We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

22

Defect Management Strategies
in Software Development

Suma V and Gopalakrishnan Nair T.R.
Research and Industry Incubation Centre, Dayananda Sagar Institutions
Bangalore, India

1. Introduction

Software is a unique entity that has laid a strong impact on all other fields either related or
not related to software. These include medical, scientific, business, educational, defence,
transport, telecommunication to name a few. State-of-the-art professional domain activities
demands the development of high quality software. High quality software attributes to a
defect-free product, which is competent of producing predictable results and remains
deliverable within time and cost constraints. It should be manageable with minimum
interferences. It should also be maintainable, dependable, understandable and efficient.
Thus, a systematic approach towards high quality software development is required due to
increased competitiveness in today’s business world, technological advances, hardware
complexity and frequently changing business requirements.

1.1 Software Engineering

Software Engineering is a discipline that aims at producing high quality software through
systematic, well-disciplined approach of software development. It involves methods, tools,
best practices and standards to achieve its objective. The three main phases of software
development life cycle (SDLC) are requirement analysis, design and implementation phase
(Roger S. Pressman, 2005, Ian Somerville, 2006). To deploy high quality software, it is
essential to develop a defect-free deliverable at each phase.

A defect is any blemish, imperfection, or undesired behaviour that occurs either in the
deliverable or in the product. Anything related to defect is a continual process and not a
state.

1.2 Need for defect management

Defect analysis at early stages of software development reduces the time, cost and resources
required for rework. Early defect detection prevents defect migration from requirement
phase to design and from design phase into implementation phase (Jeff Tian, 2005). It
enhances quality by adding value to the most important attributes of software like
reliability, maintainability, efficiency and portability. Hence, industry should go for defect
management at every stage of development to gain total confidence with customers (Watts

www.intechopen.com

380 Recent Advances in Technologies

S. Humphrey, 1989; Kashif Adeel et al., 2005; Vasudevan S, 2005; Mukesh Soni, 2006;
Purushotham Narayan, 2003). The two approaches of defect management are i) defect
detection and ii) defect prevention (DP). Defect detection techniques identify defect and its
origin. Defect prevention is a process of minimizing defects and preventing them from re-
occurrence in future.

1.3 Conventional defect detection strategies

There are several approaches to identify defects like inspections, prototypes, testing and
correctness proof. Inspection is examination of human artefacts to detect defects at the early
stages of software development. It is the most effective and efficient quality assurance
technique. A prototype is an experimental version of software release. It helps both
customer and developer to verify that the product meets all the stipulated requirements. It
enables both parties to resolve ambiguous requirements to a well-defined specification.
Thus, prototyping eliminates defects caused due to ambiguity. Testing is quality control
activity that identifies defects at the time of implementation. It uncovers those defects,
which could have escaped by identification at the early stages of development. Correctness
proof discovers defects at coding stage. The code that fails to meet the requirements of
correctness proof indicates existence of defect (Vasudevan. S, 2005).

1.4 Defect classification

Defect classification follows defect detection activity. Two occasions in which defects
usually classified are i) defect injection time and ii) defect fixing time. Several models and
tools assist in defect classification. Orthogonal Defect Classification (ODC) is the most
popular technique that groups defects into types rather than considering them as
individuals. It helps to identify process areas that require attention (Chillarege et al., 1992).
Another popular approach for defect classification is HP model of defect origins, types and
modes. This model links together defect types and origin by identifying type of defect
appearing at the origin (Stefan Wagner, 2008). Yet, another technique of defect classification
considers certain factors like logical functions, user interface, standards and maintainability
and so on. Further, each company has its own methodology of classifying defects.

Identified defects can be categorized depending on defect type. They are blocker type of
defects which prevent continued functioning of the developer team, critical type that results
in software crash, system hang, loss of data etc. Defect is categorized as a major type when
a major feature collapses and a minor type when defect causes a minor loss of function, still
allowing an easy work around. Trivial category of defect arises due to cosmetic problems.
Based on these categories, severity levels are assigned as either urgent/show stopper,
medium/work around or low/cosmetic (Vasudevan S, 2005).

1.5 Defect distribution

Depending on the sequence of process in which software can be dealt with different phases
of SDLC, defects can be accounted based on the phases in which they occur. An empirical
study conducted across several projects from various service-based and product-based
organizations reveals that requirement phase contains 50% to 60% of total defects. 15% to
30% of defects are at design phase. Implementation phase contains 10% to 20% of defects.
Remaining are miscellaneous defects that occurs because of bad fixes. Bad fixes are injection

www.intechopen.com

Defect Management Strategies in Software Development 381

of secondary defects due to bad repair of defects. Table 1. is a sampled data obtained from
several leading software industries. This depicts time and defect profile at each phase of
development.

www.intechopen.com

P1 P2 P3 P4 P5 P6
Total project time (in man hours) 250 507 2110 4786 6944 9220
Total requirement time 25 55 800 2047 2597 2550.6
Total inspection time 2 6 48 163 208 204
Total testing time 5 16 80 575 281 821
Total number of defects 30 77 139 200 254 375
Elllsllr)r:z::iro Ef defects identified by 16 40 68 123 112 5
Number of blocker type of defect 3 15 19 25 40
Number of critical type of defect 4 14 24 30 42
Number of major type of defect 6 15 30 40 51 71
Number of minor type of defect 7 17 34 47 48 75
Number of trivial type of defect 10 28 46 70 100 147
% of defects at requirements phase 51.72 59.23 57.92 59.17 56.32 56.39
Total amount of design time 46 110 400 1323 1966 3080
Total amount of inspection time 5 11 48 105.84 157 246
Total amount of testing time 11 21 112 158.76 236 369
Total number of defects 10 26 55 75 120 182
Elllsllr;;}gteil;) if defects identified by 5 14 4 3 77 10
Number of blocker type of defect 1 2 6 7 12 16
Number of critical type of defect 1 6 7 15 18 32
Number of major type of defect 2 5 12 15 25 44
Number of minor type of defect 2 5 11 16 29 42
Number of trivial type of defect 4 8 19 22 36 48
% of defects at design phase 17.24 20.00 2292 22.19 26.61 27.37
Total amount of implementation time 101 165 640 756 1300 2200
Total amount of inspection time 10 23 112 90.72 156 264
Total amount of testing time 36 45 200 113.4 195 330
Total number of defects 8 17 36 53 67 98
iz}t:;l;zz rolf defects identified by 4 9 4 o7 a7 54
Number of blocker type of defect 1 1 3 3 5 10
Number of critical type of defect 2 4 4 12 14 21
Number of major type of defect 2 4 13 13 22
Number of minor type of defect 1 3 12 16 22
Number of trivial type of defect 2 5 12 13 19 23
% of defects at implementation phase 13.79 13.08 15.00 15.68 14.86 14.74

Table 1. Sampled data obtained from leading software industries P = Project

382 Recent Advances in Technologies

1.6 Defect pattern of various types of defects

Table 1. indicates the existence of various types of defect pattern at each phase of software
development. Table 2. indicates percentage of possibility of occurrences of various defect
patterns.

Type of defect Possibility % of defect Overall defect pattern
occurrences
Blocker type 5% to 15% 10%
Critical type 10% to 25% 20%
Major type 20% to 25% 25%
Minor type 10% to 20% 15%
Trivial type 15% to 55% 30%

Table 2. Defect pattern in software development

Rationale for defect occurrences

It is a universally accepted fact that nothing can be created with absolute perfection.
Software engineering is not an exception. Thus, there inevitably exists rationale for defect
occurrences. The common causes for defect occurrences at requirements phase are
requirement incompleteness, inconsistency, ambiguity, requirement change and
requirement presentation. The common reasons for defect occurrences at design phase are
non-conformance to external specifications, internal specifications, logical specifications,
interface specifications, component specification, security, organizational policies and
standards in addition to non-conformance to design with requirement specification. The
common sources for defect occurrences at implementation phase are improper error
handling, improper algorithm, programming language shortcomings, wrong data access
and novice developers (Purushotham Narayan, 2003).

1.7 Root cause analysis for defect pattern

Root Cause Analysis (RCA) is an effective technique to investigate the origin for defect
injection (David N. Card, 2006). This analysis helps to prevent reoccurrences of defect in
future. Three general classifications of tools that support root cause analysis are i) problem
solving tools ii) management and planning tools iii) product development and process
improvement tools. Problem solving tools includes pareto charts, check sheet, cause-and
effect-diagram (CED), histograms, scatter plots, trend analysis graphs and control charts.
They are basic tools of quality. They break potential root cause into more detailed root
causes to identify all related factors for defect occurrence. Management and planning tools
includes affinity diagrams, relations diagrams, matrix data analysis charts, hierarchy
diagrams, matrices and tables to display value and priority, precedence diagrams. They
establish quantifying interrelationship between potential root causes and factors driving
these root causes. Product development and process improvement tools include failure
modes and effect analysis (FMEA), fault tree analysis (FTA) and potential problem analysis
and current reality tree (CRT) (Anthony Mark Doggett, 2004).

Root cause analysis is either logical analysis or statistical analysis. Logical analysis
establishes a logical relation between effect and cause. This is usually human intensive
analysis that demands expertise knowledge of product, process, development and
environment. Statistical analysis establishes the probability relation of effect and cause. This

www.intechopen.com

Defect Management Strategies in Software Development 383

relation depends upon empirical studies of similar projects or from evidences collected
within the project (Jeff Tian, 2001).

1.8 The most common root cause classification

Despite the existence of various rationales, RCA techniques enable to classify the most
common root causes and percentage of their contributions towards various defect patterns.
They are communication (25% to 30%), education (20% to 25%), oversight (30% to 40%),
transcription (20% to 25%) and miscellaneous (5% to 10%). From the defect distribution and
defect pattern analysis, it is evident that trivial defects contribute more towards defect
injection.

2. Defect prevention

Awareness of defect injecting methods and processes enables defect prevention. It is the
most significant activity in software development. It identifies defects along with their root
causes and prevents their reoccurrences in future.

2.1 Benefits of defect prevention

Defect prevention is vital for the successful operation of the industry. Since three decades,
the benefits of DP are widely recognised and remedial measures are taken to overcome the
impact of defect on quality. Inspection is cost effective as defects get uncovered in the early
developmental phases, adds value to the dependency attributes of software like
maintainability, availability and reliability. It enhances quality and gains customer
satisfaction at all levels. It's adherence to meet the committed schedules further enhances
the total productivity. It reflects the maturity level of the company and builds up the team
spirit (Caper Jones, 2008). It is process, product and team appraisal activity and a
mechanism for propagating the knowledge of lessons learned between projects or between
various phases of software development (Van Moll, 2002).

Therefore, it is imperative to introduce DP at every stage of software life cycle to block
defects at the earliest. It is necessary to take corrective actions for its removal and avoidance
of its reoccurrence.

2.2 Conventional defect prevention strategies

Since the inception of DP activities in industry, several strategies have evolved towards their
implementation. They are coined as conventional DP strategies.

The three conventional defect prevention strategies are

i Product approach of defect prevention
ii. Process approach of defect prevention
iii. Automation of development process (Jeff Tian ,2001)

i) The three product approaches of defect prevention techniques are defect prevention
through error removal technique, defect reduction through fault detection and removal
technique and defect containment through failure prevention technique.

DP through error removal technique

Defects occurring due to human actions are removed by following any of the following

techniques

www.intechopen.com

384 Recent Advances in Technologies

Train and educate the developers

Nearly 50% to 75% of the defects are due to human actions. Therefore, development team
need training and education in product and domain specific knowledge. Further, an
effective DP emphasize on a systematic approach of system development. Introduction of
best practices like clean room approach, personal software process and team software
reduces defect injection.

Use of formal methods like formal specification and formal verification

Formal methods consists of formal specification and formal verification techniques for
defect detection. Formal specification uses formal logic and discrete mathematics to check
for ambiguous, inconsistent and incomplete requirement specification. Formal verification
verifies design constructs against the validated requirement specification. This avoids
injection of accidental defects.

DP based on tools, technologies, process and standards

Defect injection reduces with use of object-oriented technology, follow up of well-defined
process, right choice of tools and adherence to appropriate standards for product
development

Prevention of defects by analyzing the root causes for defects

Root cause analysis is the most effective method of addressing defect. It is a periodic
assessment to identify the root causes of defects with the aid of tools and methods like
cause/effect diagrams, pareto analysis etc. Implementations of corresponding corrective
actions along with preventive actions eradicate future defects.

Defect reduction through fault detection and removal technique

Organizations that develop safety critical projects and complex projects adopt fault
detection and removal technique. Inspection is a static technique of fault detection and
removal that examines human artefacts to detect and eliminate static defects. This prevents
defect migration into later phases of development and consequently its manifestation.
Testing is a dynamic activity that detects and eliminates dynamic defects that occur in
software product during the development process. Testing includes all tests from unit test
up to beta test.

Defect containment through failure prevention technique

Defect containment is a technique either to eliminate the causal relation that exits between
fault and failure or to minimize the impact of their relation. As a result, faults continue to
reside in the product but prevent defects. Techniques used for this purpose include recovery
blocks, n-version programming, safety assurance and failure containment.

ii) From the perception of process approach of defect prevention technique, the
management of software industry holds certain responsibilities in DP. Some of the actions
that are handled as described in process change management key process area are - goals,
commitment to perform, ability to perform, activities performed, measurements and
analysis and verifying implementations (Pankaj Jalote, 2002).

Goals

The organization establishes goals like plan for DP, identify common causes for defects,
prioritize the common causes and take corrective actions to eliminate them.

Commitment to perform

Implementation of these goals appears in the form of written policies both for organization
and for the product. It includes long-term plans for financial, human and any other resource
support that are required for DP activities. Implementation of the DP activities and
continual review of them forms a part of organizational policy.

www.intechopen.com

Defect Management Strategies in Software Development 385

Ability to perform

In accordance with the Key Process Area, an organizational level team and project level
team exists to perform DP activities. A schedule to perform DP activities is prepared. The
plan describes the task kick-off meetings, causal analysis meetings, implementing actions
and their review, management participation, training activities, tools suitable to perform DP
activities etc.

Activities performed

Performance of DP activities complies with the scheduled plan. DP activities include
recommendation of corrective actions for defects, documentation, review and verification of
the DP action items, control and management of DP data.

Measurements and analysis

Measurements confirm the status of DP activities. Knowledge of fundamentals of
measurement and analysis forms the key path to success. Measurement and analysis enables
the management to gain process insight of their organization.

Verifying implementations

Verification of implementation includes review of DP activities on a periodic basis with
management, project managers and quality assurance group. It helps to accomplish
continual process improvement in the organization.

iif) DP through automation of development process

There are many tools in usage for managing defects. Currently, several methods are under
development that can detect and manage defects in an autonomic nature. Automation
eliminates human intensive defects. Therefore, automation of development process is
another approach towards DP. Automation tools are available from requirements phase to
testing phase. Tools for automation purpose at requirements phase are quite expensive.
Automation of attributes like consistency check is possible while attributes like
completeness check may not be possible to automate completely. Tools used at this phase
include requirement management tool, requirements recorder tool, requirement verifier’s
tool etc. Design tools include database design tool, applications design tool, visual
modelling tool like Rational Rose etc. Automation of testing phase is by the use of tools like
code generation tool, code-testing tool and code-coverage-analyzer tool. Several tools like
defect tracking tool, configuration management tool and test procedures generation tool are
functional at all phases of development (Elfriede Dustin at el., 1999; 2009).

2.3 Changing trends in defect management

The key challenge of software industry is to engineer a software product with minimum
post deployment defects. Advancement in fundamental engineering aspects of software
development enables I.T. enterprises to develop a more cost effective and better quality
product through systematic defect detection and prevention strategies. Investing in defect
prevention reduces the cost of defect detection and elimination. It is a sensible commitment
towards production of quality software. Small increase in the prevention measures overall
produces a major decrease in total quality cost. The main intent of quality cost analysis is
not to remove the cost entirely. However, it ensures maximum benefit from the investment.
The knowledge of quality cost analysis brings awareness from detection of defects to
prevention of defects (Spiewak R & McRitchie K, 2008). An observation in progressive
software industries prove the fact that cost to ensure quality reduces with defect detection
and prevention strategies.

www.intechopen.com

386 Recent Advances in Technologies

Changing trends in defect management enables transition from postproduction detection
technique to preproduction detection technique and in situ detection during developmental
phase. Here we describe some of the modern approaches in situ detection during the
software development.

Cost quality analysis through defect injection and defect removal techniques

Recent research trend includes study of cost investment in defect injection and defect
removal as a part of process maturity (Lars M. Karg & Arne Beckhaus, (2007). Phase-based
defect removal model (DRM) analyses phase wise number of defects injected, number of
defects removed and number of defects escaped from previous phase to the current phase.
Defect prediction

The industry’s current interest is towards predicting the number of latent defects. Defect
prediction is a technique of detecting the quality of the software before deployment. It
enhances both project and product performance. The main intension is to gain complete
confidence with the customers through the products. Defect prediction techniques include
empirical defect prediction, defect discovery profile, Constructive Quality Model
(COQUALMO), Orthogonal Defect Classification (Bard Clark & Dave Zubrow, 2001).
Personal quality management

Major contribution for defect occurrences is human intensive. Hence, modern strategy of
defect management emphasizes upon personal quality management. It provides individual
software developers as well the team to prevent and remove defects at the early stages of
the development. It has a promising and positive impact on software quality. Essence of
personal software process and team software process is to make quality aspect more
individual responsibility and group cohesiveness (Watts S. Humphrey, 1994).

Modern approach of testing

Defect prevention is one of the best ways of defect management. Testing detects those
defects, which has escaped the eyes of developers. It only detects presence of defects but
cannot prevent them (lan Sommerville, 2008; Srinivasan N. & P. Thambidurai, 2007;
Glenford J. Myers at el. 2004). It is the slowest technique in software process for defect
detection. Testing is the last opportunity to weed out the defects that is highly expensive to
deal with at the later stages. Conventional classifications of testing are by purpose, by life
cycle phase and by scope. Testing by purpose includes correctness testing, performance
testing, reliability testing and security testing. Testing by life cycle phase includes
requirements phase testing, design phase testing, implementation phase testing, evaluating
test results, installation phase testing, acceptance testing and maintenance testing. Testing
by scope includes unit testing, component testing, integration testing and system testing.
Modern approach of testing includes test automation. It increases quality and reduces
testing cost and time. This insists a need for automation strategy to decide upon what, when
and how much to automate. It requires prioritization of automation test plans too (Hung Q.
Nguyen at el., 2006).

System testing using Markov chain model is an advanced testing approach. This technique
of testing emphasize upon the probability of defect occurrence, probability of the usage of
the functionality, most probable test for the functionality, required test coverage using
postman algorithm and possibility of automating the entire testing process (Prowell, S.J.,
2005).

Agile approach of software development integrates testing as a continual developmental
activity. Time to market is the motto for agile approach of software development. It

www.intechopen.com

Defect Management Strategies in Software Development 387

redefines traditional formal quality assurance activities into daily activity. Test automation
is a basic requirement in this approach (Peter Schuh, 2005).

3. Significance of inspection technique in defect detection and prevention

With the knowledge of defect and defect management strategy, we now describe the
effectiveness and efficiency of inspection technique in defect detection and prevention. It
largely reduces defect migration and manifestation into later stages of development. Since
three decades, inspection has proven to be the most mature, valuable and competent
technique in this challenging area (Micheal Fagan, 2002; Sami Kollanus & Jussi Koskinen ,
2007, Rombach at el., 2008).

3.1 Origin of inspection

Conventional approach of software development was not successful in delivering a defect-
free product. Estimates of rework to fix a defect reported by customers ranged from 30% to
80% of total developmental effort. Hence, it was required to detect defects in the product
and the process that cause defect occurrence. This led to the origin of inspections in software
development. Groundwork for software inspection was in 1972 by Michael Fagan. He is the
pioneer of inspections. He emphasized on inspection to be a formal activity. In his original
data, he was able to detect 82% of defects during design and code inspection. By
implementing software inspection in their process, he was able to save millions of dollars in
developmental cost. For this reason, Fagan received largest corporate individual award
(Michael Fagan, 2002).

3.2 Benefits of inspection

Inspection is one of the powerful techniques for the early defect detection. Inculcating the
inspection activity in SDLC serves to be one of the best practises in the developmental
process. Benefits reaped by implementing inspection technique in the software process are
reduction of defects earlier in the product and process at less cost. It increases customer
satisfaction and enhances productivity. It ships the product within the specified time,
deploy high quality product and saves cost, time and developmental effort towards rework.
It further reflects process maturity of software industry and builds team spirit. It also
strengthens individual confidence and reduces testing time. It also serves as a defect
preventive measure (Caper Jones, 2008; Roger Stewart & Lew Priven, 2008; David L. Parnas
& Mark Lawford, 2003; Oliver Laitenberger, 2002; Karl E. Wiegers, 1995; Doolan E. P., 1992).

3.3 Inspection techniques

Michael Fagan first seeded the concept of formal inspection technique. However, many
great contributions have been made in the domain of inspection. Few of these contributions
are discussed as various popular inspection techniques (Bordin Sapsomboon, 1999). They
are

Fagan’s Software Inspection

Fagan’s Inspection is a structured, meeting-oriented procedure, which includes the activities
of overview, preparation, inspection, rework and follow-up. Inspection meeting identifies,
classifies and logs all possible defects.

www.intechopen.com

388 Recent Advances in Technologies

Formal Technical Reviews

Formal technical reviews consist of a group of technical personnel who cooperate with each
other to analyze the artefacts of the software development process. The outcome is a
structured report. The main objective is to examine the artefact, appraise it and produce a
summary report. Effectiveness of reviews to reach expected quality complies with standards
and guidelines in the form of checklists, forms, summary reports etc.

Structured Walkthroughs

Walkthrough is a peer review process carried out by a group of non managerial staff where
each participant has their well specified roles like scribe, reviewer, author and so on. A
structured walkthrough has a set of defined phase activities and the outcome is a list of
comments or discussions made. They are a means of educating the participants in the
software project.

Code Reading

Code reading is informal activity where a small group of participants reads the source code
for defect identification at an optimal rate of approximately 1K lines per day.

Humphrey’s Inspection Model

A specialized team carries out inspection with well-defined roles assigned to each member
of the team. It is an extension of Fagan’s Inspection. The model includes overview,
preparation, analysis, inspection, rework and follow-up in lieu of three steps of preparation,
inspection and repair. It is a structured technique of inspection.

Formal Technical Asynchronous review method (FT Arm)

This technique employs the parallel activities of setup, orientation, private review, public
review, consolidation and group review. Result of private review is reviewer’s comments
for each node. In public review, each reviewer vote asynchronously for each comment
through open discussion. Consolidation of the public and private review resolves the issues.
Group review meeting will take up unresolved issues. Thus, all activities in FT Arm
technique of inspection are asynchronous.

Gilb Inspection

Gilb inspection technique includes entry, planning, checking, logging, brainstorming, edit,
follow-up, exit activities. Inspection process begins when certain entry criteria is met. With
the identification of defects, their rectification through RCA and logging, an exit criteria is
declared. This acts as a token of completion of inspection.

Phased Inspection

The main advantage of the phased inspection is to deliver the defect-free product by
emphasising on the quality attributes like maintainability, portability, reusability etc.
Phased inspection technique uses computer-supported software inspection. Each inspection
phase occurs in serial fashion by either a single inspector or multiple inspectors to review.
The activities involved are examination, inspection and reconciliation.

N-fold Inspection

In N-fold inspections, multiple inspections occur in parallel for the same artefact. The
prediction is that multiple inspections can detect those defects that might have escaped from
the eyes of a single inspector.

Clean room approach

Clean room approach is an advanced inspection technique that aims at delivering a zero or
minimal defect product. The key feature of this approach is usage of mathematical
reasoning for correctness proof.

www.intechopen.com

Defect Management Strategies in Software Development 389

3.4 Inspection Metrics

Metrics are numerical values that quantify the process and the product. They define,
measure, manage, monitor and improve the effectiveness of the process and the product.
They serve as criteria upon which the inspection planning improves (David F. Rico, 2004).
The main objective of using inspection metrics is to improve on defect detection and reduce
cost of rework. Identification of defect at the deployment stage or even later in the
development phases is highly expensive. Cost to fix a defect found at requirement phase
after deployment of the product is 100 times the cost of fixing it at the phase. Cost to fix a
defect found at design phase after shipment of the product is 60x. Cost to fix a defect at
implementation phase found by customers is 20x. Above cost quality analysis proves the
significance of inspection in developmental process. The most commonly used inspection
metrics are

Total number of defects = A+ B - C 1)

Where A and B are the total number of defects detected by reviewer 1 and reviewer 2 while
C is the total number of common defects detected by both reviewers .

Defect density is the ratio of the number of defects found to the size of the artefact where
size can be lines of code or number of modules, number of function points etc. according to
the suitability of industrial house engaged in the process.

Defect Density = Total defects found / Size (2)

Estimated Total Number of Defects is the sum of the total number of defects found and the
estimated total number of defects remaining. Capture recapture approach detects total
number of defects.

Estimated Total Number of Defects=A*B / C
(by considering only two reviews for simplicity)

©)

The Defect Removal Efficiency (DRE) of an inspection process is also termed as Inspection
Yield, which is

Inspection Yield = Total Defects Found /)
Estimated Total Defects * 100 %

Defect Removal Efficiency is a measure for the defect removal ability in the development
process. This measurement can be either for the entire life cycle or for each phase of the
development life cycle. Use of DRE at front end (before the code integration) is early defect
removal and when used at specific phase, it is phase effectiveness (Jasmine K.S and
Vasantha R. 2007).

DRE = (Defects removed during a development 5)
phase / defects latent in the product)* 100%

www.intechopen.com

390 Recent Advances in Technologies

Latent defects is the sum of defects removed during the phase and the defects found late.
Inspection Time is the total inspection time measured in hours which is given by

Inspection Time = Sum of each reviewer’s review 6)
time + total person time spent in each meeting

Inspection Rate can be computed with the inspection time and the size of the artefact, which
is measurable in terms of number of pages or LOC or other such measures as

Inspection Rate = Size / Total Inspection @)
Time

The defect detection Rate is estimated based on efficiency in detecting the defects which is
computed as

Defect Finding Efficiency = Total Defects ®)
Found / Total Inspection Time

A new metric to quantify the inspection capability is recently introduced. The metric is
accepted widely and identifies itself as Depth of Inspection (DI), which is defined as

Depth of Inspection = Total defects identified by
inspection/Total defects identified by inspection)
and testing

Depth of inspection yield and depth of testing yield are two new measures to quantify the
efficiency of defect capturing technique.

Depth of inspection (%) = number of defects
detected by inspection / total number of defects (10)
detected by both inspection and testing * 100

Depth of testing (%) = number of defects
detected by testing / total number of defects (11)
detected by both inspection and testing * 100

Above equations from (1) to (11) are some of the measures that quantify the outcome of
inspection activity.

4. Analysis of inspection process in various life cycle phases in software
development

Inspection is functional at every phase of the software development to uncover maximum
number of defects. This defect prevention approach has proved to be most effective and
efficient among several other existing approaches.

www.intechopen.com

Defect Management Strategies in Software Development 391

During requirements phase, the product manager interacts with the sales person, marketing
person and stakeholders to perform a comprehensive analysis and validates the product
requirements. The outcome is a requirement specification also called as Product
Requirement Definition (PRD). First round of inspection uncover defects found in PRD.
Outcome of this inspection is a list of comments. Validated assumptions to these
requirements remove ambiguity. Some of these assumptions may themselves lead to
defects. A second round of inspection identifies defects due to assumptions made in
requirement definition.

During design phase, the inspection artefacts are high-level design and low-level design.
Inspection team thoroughly inspects the assumptions made with respect to interactions
between subsystems and other such dependency factors. The outcome is identification of
flaws due to lack of clarity in design.

Implementation phase begins with write up of test cases for software to be developed. Code
generation prior to test case write up is always error prone. Hence, inspection of test cases
ensures code generation to be defect-free.

4.1 Case Study
The following case study gives information on various defect detection and prevention
techniques followed in different companies to deliver a high quality product. They include
a) A leading product-based company
b) A leading service-based company
c) DP techniques adopted in a company that is not stringent towards defect
prevention activities
a) Effective defect prevention techniques adopted in leading product-based company
The company follows staged process model, which is a representation of CMMI (Capability
Maturity Model Integrated) Meta model. CMMI describes goals and best practises for every
process area. It represents its process areas as either continuous model or staged model.
Staged representation of CMMI defines five maturity levels and process areas that are
required to achieve the maturity level. Each process area contains goals, common features
and practices.
Since 1999-2000, the company follows qualitative and quantitative analysis as a defect
preventive strategy. It maintains a database to capture all the defects including the field
defect. Field defects are the mistakes identified by the customer after shipment of the
product to field. Qualitative analysis comprises of stage kick off meeting prior to the start of
each life cycle phase or task. Purpose of the meeting is to highlight those areas where
mistakes were committed, identified and actions that were taken for their rectification in the
past. Sensitization and discussions for current project is accomplished through the lessons
learned from previous similar type of projects. Rationale is to educate in reducing defect
injection and increasing defect removal efficiency.
Quantitative approach collects authentic and realistic data from the stored projects.
Categorization of projects follows Pareto principles of 80% rule. Accordingly, projects
implemented with similar platform and technologies forms a cluster. Control chart is
statistical tool that measures for consistency checks at all phases of SDLC. If an inspection
effort at a phase exemplifies the non-conformance of the defects in the control band, it
reveals the fact that either review was excellent or if review was reprehensible. Testing
comprises of regression testing which ensures non-introduction of unintentional behaviour

www.intechopen.com

392 Recent Advances in Technologies

or additional errors in the software, performance test ascertain the performance of
requirements, environmental test performs testing of operational environment of the
product, health test is conducted for users of the product to verify the product in
compliance with health safety standards.

The review efficiency metric gives an insight on quality of review conducted. Review efficiency is
idyllic if it can identify one critical defect per every one-man hour spent on reviews.

Review Efficiency = Total number of defects found (12)

by reviews /Total number of defects in product

With a review efficiency of 87%, the company has reported an increase in their productivity

from 250 to 400 accentuating the importance of adopting DP strategies. With an inspection-

testing time ratio of 15:30, the company was able to record a quality level of 99.75% defect-

free product.

Observation

Table.3. depicts anatomy of inspection and testing activities for the sampled five projects. It

specifies time and defect profile for the above projects. Application of recent metrics (9),

(10), (11) and from the analysis on the sampled data, following observations are made.

- Inspection is functional at all phases of software development. Deliverables for inspection

are requirement specification, high-level, low-level design artefacts and code reviews.

- Percentage of defect distribution at requirements phase is observed to be in the range of

50% to 60%. Defects occur in the range of 18% to 26% at design phase. Implementation

phase has 12% to 19% of total defect distribution.

- Company schedules 10% to 14% of the total project time at each phase for inspections and

20% to 30% of total project time for testing to deploy defect-free product.

- With the scheduled inspection time, inspection team is able to unearth 40% to 70% of

defects at the early stages of development.

- Inspection can detect only static defects. Testing is vital to detect dynamic defects. With the

scheduled testing time, the company is able to detect majority of defects. It is impossible to

capture all defects in any application because of varied complexities. Company claims up to

97% defect-free product.

b) Effective defect prevention techniques adopted in leading service-based software
company

The company follows continuous representation of CMMI Meta model. It defines five capability

levels and process areas to access capability levels of the company. Each process area further

contains specific goals and specific practices with generic goals and generic practises.

Since 2002, the company follows defect detection and defect prevention techniques to

enhance quality of the product. The defect detection techniques include review of plans,

schedules and records. Company follows product and process audits as part of quality

control activities to uncover defects and correct them. The defect prevention techniques

followed in the company includes pro-active, reactive and retrospective DP.

Pro-active DP aims to create an environment for controlling defects rather than reacting to it.

A stage kick off meeting is conducted to reveal those areas where mistakes were committed,

recognized and actions that were taken for their refinement in the past. Company deems from

the previous projects, the lessons learnt from the life cycle phases, the DP action items

documented and best practices adopted. It emphasizes the development team to follow DP

action items from the previous projects in the organization that are of same nature.

www.intechopen.com

Defect Management Strategies in Software Development 393

Reactive DP identifies and conducts RCA (Root Cause Analysis) for defects meeting at
trigger points or at logical points. Implementation of curative actions along with preventive
actions eliminates the potential defects. The most common root causes for defects identified
in the company are due to lack of communication, lack of training, oversight, lack of project
methodology and inappropriate planning.
Performance of retrospection towards the end of the project or at identified phases of SDLC
explores areas with strong points together with areas requiring perfection.
Observation
Table.4. depicts anatomy of inspection and testing activities for a sampled five projects. It
indicates time and defect profiles for the above projects. From the table, following
observations are listed as:
- Inspection is functional at all phases of software development.
- Percentage of defect distribution at requirements phase is observed to be in the range
of 48% to 61%of total defects. Defects occur in the range of 20% to 28% at design phase.
- Implementation phase contains 13% to 25% of total defect distribution.
- Company schedules 10% to 14% of the total developmental time for inspections and
21% to 35% of total time for testing at each phase to deploy defect-free product.
- Depth of Inspection yield proves that inspection team is able to unearth 37% to 69% of
defects at the early stages of development.
- With the scheduled testing time, the company is able to detect majority of remaining
defects.
- Company claims up to 97% defect-free product.
As a factual statement, companies adapting to DP strategies have shown that over a period
of time, quality of the product enhances while the cost of quality reduces.
c) DP techniques adopted in a company that is not stringent towards defect prevention
activities
The study also includes a company that is not strictly adhering to DP strategies in
comparison with the observations made from the previous two companies.
Observation
Table 5. depicts anatomy of inspection and testing activities for a sampled five projects.
From the table, following observations are listed as :
- Inspection is functional at all phases of software development.
- Percentage of defect distribution at requirements phase is in the range of 44% to 54%.
- Defects occur in the range of 16% to 19% at design phase. Implementation phase has
13% to 18% of total defect distribution.
- Company schedules 3% to 7% of the total project time for inspections and 50% to 55%
of total time for testing at each phase to deploy defect-free product.
- Depth of Inspection yield indicates that inspection team is able to unearth only 16% to
- 33% of defects at the early stages of development.
- With the scheduled testing time, the company is able to detect majority of defects.
- Company claims up to 86% defect-free product.
Since the company is not very stringent towards DP activities, testing requires a substantial
amount of time.
Figure. 1. shows a comparative graph of inspection and testing for five selected projects from
three different companies. Figure.2. shows a comparative graph of inspection yield and testing
yield of the three companies under study. Figure. 3. shows the defect capturing capability of
the three companies with the follow of up of their DP strategies to eliminate defects. The

www.intechopen.com

394 Recent Advances in Technologies

graphs indicate efficiency of inspection in defect detection. It detects defects close to the point
of injection. Further, with increase in inspection time, testing time decreases. Investment in
inspection is initially high but over a period of time, the cost of quality reduces while quality

increases. It further reflects the process maturity of the company.

Company 1 P1 P2 P3 P4 P5
Total time(in man hours) 250 300 500 4248 6944
Requirement time 25 32 50 1062 2597
Requirement review 3 4 5 107 281
Requirement test 7 9 15 320 621
Total inspection time (%) 12.00 12.5 10.00 10.08 10.82
Total testing time (%) 28.00 28.13 30.00 30.13 23.91
Total number of defects 30 46 70 175 254
Total ngmber of defects detected by 16 31 49 80 112
inspection
Totrfll number of defects detected by 14 15 1 95 142
testing
Depth of Inspection yield (%) 53.33 67.39 70.00 45.71 44.09
Depth of Testing yield (%) 46.67 32.61 30.00 54.29 55.91
Defect percentage 60.00 56.10 59.32 59.32 56.07
Design time 46 46 100 1411 1966
Design review 6 5 11 143 200
Design test 13 10 30 390 396
Total inspection time (%) 13.04 10.87 11.00 10.13 10.17
Total testing time (%) 28.26 21.74 30.00 27.64 20.14
Total number of defects 10 15 28 66 120
Total m.lmber of defects detected by 5 7 15 30 77
inspection
Tote'al number of defects detected by 5 8 13 34 43
testing
Depth of Inspection yield (%) 50.00 46.67 53.57 48.48 64.17
Depth of Testing yield (%) 50.00 53.33 46.43 51.52 35.83
Defect percentage 20.00 18.29 23.73 22.37 26.49
Implementation time 101 118 150 878 1300
Code review 10 17 20 105 156
Testing 30 34 45 265 310
Total inspection time (%) 10 14 13 12 12
Total testing time (%) 30 29 30 30 24
Total number of defects 8 16 15 47 67
Total ngmber of defects detected by 4 7 7 o 37
inspection
Totrfll number of defects detected by 4 9 8 23 30
testing
Depth of Inspection yield (%) 50.00 43.75 46.67 51.06 55.22
Depth of Testing yield (%) 50.00 56.25 53.33 48.94 44.78
Defect percentage 16.00 19.51 12.71 15.93 14.79
Total number of defects 50 82 118 295 453
Sum of defects captured 48 77 113 288 441
Total defects captured (%) 96.00 93.90 95.76 97.63 97.35

Table 3. Time and defect profile of a leading product based company

www.intechopen.com

Defect Management Strategies in Software Development 395

Company 2 P1 P2 P3 P4 P5
Total time(in man hours) 263 340 507 4786 7416
Requirement time 26 40 55 2047 2340
Requirement review 3 4 6 200 235
Requirement test 7 11 16 575 821
Total inspection time (%) 12 10 10.91 9.77 10.04
Total testing time (%) 27 27.5 29.09 28.09 35.09
Total number of defects 35 50 77 200 420
Total number of defects detected by inspection 17 26 40 123 156
Total number of defects detected by testing 18 24 37 77 264
Depth of Inspection yield (%) 48.57 52.00 51.95 61.50 37.14
Depth of Testing yield (%) 51.43 48.00 48.05 38.50 62.86
Defect percentage 51.47 50.00 61.60 59.70 48.72
Design time 40 50 110 1323 2950
Design review 4 6 11 128 300
Design test 13 13 25 275 640
Total inspection time (%) 10 12 10 10 10
Total testing time (%) 33 26 23 21 22
Total number of defects 15 28 26 75 201
Total number of defects detected by inspection 8 12 14 33 86
Total number of defects detected by testing 7 16 12 42 115
Depth of Inspection yield (%) 53.33 42.86 53.85 44.00 42.79
Depth of Testing yield (%) 46.67 57.14 46.15 56.00 57.21
Defect percentage 22.06 28.00 20.80 22.39 23.32
Implementation time 100 130 165 756 956
Code review 10 14 23 91 116
Testing 35 30 45 165 235
Total inspection time (%) 10 10.77 13.94 12.00 12.13
Total testing time (%) 35 23.08 27.27 21.83 24.58
Total number of defects 14 20 17 53 219
Total number of defects detected by inspection 8 8 9 27 152
Total number of defects detected by testing 6 12 8 26 67
Depth of Inspection yield (%) 57.14 40.00 52.94 50.94 69.41
Depth of Testing yield (%) 42.86 60.00 47.06 49.06 30.59
Defect percentage 20.59 20.00 13.60 15.82 25.41
Total number of defects 68 100 125 335 862
Sum of defects captured 64 98 120 328 840
Total defects captured (%) 94 98 96 98 97

Table 4. Time and defect profile of a leading service based company

www.intechopen.com

396 Recent Advances in Technologies
Company3 P1 P2 P3 P4 P5
Total time(in man hours) 150 225 368 490 550
Requirement time 15 20 30 54 55
Requirement review 1 1 2 3 3
Requirement test 8 10 16 30 30
Total inspection time (%) 6.67 5.00 6.67 5.56 5.45
Total testing time (%) 53.33 50.00 53.33 55.56 54.55
Total number of defects 15 25 60 65 80
Total ngmber of defects detected by 4 4 14 16 19
inspection
Totz.ﬂ number of defects detected by 11 1 46 49 61
testing
Depth of Inspection yield (%) 26.67 16 23.33 24.62 23.75
Depth of Testing yield (%) 73.33 84 76.67 75.38 76.25
Defect percentage 50 54.35 48.39 50.00 44.44
Design time 30 35 42 70 77
Design review 1 2 2 4 5
Design test 15 18 22 36 40
Total inspection time (%) 3.33 5.71 4.76 5.71 6.49
Total testing time (%) 50 51.43 52.38 51.43 51.95
Total number of defects 5 8 20 24 35
Total ru.lmber of defects detected by 1 5 6 6 10
inspection
Tota.il number of defects detected by 4 6 14 18 25
testing
Depth of Inspection yield (%) 20.00 25.00 30.00 25.00 28.57
Depth of Testing yield (%) 80.00 75.00 70.00 75.00 7143
Defect percentage 16.67 17.39 16.13 18.46 19.44
Implementation time 45 85 105 180 165
Code review 2 4 6 10 9
Testing 24 45 57 94 85
Total inspection time (%) 4.44 471 5.71 5.56 5.45
Total testing time (%) 53.33 52.94 54.29 52.22 51.52
Total number of defects 4 6 21 23 27
Total ngmber of defects detected by 1 ’ 7 6 8
inspection
Totz.ﬂ number of defects detected by 3 4 14 17 19
testing
Depth of Inspection yield (%) 25 33.33 33.33 26.09 29.63
Depth of Testing yield (%) 75 66.67 66.67 73.91 70.37
Defect percentage 13.33 13.04 16.94 17.69 15.00
Total number of defects 30 46 124 130 180
Sum of defects captured 24 39 101 112 142
Total defects captured (%) 80.00 84.78 81.45 86.15 78.89

Table 5. Time and defect profile of a company not stringent to DP

www.intechopen.com

Defect Management Strategies in Software Development

397

Inspection time

10.00
9.00
8.00
7.00
6.00
5.00
4.00
3.00 ——
2.00
1.00
0.00 T T r T

Pl P2 P3 P4
Projects
= Company 2

Total inspection time

P5

¢ Company 1

Company 3

35.00
30.00
25.00
20.00
15.00
10.00

5.00

0.00

Total testing time

Testing time

P1 P2 P3 P4 P5
Projects

——Company 1
Company 3

—&a8—Company 2

Fig. 1. Comparative graphs of inspection and testing for three companies over five selected

projects
Depth of Inspection yield
70.00
~60.00 ;:
o
o 50.00 1
]
.;40.00
c 30.00
2
©20.00 — - —
a
&10.00
= 0.00
P1 P2 P3 P4 P5
Projects
—@— Company 1 —#— Company 2
Company 3

Testing yield(%)

Depth of Testing yield

80.00
60.00 —— :
20.00
0.00
P1 P2 P3 P4 P5
Projects

—e— Company 1

—=— Company 2

Company 3

Fig. 2. Comparative graphs of inspection yield and testing yield for three companies over

five selected projects

www.intechopen.com

398 Recent Advances in Technologies

Defect Capturing Capability
120.00
100.00 ; g »—————wm
80.00
60.00
40.00
L
°\° 20.00
0.00 T T . .
P1 P2 P3 P4 P5
Projects
‘ —e— Company 1 —s— Company 2 Company 3

Fig. 3. Defect capturing capability of the three companies

5. Parameters influencing inspection

An empirical study of various projects across several service-based and product-based
companies has revealed the impact of certain parameters on effectiveness of inspection
activity at every phase of SDLC. These parameters are inspection time, number of inspectors
involved, experience of inspectors involved at each phase of software development and
preparation (training) time.

Inspection time is a highly influencing parameter. Framework of time for inspection at all
phases of development life cycle is necessary. The above Case Study proves importance of
inspection and emphasize upon scheduling appropriate inspection time. Development of
99% defect-free product is possible with an inspection time of 10%-15% out of total project
time (Suma V & Gopalkrishnan Nair T.R., 2008a; Suma V & Gopalakrishnan Nair T.R.,
2008b). Reduction in inspection time can cause defects to escape from identification.
However, automation of software inspection can reduce manual inspection time and retain
the effectiveness of defect detection (Jasper Kamperman, 2004).

Number of inspectors influences inspection process at each phase of development (Halling
M & Biffl S, 2002; Stefen Biffl & Michael Halling, 2003 b). Self-reviewer in compliance with
self-review checklist will initially inspect each deliverable. Peer review detects defects that
have escaped from the eyes of the author. Hence, peer review is an effective defect detection
and removal activity (Karl E.Weigers, 2001b; Karl E. Weigers, 2002; Steven H Lett, 2007). It
can be either formal or informal activity. Outcome of inspection is inspection report. It is a
list of comments with identified defects. Concerned authors receive the inspection report for
fixing up of defects. Thus, feedback mechanism facilitates developer team and management
to identify and remove defects along with fault processes. Identified defects further undergo
causal analysis before final inspection. The technical leader performs root cause analysis of
defects. Inspection team maintains a record of defects that includes type of defect, number
of defects, root causes of defects, inspectors involved, their experience level as inspectors
and action items taken for rectification of the identified defects and so on. This log acts as a
lesson learnt for future development of the same project or for projects that are similar in
nature. Project leaders and technical managers or senior managers perform the final

www.intechopen.com

Defect Management Strategies in Software Development 399

inspection. Project leaders responsible for the deliverable should not be the inspector for the
final inspection. Typically, some organizations prefer two inspectors namely self-inspector
and peer inspector. However, effectiveness of inspection can occur only when team size is
proportional to the size and complexity of the project. Effectiveness of inspection can be
further accelerated with division of responsibilities. Selection of team size also depends
upon company’s budgetary strategies.

Experience of inspectors is an influencing parameter in defect detection. Established projects
require lesser time in elicitation of requirement than innovative projects. Hence, innovative
projects demand experienced inspectors. Integrated projects need more developmental time
in design phase than other life cycle phases. Such projects demand experienced inspectors at
design phase. An inspector who has examined design deliverables for a minimum of three
projects is preferred for inspecting the high-level design and low-level design. Inspection of
design artefacts includes examining the conformance to security, maintainability,
reusability, complexity of design and other such related issues. An inspector at
implementation phase requires knowledge on security aspects and intuitive knowledge on
rules of the organization. He needs coding experience along with ability to check for
redundancy in code, number of lines of code, code efficiency, design policies against code,
security, safety, maintainability, reusability and other such quality attributes. Besides,
human factors influence effectiveness of inspection. Organizational and self-motivational
factors have impact on defect detection. The competence of inspectors turns out to be a very
important component for effective inspection process.

Preparation (Training) time for inspectors plays a vital role in influencing the effectiveness
of inspection. Preparation time varies depending on the complexity of the project. Author
conducts a walkthrough of the deliverable to the participating inspectors. This helps team
members for analysing defects. Improvement in competency of inspectors and reduction in
human effort can be accomplished by the inspection team through formal training,
education or through perspective-based reading techniques. They specify what to and how
to inspect the artefacts (Biffl S. 2000; Stefan Biffl at el., 2003a; Stefen Biffl & Michael Halling,
2003 b; Karl E. Wiegers, 2001a). Thus, inspection time and preparation time influences
efficiency of inspection meeting (Liguo Yu at el.,, 2006). However, our empirical study
reveals that inspection time, number of inspectors and their experience with preparation
time influences defect detection rate.

Models such as Baysian belief network builds confidence in measuring the effectiveness of
inspection. The strength of this model is in the usage of attributes such as product size,
complexity of product, quality of inspection process that contributes towards inspection
effectiveness (Trevor Cockram, 2001). Code inspection model uses code size, number of
coding errors and density of coding errors to estimate the effectiveness of inspection.

6. Conclusions

Software has strong influence on all categories of occupations. The key challenge of IT
industry is to deploy high quality defect-free software product. Software Engineering
foundation helps engineers to develop defect-free software within the scheduled time, cost
and resources in a systematic manner. Defect is an undesirable behaviour or an imperfection
that occurs in the product through the process. Hence, defect management is the core
business need of the day. Two successful approaches of defect management are defect

www.intechopen.com

400 Recent Advances in Technologies

detection and defect prevention. Empirical studies reveal the probability of percentage of
defect distribution at every phase of software development. Study specifies that 50% to 60%
of total defects originate at requirement phase, 15% to 30% at design phase and 10% to 20%
of total defects occur at implementation phase. Analysis of defect pattern indicates existence
of various categories of defects and possibilities of their occurrences. Blocker defect occur in
the range of 5% to 15%, major defect in 10% to 25%, critical defect in 20% to 25%, minor
defect in 10% to 20% and trivial defect in 15% to 55% out of total percentage of defects.
Defect detection is a technique of identifying defects and eliminating them at the root level.
Some of the conventional defect detection techniques are inspection, prototype, testing and
correctness proof. However, an awareness of rationale for defect distribution and root cause
analysis of defect pattern helps in effective defect detection. Common root causes for defect
injection are analyzed to be due to lack of communication (20% to 25%), lack of education
(20% to 25%), oversight (30% to 45%), transcription (20% to 25%), miscellaneous (5% to
10%).

Defect prevention is a step towards process maturity. Knowledge of defect injection
methods enables defect prevention. It prevents reoccurrences, propagation and
manifestation of defects either in the same project or in similar projects. Conventional defect
prevention strategies include product approach, process approach and automation of
developmental process. Changing trends in defect management enables transition from
postproduction detection technique to preproduction detection technique and in-situ
detection during developmental phase.

Inspection continues to prove as the most effective and efficient technique of defect
detection and prevention since three decades. Michael Fagan is the pioneer of formal
inspection technique in software industry. However, several inspection techniques have
evolved over the time. They include Humphrey’s inspection, Gilb inspection, formal
technical reviews, structured walkthrough etc. Inspection related metrics statistically
measures the effectiveness of inspections. They indicate the level of maturity of the
company.

A Case Study comprising of three companies throws light on the possibility of software
industries to position itself through aptly organized defect detection and prevention
strategies. It proves the significance of inspection at every phase of software development.
Inspection discovers static defects close to its origin while testing detects dynamic defects.
Effective inspection demands 10% to 15% of total developmental time as against the testing
time of 30% to 35% of total project time to unearth defects. Observation strongly indicates
that software industry can deliver up to 99% defect-free products from above specified
inspection and testing ratio. Reduction in inspection time demands more than 50% of total
developmental time towards testing. Hence, organizations should go for defect detection
and prevention strategies for a long-term Return on Investment (ROI).

An insight of parameters influencing effectiveness of inspection is a necessity to gain
complete benefit of inspection technique. Appropriate inspection time, number of
inspectors, experience level of inspectors and preparation time for inspectors plays a
significant role in enhancing effectiveness of inspection.

The goal of reaching a consistently 99% defect-free software depends much on effective
defect detection and prevention techniques adopted in the organization.

www.intechopen.com

Defect Management Strategies in Software Development 401

7. References

Anthony Mark Doggett, (2004). Statistical Comparison of Three Root Cause Analysis Tools,
Journal of Industrial Technology, Volume 20, Number 2, February 2004 to April 2004

Bard Clark; Dave Zubrow, (2001). How Good Is the Software: A Review of Software
Prediction Techniques , Software Engineering Symposium 2001, pp. 33 , sponsored
by U.S. Department of Defence, Carnegie Mellon University

Biffl S., (2000). Analysis of the Impact of Reading Technique and Inspector Capability on
Individual Inspection Performance, proceedings of Seventh Asia-Pacific Software
Engineering Conference APSEC 2000, ISBN 0-7695-0915-0, December 2000, IEEE
Computer Society publisher, Singapore

Bordin Sapsomboon, (1999). Software Inspection and Computer Support, state of the art
paper, 1999. www sis.pitt.edu/~cascade/bordin/soa_inspection.pdf

Caper Jones, (2008). Measuring Defect Potentials and Defect Removal Efficiency, CROSSTALK,
The journal of Defence Software Engineering, June 2008 issue, Vol 21, No 6

Chillarege; 1.S. Bhandari; J.K. Chaar; M.]. Halliday; D.S. Moebus; B.K. Ray & M.-Y. Wong,
(1992). Orthogonal Defect Classification-A Concept for In-Process Measurements,
IEEE Transactions on Software Engineering, vol. 18, no. 11, . 943-956, November, 1992

David F. Rico (Forward by Roger S. Pressman), (2004). ROI of Software Process

Improvement Metrics for Project Managers and Software Engineers,]. Ross Publishing, ISBN: 1-
932159-24-X, January 2004, Chapter 7 - Software Inspection Process ROI
Methodology, USA

David N. Card, (2006). Myths and Strategies of Defect Causal Analysis, Proceedings of
Twenty-Fourth Annual Pacific Northwest Software Quality Conference, October 10-11,
2006, Portland, Oregon, pp. 469-474, published in IT Metrics and Productivity
Strategies, August 21, 2007

David L. Parnas & Mark Lawford, (2003). Guest Editors’ Introduction: Inspection’s role in
software quality assurance, IEEE Software Journal, IEEE Computer Society
publisher, Los Alamitos, CA, USA ,vol 20, Issue 4, pp. 16-20, 2003, ISSN:0740-7459

Doolan E. P. (1992). Experience with Fagan’s Inspection Method, Software Practice And
Experience (SPE) Journal, Wiley Publishing, Vol. 22(2), pp. 173-182, February 1992

Elfriede Dustin; Jeff Rashka & John Paul, (1999). Automated Software Testing: introduction,
management, and performance, Addison-Wesley publisher, ISBN 0201432870,
9780201432879

Elfriede Dustin; Thom Garrett & Bernie Gauf, (2009). Implementing Automated Software
Testing: How to Save Time and Lower Costs While Raising Quality, March 04, 2009,
Addison-Wesley Professional publisher, Print ISBN- 10: 0-321-58051-6, Print ISBN-
13:978-0-321-58051-1, Web ISBN-10: 0-321-61960-9, Web ISBN-13: 978-0-321-61960-0

Glenford J. Myers; Tom Badgett; Corey Sandler & Todd M. Thomas, (2004). The Art of
Software Testing, Second Edition, 2004, John Wiley & Sons publisher, ISBN
047167835X, 9780471678359

Halling M & Biffl S, (2002). Investigating the influence of software inspection process
parameters on inspection meeting performance, Proceedings of International
Conference on Empirical Assessment of Software Engineering (EASE), Keele, Volume 149,
Issue 5, Oct 2002 pp. 115 - 121, ISSN: 1462-5970, The Institution of Engineering and
Technology publisher, United Kingdom

www.intechopen.com

402 Recent Advances in Technologies

Hung Q. Nguyen; Michael Hackett & Brent K. Whitlock, (2006). Hay About Global Software
Test Automation: A Discussion of Software Testing for Executives, August 1, 2006,
ISBN-10: 1600050115, ISBN-13: 978-1600050114

Ian Somerville, (2006). Software Engineering, 8th Edition, ISBN-10: 0321313798, ISBN-13: 978-
0321313799, Addison Wesley publisher, June 4, 2006

Jasper Kamperman,(2004). Automated Software Inspection: A New Approach to Increased
Software Quality and Productivity, Technical-White Paper, 2004-2006

Jasmine K.S & Vasantha R., (2007) . DRE - A Quality Metric for Component based Software
Products, proceedings of World Academy Of Science, Engineering And Technonolgy, Vol
23, ISSN 1307-6884, August 2007, Berlin, Germany

Jeff Tian, (2001). Quality Assurance Alternatives and Techniques: A Defect-Based Survey
and Analysis, Software Quality Professional, Vol 3, No 3/2001, ASQ by Department
of Computer Science and Engineering, Southern Methodist University

Jeff Tian, (2005). Software Quality Engineering: Testing, Quality Assurance, and Quantifiable
Improvement, February 2005, Wiley John & Sons publisher, ISBN-13: 9780471713456

Karl E. Wiegers, (1995). Improving quality though software inspections, Software
Development magazine, vol. 3, no. 4, April 1995, ISBN 716-377-5110 Visit:
WWw.processimpact.com

Karl E. Wiegers, (2001a). Improving software inspections by using reading techniques,
Proceedings of the 23rd International Conference on Software Engineering, Canada Pages:
726 - 727, Year of Publication: 2001, ISBN ~ ISSN:0270-5257 , 0-7695-1050-7,
Toronto, Ontario

Karl E.Weigers, (2001b). When Two Eyes Aren’t Enough, Software Development magazine, vol.
9, n0.10, October 2001

Karl E. Weigers, (2002). Peer Reviews in Software: A Practical Guide, Addison- Wesley
publication, ISBN 0-201-73485-0, 2002

Kashif Adeel; Shams Ahmad & Sohaib Akhtar, (2005). Defect Prevention Techniques and its
Usage in Requirements Gathering-Industry Practices, Proceedings of Engineering
Sciences and Technology, SCONEST, ISBN 978-0-7803-9442-1, pp.1-5,August 2005,
IEEE Computer Society publisher

Lars M. Karg & Arne Beckhaus, (2007). Modeling Software Quality Costs by Adapting
Established Methodologies of Mature Industries, Proceedings of IEEE International
Conference on Industrial Engineering and Engineering Management (IEEM), ISBN 078-1-
4244-1529-8, pp. 267-271, 2-5 December 2007, IEEE Computer Society publisher,
Singapore

Liguo Yu; Robert P. Batzinger & Srini Ramaswamy, (2006). A Comparison of the Efficiencies
of Code Inspections in Software Development and Maintenance, Proceedings of The
2006 World Congress in computer Science, Computer Engineering and Allied computing,
World Academy of Science Software Engineering Research and Practice, June 26th to
29th, 2006, Las Vegas, Nevada, USA

Micheal Fagan, (2002). Reviews and Inspections, Proceedings of Software Pioneers and Their
Contributions to Software Engineering sd & m Conference on Software Pioneers, pp. 562-
573, book title Software Pioneers, ISBN-10: 3540430814, ISBN-13: 978-3540430810,
2002, Springer publisher

www.intechopen.com

Defect Management Strategies in Software Development 403

Mukesh Soni,(2006). Defect Prevention: Reducing Costs and Enhancing Quality, iSixSigma.com
Publisher, Publishing date 19 July 2006, http://software.isixsigma.com/
library/content/c060719b.asp

Oliver Laitenberger, (2002). A Survey of Software Inspection Technologies, Handbook on
Software Engineering and Knowledge Engineering, Volume 2, 33 articles, ISBN: 981-02-
4974-8, ISBN: 981-02-4514-9, 2002

Pankaj Jalote, (2002). Software Project Management in Practice, Addison-Wesley Professional
Publishers, Jan 31, 2002, First edition, ISBN-10: 0-201-73721-3, ISBN-13: 978-0-201-
73721-9

Peter Schubh, (2005). Integrating agile development in the real world, ISBN-10: 1584503645, ISBN-
13: 9781584503644, Cengage Learning publisher, 2005

Prowell S. J., (2005). Using Markov Chain Usage Models to Test Complex Systems, System
Sciences, 2005, HICSS apos; 05, Proceedings of 38th Annual Hawaii International
Conference on System Sciences, pp. 318c - 318c, ISSN: 1530-1605, ISBN: 0-7695-2268-8,
IEEE Computer Society publisher, Washington, DC, USA, 03-06 Jan. 2005, Big
Island, HI, USA

Purushotham Narayan, (2003). Software Defect Prevention in a Nut shell, iSixSigma.com
publisher, Publishing date 11 June 2003, http://software.isixsigma.com/
library/content/c030611a.asp

Rombach; Dieter & Ciolkowski; Marcus & Jeffery; Ross & Laitenberger: Oliver & McGarry;
Frank & Shull; Forrest, (2008). Impact of research on practice in the field of
inspections, reviews and walkthroughs: learning from successful industrial uses,
SIGSOFT Software Engineering Notes, Vol 33, no. 6, 2008, ISSN 0163-5948, pp. 26-35,
ACM publishers, New York, NY, USA

Roger S. Pressman, (2005). Software Engineering: A Practitioner’s Approach, Sixth edition,
Mc Graw Hill publisher, ISBN 007-124083-7,

Roger Stewart & Lew Priven, (2008). How to Avoid Software Inspection Failure and Achieve
Ongoing Benefits, Crosstalk, The journal of Defence Software Engineering, Volume 2,
No.1, 76th Software Maintenance Group, Oklahoma Air Logistics Centre, Jan 2008

Sami Kollanus & Jussi Koskinen, (2007). A Survey of Software Inspection Technologies
Research: 1991- 2005, Working Papers WP-40, ISBN 978-951-39-2776-9 , ISSN 0359-
8489, pp. 39, March 2007, Department of Computer Science and Information
Systems University of Jyvaskyld, Jyvaskyld, Finland

Srinivasan N. & Thambidurai P., (2007). On the Problems and Solutions of Static Analysis
for Software Testing, Asian Journal of Information Technology, 6(2): 258- 262, Medwell
Journals publisher, 2007

Spiewak R & McRitchie K, (2008). Using Software Quality Methods to Reduce Cost and
Prevent Defects, CROSSTALK, The journal of Defense Software Engineering, Vol 21,
No. 12, Dec 2008 issue

Stefan Biffl;, Michael Halling & Sabine Koszegi, (2003 a). Investigating the Accuracy of
Defect Estimation Models for Individuals and Teams Based on Inspection Data,
Proceedings of the 2003 International Symposium on Empirical Software Engineering
(ISESE’03), ISESE book title, pp.232-243, ISBN 0-7695-2002-2/03, IEEE Computer
Society publisher, 30 September - 1 October 2003, Rome, Italy

www.intechopen.com

404 Recent Advances in Technologies

Stefen Biffl & Michael Halling, (2003 b). Investigating the Defect Detection Effectiveness and
Cost Benefit of Nominal Inspection Teams, Proceedings of 2003 International
Symposium on Empirical Software Engineering (ISESE 2003), ISESE book title, Vol 29,
No.5, pp.385-397, ISBN 0-7695-2002-2, IEEE Computer Society publisher, IEEE
Transactions on Software Engineering, 30 September - 1 October 2003, Rome, Italy

Steven H Lett, (2007). Using Peer Review Data to Manage Software Defects, IT Metrics and
Productivity Journal, August 21, 2007

Stefan Wagner, (2008). Defect Classification and Defect Types Revisited, Proceedings of
International Symposium on Software Testing and Analysis workshop on Defects
in large software systems, pp.39-40, ISBN: 978-1-60558-051-7, July 20, 2008,
Washington, USA

Suma V & Gopalakrishnan Nair T. R., (2008a). Effective Defect Prevention Approach in
Software Process for Achieving Better Quality Levels, Proceedings of Fifth
International Conference on Software Engineering, pp. 2070-3740, Vol 32, ISSN 2070-
3740, 30-31st August 2008, World Academy of Science, Engineering & Technology,
Singapore

Suma V & Gopalakrishnan Nair T.R., (2008b). Enhanced Approaches in Defect Detection
and Prevention Strategies in Small and Medium Scale Industries, Proceedings of The
Third International Conference on Software Engineering Advances, ICSEA, pp.389 - 393,
26-31st October 2008, IEEE Computer Society publisher, Malta, Europe

Trevor Cockram, (2001). Gaining confidence with Beysian network, Software Quality Journal,
ISSN 0963-9314 (Print) 1573-1367,(Online) ,Volume 9, Number 1/January, 2001,
Springer Publishers, Netherlands

Van Moll, J.H.; Jacobs,]J.C.; Freimut, B.; Trienekens,]J.J.M., (2002). The importance of life
Cycle modelling to defect detection and prevention, Proceedings of 10th International
Workshop on Software Technology and Engineering Practice, STEP, pp. 144 - 155, ISBN:
0-7695-1878-8, 6-8 October 2002, Montréal, Canada

Vasudevan S, (2005). Defect Prevention Techniques, and Practices, Proceedings of Fifth Annual
International Software Testing Conference, 2005, Hyderabad, India Visit ready test go

Watts S. Humphrey, (1989). Managing the Software Process, Defect Prevention, ISBN
0201180952, 9780201180954, Addison-Wesley Professional publisher, 1989

Watts S. Humphrey, (1994). A Personal Commitment to Software Quality, Ed Yourdon's
American Programmer journal, Issue December 1994

www.intechopen.com

Recent Advances in Technologies
Recent Advances

in Technologids Edited by Maurizio A Strangio

)

ISBN 978-953-307-017-9

Hard cover, 636 pages

Publisher InTech

Published online 01, November, 2009
Published in print edition November, 2009

The techniques of computer modelling and simulation are increasingly important in many fields of science
since they allow quantitative examination and evaluation of the most complex hypothesis. Furthermore, by
taking advantage of the enormous amount of computational resources available on modern computers
scientists are able to suggest scenarios and results that are more significant than ever. This book brings
together recent work describing novel and advanced modelling and analysis techniques applied to many
different research areas.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Suma V and Gopalakrishnan Nair T.R. (2009). Defect Management Strategies in Software Development,
Recent Advances in Technologies, Maurizio A Strangio (Ed.), ISBN: 978-953-307-017-9, InTech, Available
from: http://www.intechopen.com/books/recent-advances-in-technologies/defect-management-strategies-in-
software-development

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia E EEHIEL AR5 S _EiBE PR R A KRS HAE4058 7T
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed under
the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0
License, which permits use, distribution and reproduction for non-commercial
purposes, provided the original is properly cited and derivative works building
on this content are distributed under the same license.

