ R6×1 : spatial velocity of link i.

ai ∈ R6×1 : spatial acceleration of link i.

f i ∈ R6×1 : composite force of link i.

f ∗i ∈ R6×1 : spatial force of link i.

Li ∈ R6×1 : composite momentum of link i.

L∗
i ∈ R6×1 : spatial momentum of link i.

IC
i ∈ R6×1 : composite inertia matrix of link i.

Table 2. Main Symbols in Spatial Notation

4.1 Spatial Notation

In the spatial notation, linear and angular components are dealt with in a unified framework
and results in a concise form ( e.g. 6 × 1 vector or 6 × 6 matrix ). In this expression, a spatial
velocity, vi, and a spatial force, f i, of link i are defined as :

vi =

[
vi

ωi

]
and f i =

[
Fi

Ti

]
,

where vi, ωi, Fi, and Ti represent the 3 × 1 linear and angular velocity, the force and moment
in terms of link i in frame i, respectively.
The simple joint model, Si ∈ R6×1, for prismatic and rotational joint is defined, so that 1 is
assigned along the prismatic or rotational axis : e.g.

Si = [ 0 0 1 0 0 0 ]T for prismatic joint at z axis

and
Si = [ 0 0 0 0 0 1 ]T for rotational joint at z axis.

More complex multi-degrees-of-freedom joint is introduced in (Featherstone, 1987; Lilly,
1992).
The spatial inertia matrix of link i in frame ci, Ici , is a symmetric positive definite matrix as:

Ici =

[
miE3 0

0 Ici

]
∈ R6×6 ,

where mi is the mass of link i, and Ici ∈ R3×3 is the inertia matrix around the center of mass
of the link i in frame ci. E3 stands for the 3 × 3 identity matrix.
The 6 × 6 spatial transformation matrix, h

i X, transforms a spatial quantity from frame i to
frame h as:

h
i X =

[
h
i R 0

h̃ri
h
i R h

i R

]
∈ R6×6. (14)

where h
i R ∈ R3×3 is a rotation matrix and hri ∈ R3×1 is a position vector from the origin of

frame h to that of frame i expressed in frame h. {̃·} denotes the skew-symmetric matrix. Unlike
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Σi

Σb

Σe

Link 0
( Base body )

Link 1

Link n

Fe

Link 2

φ 1

φ 2

φ n ( Operational Point )

Fig. 3. Forward Chain Approach

Σi

Σb

Σe

Link 0
( Base body )

Link 1

Link n

Fe

Link 2

φ 1

φ 2

φ n ( Operational Point )

Fig. 4. Inverted Chain Approach

the conventional 3 × 3 rotational matrix, the spatial transformation matrix is not orthogonal.
The transformation matrix from frame h to frame i, i

hX, is expressed as:

i
hX =

⎡
⎣

h
i RT 0(

h̃ri
h
i R
)T

h
i RT

⎤
⎦ ∈ R6×6. (15)

4.2 Spatial Quantity

The most of the spatial quantities including the spatial velocity, acceleration, and the spatial
force are iteratively calculated. To carry out the iterative calculation, two approaches can be
found, which are dependent on the direction of the iteration. In the first approach, the kine-
matic quantities such as the velocity and the acceleration are computed by outward recursion
from the link 0 toward the operational points as shown in Fig. 3 and the spatial force is ob-
tained by inward recursion from the operational points toward the link 0. This approach is
termed forward chain approach. In the second approach, the direction of the recursive calcu-
lation is opposed to the first one, so that the kinematic quantities are computed by inward
recursion and the spatial force is obtained by outward recursion as shown in Fig. 4. This
approach is termed inverted chain approach.

4.2.1 Forward Chain Approach

In the forward chain approach, the spatial velocity of link i is computed by the spatial velocity
of its parent link and its joint velocity as:

vi =
h
i XTvh + Siφ̇i, (vi = v0 at i = 0) . (16)

The spatial acceleration can be calculated similarly in the following form:

ai =
h
i XTah + vi×̂Siφ̇i + Siφ̈i, (ai = a0 at i = 0) . (17)

where ×̂ denotes the spatial cross-product operator associated with a spatial vector
[

aT , bT
]T

defined as: [
a
b

]
×̂ =

[
b̃ ã

0 b̃

]
∈ R6×6.
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The iterative calculation of the composite force acted on the link h is defined as:

f h = f ∗h +
h
i X f i , ( f n = f ∗n) , (18)

where
f ∗i = Iiai + vi×̂Iivi . (19)

Ii is the spatial inertia matrix of link i in frame i expressed as:

Ii =
i
ci

X Ici
i
ci

XT ,

where Ii is a symmetric positive definite matrix. The integral of eq. (19) represents the spatial
momentum of link h and the composite momentum of link h can be derived as :

Lh = Ihvh +
h
i XLi , (Ln = Invn) . (20)

In the above recursive calculation of the momentum, the composite rigid-body inertia of link
h can be obtained as follows, which is the summation of inertia matrices of link h and its
children links (Lilly, 1992):

IC
h = Ih +

h
i X IC

i
h
i XT , (IC

n = In) . (21)

Note that the velocity and the acceleration of link 0 are arbitrary, not only zero but also non-
zero values are acceptable since our main focus is on the free-flying or free-floating space
robots. We assume that those values are measurable or can be estimated.

4.2.2 Inverted Chain Approach

In the inverted chain approach, the transformation matrix, i
hX, is used to obtain each spatial

quantity. As mentioned before, the direction to calculate each quantity is opposed to that of
the forward chain approach.
The spatial velocity is expressed as:

vh = i
hXT (vi − Siφ̇i) , (vh = vn at h = n) . (22)

The spatial acceleration is described as:

ah = i
hXT

(
ai − vi×̂Siφ̇i − Siφ̈i

)
, (ah = an at h = n) . (23)

The composite force is derived as:

f i = f ∗i +
i
hX f h , ( f 0 = f ∗0) . (24)

Under the same conditions, the results of the forward chain approach and the inverted chain
approach are consistent.

5. Recursive Computation of Generalized Jacobian Matrix

This section presents efficient recursive calculations of the generalized Jacobian matrices in-
troduced in (3) and (5). We introduce here the recursive algorithms in the framework of the
spatial notation. Yokokohji proposed the recursive calculation of the generalized Jacobian
matrix in (Yokokohji et al., 1993). However, by using the spatial notation, the recursive calcu-
lations can be improved to simpler and faster methods than one proposed in (Yokokohji et al.,
1993).
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5.1 Generalized Jacobian Matrix of Base Body (Link 0)

In the recursive expression, the total linear and angular momentum around the origin of frame
0 is expressed from eqs. (16) and (20) as follows :

L0 =
n

∑
k=0

0
k X Ikvk

= I0v0 +
n

∑
k=1

[
0
k X Ik

(
0
k XTv0 + Skφ̇k

)]
. (25)

where M0 =I
0 XL0. From eq. (25), the velocity of the base can be expressed as a function of

the velocity of the joint as :

v0 = −
(

IC
0

)−1 n

∑
k=1

0
k X IC

k Skφ̇k +
(

IC
0

)−1
L0 , (26)

where IC
0 and IC

k denote composite rigid-body inertia matrix of the base and for link k com-
puted by (21), respectively. The coefficient of the first term on the righthand side corresponds
to the generalized Jacobian matrix of the base (link 0) in the frame 0 :

0 J∗b = −
(

IC
0

)−1

∑
k

0
k XT IC

k Sk . (27)

Transformed into the inertial frame, eq. (27) equals to the expression (3) :

J∗b = I
0X 0 J∗b . (28)

5.2 Generalized Jacobian Matrix of Operational Point

Once 0 J∗b is obtained, the generalized Jacobian matrix of the operational point is straightfor-
wardly derived. The spatial velocity of the operational point ei can be expressed as:

vei =
n
ei

XTvn, (29)

where vn is the velocity of the link n, on which the operational point is determined, and is
obtained from eq. (16). By substituting (26) into (29), the generalized Jacobian matrix of the
operational point in the frame ei can be derived as:

ei J∗mi
=

n

∑
k=1

(
k
ei

XTSk −
0
ei

XT
(

IC
0

)−1
IC

k Sk

)
(30)

Consequently, the generalized Jacobian matrix in the inertial frame, (5), can be obtained as
follows:

J∗mi
= I

ei
Xei J∗mi

. (31)
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6. Efficient Algorithms of Operational Space Dynamics

This section describes recursive algorithms of the operational space dynamics, eq. (8). We
recall here the operational space dynamics :

Γe ẍe + µe = Fe ,

[
Fb

τ

]
= JT

e Fe . (32)

A main focus is on developing computational efficient algorithms of Γe and µe of a n-link,
p-operational-point branching space robot system. The derivation of Je is omitted in this
chapter since its algorithm is well-known. The algorithms of Γe and µe are developed with
the concept of the articulated body dynamics (Featherstone, 1987; Lilly, 1992). Firstly, the
operational space formulation of a single operational point on the space robot is developed
by using the inverted chain approach. Then, the algorithms of the multi-operational point
system are further developed.

6.1 Single Operational Point in Space Robot

As mentioned in Section 1, a unique characteristic of the space robot is that the base satellite is
inertially free and the system is invertible in its modeling unlike the ground-based robot sys-
tem. Based on this characteristic, the operational space dynamics of the space robot is derived
in the framework of the articulated-body dynamics. In the conventional articulated-body dy-
namics, the articulated-body inertia and its associated bias force are calculated inward from
the operational point to the base body (link 0). When the system is inverted, the articulated-
body dynamics is calculated in the opposed direction, namely outward from the base body
to the operational point. This approach introduced as the inertia propagation method in (Lilly,
1992). We make use of the inverted chain approach for the iterative calculation of the inertia
matrix, Γe, and the bias force vector, µe in the operational space.

6.1.1 Operational space inertia matrix

Operational space inertia matrix corresponds to the articulated-body inertia calculated from
the base body to the operational point with the initial condition, IA

0 = I0:

IA
i = Ii +

i IA
h

i
hL , (i = 0 · · · n) , (33)

where

i
hL = E6 −

SiS
T
i

i IA
h

αi
,

i IA
h = i

hX IA
h

i
hXT , αi = ST

i
i IA

h Si.

E6 represents the 6 × 6 identity matrix. The superscript i at left side of the symbols describes
the quantities of link h expressed in the frame i.
The symbols without the superscript at the left side expresses the quantities represented in
their own frame. Consequently, the inertia matrix, Γe, in the inertial frame is obtained by
using the following spatial transformation.

Γe =
I
e X IA

e
I
e XT . (34)
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6.1.2 Operational space bias force vector

Likely the operational space inertia matrix, the associated bias force, µe, is calculated in the
outward recursive manner. The bias force in the inverted chain approach is calculated as the
following algorithm with the initial condition, pA

0 = p0 = v0×̂I0v0:

pA
i = pi +

i pA
h − i

hLci −
i IA

h SiS
T
i

i pA
h

αi
, (35)

where
i pA

h = i
hX pA

h , pi = vi×̂Iivi , ci = vi×̂Siφ̇i.

Finally, the operational space bias force in the inertial frame, µe, is obtained as follows:

µe =
I
e X pA

e + Γe

[
ve × ωe

03

]
, (36)

where the relationship between the spatial acceleration, ai, and the conventional acceleration

of a point fixed in a rigid body, ẍi, is used here, i.e. ẍi = ai −
(
(vi × ωi)

T , 0T
3

)T
, since the

spatial acceleration, ai, differs from the conventional acceleration of a point fixed in a rigid
body, ẍi (Featherstone, 1987). The vector 03 represents the 3 × 1 zero vector.

6.2 Multi-Operational Points in Space Robot

The lack of the fixed base and the dynamic coupling between each operational point lead to
the computational complexity in the multi-operational points on the space robot. However,
no fixed base provides an arbitrary choice of link 0 in the modeling of the kinematic connec-
tivity. In addition, the proposed algorithms enable to formulate the dynamics of arbitrary
operational points, not only the end-effectors in the real system but also the base-satellite or
other controlled points in operational space. For instance, if both base-satellite and one end-
effector are operated simultaneously, these two points are determined as operational points.
In this subsection, the operational space inertia matrix and the bias force vector are derived
based on the forward chain approach. Note that the direction of the recursive calculation is
opposed to the approach in the previous subsection although the same symbols are used.

6.2.1 Operational space inertia matrix

The inverse of the operational space inertia matrix, Γ
−1
e , consists of diagonal matrices, Γ

−1
ei ,ei

and off-diagonal matrices, Γ
−1
ei ,ej

as expressed in the following equation:

Γ
−1
e =

⎡
⎢⎢⎣

Γ
−1
e1,e1

· · · Γ
−1
e1,ep

... Γ
−1
ei ,ej

...

Γ
−1
ep ,e1

· · · Γ
−1
ep ,ep

⎤
⎥⎥⎦ . (37)

The inertial quantity Γ
−1
ei ,ei

describes the inertia of link i if the force is applied to only i-th

operational point, and the inertial quantity Γ
−1
ei ,ej

describes the cross-coupling inertia matrix,

which expresses the dynamic influence of the i-th operational point due to the force of the j-th
operational point. Once the inverse of the operational space inertia matrix is calculated, the
operational space inertia matrix is obtained as the following recursive calculation. Figure 5
shows the process of the calculation of the inertia matrix. In the figure, arrows indicate the
direction of the calculation.
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0

ei ej

ep

(a) step 1: Inward Recur-

sion for IA
h

0

ei ej

ep

Λei,ei Λej,ej

Λep,ep

(b) step 2: Outward Recur-
sion for Λi,i

0

ei ej

ep

h

Λei,ej Λej,ei

ei ej

ep

h

Λei,ep

Λep,ei

(c) step 3: Outward Recursion for
Λi,j

Fig. 5. Recursive process of the inertia matrix

1. Inward Recursion: Compute the articulated-body inertia of link i in the forward chain ap-
proach:

IA
h = Ih +

h
i LIA

i
h
i XT , (IA

n = In) (38)

h
i L = h

i X

(
E6 −

IA
i SiS

T
i

βi

)
, βi = ST

i IA
i Si.

2. Outward Recursion: Compute the block diagonal matrices:

Λi,i =
SiS

T
i

βi
+ hi

i LT
Λhi ,hi

hi

i L ,
(
Λ0,0 =

(
IA

0

)−1)
(39)

3. Outward Recursion: Compute the cross-coupling inertia matrices:

Λi,j =

⎧
⎪⎨
⎪⎩

hi

i
LT

Λ
T
j,hi

i f j = h

Λi,hj

hj

j L i f i = h

(40)

4. Spatial Transformation: Compute the inverse inertia matrices in the inertial frame:

Γ
−1
ei ,ej

= I
ei

X Λei ,ej
I
ej

XT (41)
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5. Matrix Inversion: Compute the operational space inertia matrix, Γe, for the space robot by
inverting Γ

−1
e .

6.2.2 Operational space bias force vector

To derive the bias force vector in operational space, the bias acceleration vector of each op-
erational point is firstly derived in a recursive manner. The multiplication of the operational
space inertia matrix Γe and the bias acceleration provides the bias force. The recursive algo-
rithm of the bias force vector is shown in the following.
1. Inward Recursion: Compute the bias force of link i in the forward chain approach from the
operational points to the link 0:

pA
h = ph + Xh

i pA
i + h

i LIA
i ci −

h
i X IA

i SiS
T
i pA

i

βi
, (pA

n = pn) (42)

where
h pA

i = h
i X pA

i , pi = vi×̂Iivi , ci = vi×̂Siφ̇i.

2. Outward Recursion: Compute the bias acceleration of each operational point:

ai =
h
i XT ah + ci + Sibi ,

(
a0 =

(
IA

0

)−1
pA

0

)
(43)

where

bi = −
ST

i

[
IA

i

(
Xh

i ah + ci

)
+ pi

]

βi
.

3. Spatial Transformation: Compute the bias acceleration of each operational point with respect
to the inertial frame:

I aei =
I
ei

Xaei (44)

4. Matrix Multiplication: Compute the bias force of the operational points with respect to the
inertial frame:

µe = Γe

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

...
I aei

...

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎢⎣

...
vei × ωei

03
...

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟

, (i = 1 · · · p) , (45)

where the relationship between the conventional acceleration and the spatial acceleration,

ẍi = ai −
(
(vi × ωi)

T , 0T
3

)T
, is used.

6.3 Free-Floating Space Robot

In the previous subsections, we derive the inertia matrix and the bias force of eq. (8). In the
free-floating space robot, one needs to refer to eq. (12). Since the operational inertia matrix(

Λ
−1 + Λ

−1
b

)−1
= Γe, the bias force Γeµ = µe in eq. (12) and J∗m is calculated in Section 5,

one need to derive only the matrix Λ. The inertia matrix Λ can be easily obtained by Λ =(
Γ
−1
e − Λ

−1
b

)−1
, where the inertia matrix Λb corresponds to the composite inertia matrix of

the base Λb =I
0 XI

C
0 .
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Fig. 6. Target grasping sequence, wait, approach, and grasp

7. Operational Space Task

The operational space task is illustrated by using the proposed algorithms. The robotic model
considered here has total 24 degrees-of-freedom including two 7-degrees-of-freedom arms,
a 4-degrees-of-freedom torso, and a 6-degrees-of-freedom base body. In practice, the redun-
dancy of the system provides the null-space motion in the joint space. To obtain the null space
motion, the classical joint space inverse dynamics is simply applied.The null space motion
performs the self-motion in the joint space such as self-collision avoidance, posture behavior
while the operational space motion is carried out.
Figure 6 shows the motion sequence for target grasping by a chaser-robot, consisting of wait-
ing phase, approaching phase, and grasping phase. In those processes, the end-effector of
the right hand, the head of the robot and the base body are determined as three operational
points. In the simulation, it is demonstrated that the right arm approaches to the target while
the rest of active joints are operated to keep the orientation of the head and the orientation of
the base-satellite constant.

8. Conclusions

This chapter proposed efficient recursive algorithms of the operational space dynamics for
the free-flying and the free-floating space robots. In the space robot, the operational space
formulation is more complex than that of the ground-based robot due to the lack of the fixed
base. However, by virtue of no fixed base, the space robot can be switched around in its mod-
eling. By making use of this unique characteristic, firstly the operational space formulation
of a single-serial-arm space robot has been developed. Then, the efficient algorithm of the
operational space formulation of the branching-arms space robot has been proposed by using
the concept of the articulated-body system. The realistic simulation with 24 DOF space robot
system was illustrated to verify the efficiency of the proposed algorithms.
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