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1. Introduction

The widespread use of computers has lead to important health concerns. Musculoskeletal
disorders (MSDs) have become an epidemic and their association with computer use has been
well documented (Gerr et al, 2002, Punnett & Bergqvist, 1997, Juul-Kristensen & Jensen, 2005).
It is believed that in addition to the magnitude of biomechanical load the duration and
frequency of the exposures are of importance in the development of MSDs (Winkel &
Mathiassen, 1999, Kryger et al., 2003). In other words, there is a dynamic interaction between
the exposures and the pathophysiological responses leading to the symptoms and disorders
(Armstrong et al, 1993, Sauter & Swanson, 1995). A number of approaches have been taken in
attempting to understand the risk and the course during computer work. However, there
remain significant gaps in our knowledge about the dynamic changes of health outcomes in
response to computer-related workload. It is challenging to tackle this problem from
mathematical modelling due to both measurement techniques and analysis methodologies.
From a measurement point of view, solo use of questionnaires may suffer from low accuracy
of the estimated magnitude of the problem. On the other hand, measuring the exposures by
observation or direct measures is expensive and therefore not feasible in large epidemiological
studies (Winkel & Mathiassen, 1994). In this study, a combination of direct measure and
survey techniques was adopted for data collection process. We have not seen this kind of data
collection performed in the literature. Methodologically, no high muscular forces are needed in
computer work and the postures are fairly constant. Traditional biomechanical models may
not be applicable to such problems. Therefore, nearly all literature deals with risk factor issues
through data collection and analysis. The data are often nonlinear. The application of linear
models as primary tools, possibly, can not capture the complexity presented in the data in a
static process, let alone a dynamic process. The interpretability of the model may be low.

In mathematical modelling, one of the main objectives is to select a suitable model for analysis
purposes. When coping with large size data with nonlinear features, as the ones resulting from
many subjects in poorly understood process, we do not know in advance suitable models.
Therefore, the first aim should be to discover dominant patterns so that the possible nonlinear
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models can be easily identified. This chapter aims to fulfill such objectives. The following
sections present a mathematical model to illustrate the kind of complicated data that have
been successfully simulated, and to perform a systematic analysis of computer-related health
outcomes statically and dynamically.

2. Data

Data were gathered by measurement device and self-administered questionnaire-diaries
consisting of items presenting health outcomes for 15 body parts. The study population
consisted of 103 office workers in Finland. They did office work for at least four hours a day
and had reported a moderate amount of musculoskeletal symptoms. About 58% of the
study population were woman. The data collection procedure was carried out in two-week
periods before an intervention, and at the 2-month and 10-month follow-up. The software
(Work-Pace™, Niche Software Limited, New Zealand) was adopted to continuously
monitor the workers' keyboard and mouse entries. The recorded files contain the exact
history of keyboard and mouse events for each subject with an accuracy of ten milliseconds.
Data were then summed up for indicating computer-related workload as a daily base.
Simultaneously with the recordings of computer use the workers were asked to fill in a
questionnaire-diary from current musculoskeletal-specific health outcome measures three
times a day: in the morning, at noon and in the evening. The diary contained a body map
diagram and questions about the existence of musculoskeletal discomfort in different body
regions. Each item was assessed using 5-point rating scale from "5-feel good" to "1-feel very
uncomfortable". A detailed description of the data collection procedures can be found in
Ketola et al. 's paper (Ketola et al., 2002).

Due to some technical and human factors in the measurement and survey, there were holes
in the collected data set. For some subjects, a large portion of data (up to 80%) was missing.
Under this circumstance we couldn't include such subjects and the final number of the
subjects was 69. Even for these 69 subjects, there were missing values in the dataset. Little
and Rubin (Little & Rubin, 1987), among others, have demonstrated the dangers of simply
deleting missing data cases. Imputation will most likely introduce bias into the model (e.g.
Engels & Diehr, 2003). Another problem associated with the data was that the observation
time periods varied with subjects and were short in general. Some subjects' data were
collected for a single day and the maximum time duration was three weeks. Due to these
shortcomings we decided to average the data to use a weekly model. Above all, we believe
that long-term temporal variations may be superimposed to changes in weekly patterns.

In addition, the responses of health outcomes or discomfort ratings were treated as
continuous variables since they have continuous properties and distribution and there is no
computation restriction against fitting continuous models to ordinal data. In clinical trials
for example, investigators often need to deal with underlying continuous responses that are
recorded as ordinal variables such as in our dataset. In some cases, it is possible that a
continuous model may not be appropriate to ordinal outcomes even though it can fit the
ordinal data. In our data, variables are continuous in nature and it is appropriate to treat
them as continuous variable even though outcomes are ordinal due to the insufficient
performance of measurement. Therefore, the following data process was made:

e The health outcomes, denoted as discomfort ratings, for the morning, noon and afternoon
were averaged as daily ratings;
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¢ The discomfort ratings were treated as interval values;

e The discomfort ratings for the left and right parts of the body were combined by selecting
the smaller rating value (more serious discomfort outcome);

e The computer workload indicating the daily keyboard and mouse entries of the study
subjects were accumulated from the starting date Monday. Missing data didn't contribute to
the average.

3. Mathematical Model

A mathematical model was developed which describes the temporal associations between
discomfort and computer-related workload in multiple body regions. The associations are
formulated in an explicit dose-response relationship which is parametrized by body region
parameters (Lu & Takala, 2008). The validation of the model gave a good accuracy. The
model was further evaluated and confirmed by using commercialized statistical software
package SAS. Therefore, we can use the model to assess the impact of computer-related
work exposure on discomfort in different body regions in order to better understand the
dynamic effects of computer workload. The stages of the proposed methodology, including
basic concepts of Singular Value Decomposition (SVD), are briefly given as follows:

¢ Generating a sample matrix from the dataset;

eApplying SVD to the matrix to capture the dominant temporal patterns;

¢ Regressing towards the dominant temporal patterns;

¢ Summarising the model equations;

eApplying standard statistical software to estimate both the standard errors of the
parameters and the accuracy of the model.

3.1 Generation of Sample Matrix
Consider a sample mxn matrix a; generated from the data as

a(t) alty) ... a(t,_) a(t,)

a)(t)  a,t) ... aft,_) alt,)
“m (1)
A, (4) a, () . a,,(t,) a,,t,)
a,t) a, () .. a,t_) a,Q,)

where aj(t;), j = 1...m & i = 1...n presents regional discomfort rating for sample j at time ;. The
matrix may also present a single sample's measures with periodic patterns depending on the
data structure and the study purpose.

3.2 Application of Singular Value Decomposition
Applying SVD (Golub & van Loan, 1996) to Equation 1 gives

n
T
a=UDVS= Y udy, ©

i=1
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where columns u; and v; of U and V are called the left and right singular vectors,
respectively. The diagonal elements d; of D, sorted in the descending order with upper left
value the largest, are called the singular values. The singular values are the square roots of
the eigenvalues of the matrix a; 4, or a;Ta; whilst the singular vectors are the correspondent
eigenvectors

-
One key in applying SVD is that the truncated matrix Zuidivﬁr is the closest rank-r
i=1

matrix to a; (Golub &Van Loan 1996). Note that r is always smaller than both m and n. This
property is extremely useful when r is much smaller than . In practical applications, d;, n> i
> r+1, may not be zero due to the presence of noise such as individual disturbances in the
measurement data, but they are very close to zero. Then by dropping the last n-r singular
values, a good approximation of a; is obtained with an r dimensional matrix. The
corresponding singular values can be used as a measure of relative significance of the
approximation for explaining a;. Very often, a good matrix approximation can be obtained
with only a small fraction of the singular values.

Applying Equation 1 and Equation 2 to our measurement data and checking the rank of a;,
we found that r = 1 and the approximation u1d1v1;” can explain 90% of the variation of a;. So
we get the following approximation

a(t) a@) .. a(,._) a(,)

a,(t,) a,(t,) ... a(t,) a,(t))
a; = ~ ud1v1T = uod (3)
am—l(tl) am—l(tz) am—l(tn—l) am—l(tn)
am (tl) am (t2) am (tnfl) am (tn)
where u = 1= (ul Uy oo Uy U, )T and v:= div1 = (v(t), v(f2) ... V(ts), v(tn))T.

It is easy to see that a time-dependent model problem a; is simplified through Equation 3.
The time series outcomes for all subjects are expressed in terms of the time series v; with
linear combination coefficients of the elements of # which describe the differences among all
subjects. Therefore, v; presents the captured dominant time pattern and u the individual
sample differences. The next step deals with the regression of v; and a;.

3.3 Regression of the Dominant Patterns

To test whether the captured dominant time pattern v; is linear or nonlinear or just random
noise, we plotted v; and made a visual inspection in data variability and goodness of fit
through regression analysis. We found that v; obeys a certain nonlinear properties. A dose-
response relation was identified and proved to be significant. It is worth mentioning that
this way, by incorporating visual inspection of the plotted curve and nonlinear regression
analysis, can reduce the potential errors introduced especially by large unseen data.

The regression function a(t) of a; can then be obtained based on the regression function v(f)
of v; through Equation 3 as
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a(t) = uo(t) (4)

To make Equation 4 more clear, remember the following point: a(t) denotes the regional
discomfort ratings in continuous time, v(f) the dominant dynamic patterns and u the
correspondent linear coefficient vector which presents kind of 'individual differences' of the
outcomes in response to the dominant pattern. The final model equation can be derived by
averaging u over the studied time period as

a(r) ~ wo(t) ®)

3.4 Summary of the Model Equations

To summarise, here are the key features of the model equations:

eComputer-related workload: The computer-related workload varied linearly with time.
This simple linear dependence suggests that it is adequate to study time-dependent health
outcomes as the result can be easily applied to workload-induced behaviour;

eHealth outcomes: The developed explicit model equations can be expressed with the
following general functional form from Equation 5 as

at) =(m+ % -% ) 6)
14+10"%

where a(f) presents the musculoskeletal discomfort rating ranged from 1 to 5 and a1, @, o3
are body region dependent parameters. Equation 6 is parametrized by body region
parameters;

® Model validation: The validation is performed by direct comparison of observations and
forecast as illustrated in Figure 1. The accuracy is good.

Ig“ i oobserved | |Fm_-———————
‘g, X predicted 95% confidence interval
8% O O u B (o W BOH B _
EZ-B&XR(R(RXXR(R(XX
a8
11 (@]
Simulation period Forecast

— period

Fig. 1. Simulation and forecast of discomfort ratings (5 = 'feel good', 1 = 'feel very uncomfortable')
in body region 'eyes' for an individual subject. Based on the measured ratings during the first
period (‘'Simulation period') a forecast was fitted (stars) and compared to observations (circles).
The horizontal dotted lines show the 95% confidence limits for the predicted period
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3.5 Application of Standard Statistical Software

Next we evaluate the standard errors of the model parameters and the accuracy of the
model through commercial statistics based software packages SAS. SAS's procedure PROC
NLMIXED was employed which addresses the sequential correlation issue directly by
modelling the covariance structure. Table 1 gives these parameter values (Lu & Takala,
2008). As a single dose-response model could not be fitted to all the curves, the data for the
outcome 'mood' were modelled separately with an extra exponential function represented
through the parameters o4 and a5 The parameters a4 and a5 were not statistically discernible
at the 5 percent probability level and therefore were eliminated from the model. The
goodness-of-fit tests (result not shown here) for the model also demonstrated that the
proposed model (Equation 6) performed better than the linear model, the most common

model in handling such data. Figure 2 displays the model g(¢) for 15 body parts ranged

from 1 to 5. The x-axis represents time in days or scaled computer-related workload due to
their linear relationship.

Body regions a1 (SE) a>(SE) a3(SE) a4(SE) as5(SE)
head 3.877(0.08) | 4.00™ (0.08) | 2.63™(0.38) | - -
eyes 3.72(0.09) | 3.89"(0.10) | 2.29™(0.49) | - -
neck 3.58*(0.10) | 3.74*(0.10) | 2.19™(0.38) | - -
shoulder 3.64*(0.10) | 3.77*(0.10) | 2.25*(0.39) | - -
shoulder joint/ 3.75"(0.10) | 3.87°*(0.10) | 2.63"*(0.48) | -
upper arm

forearm 4.02(0.10) | 4.077*(0.10) | 3.15%(1.33) | - -
wrist 4.027(0.10) | 4.09"(0.10) | 3.73*(0.65) | - -
fingers 3.99*(0.11) | 4.07**(0.11) | 3.83™(0.41) | - -
upper back 3.75*(0.11) | 3.87(0.11) | 2.78"(0.38) | - -
low back 3.84*(0.11) | 3.89*(0.11) | 3.43™*(1.06) | - -
hips 4.297(0.09) | 4.30™(0.09) | 3.51"(1.24) | - -
thighs 4.30"(0.09) | 4.327*(0.10) | 3.44™(1.37) | - -
knees/shin 4.21™(0.11) | 4.26™(0.11) | 3.72"*(0.63) | - -
feet 4.18™(0.10) | 4.23*(0.10) | 4.14™(0.93) | - -

mood 4.047(0.79) | 3.57°(0.49) | 2.88"*(0.39) | 0.41(0.77) | 0.41(0.61)

Table 1. Fitted parameters a1 a2 a3 a4 as in model equations (Equation 6) for dose - response
relationship (SE-standard error; **p<0.001; *p<0.05)
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Fig. 2. Discomfort ratings in different body regions (Y-axis: 5 = 'feel good, 1 = 'feel very
uncomfortable'; X-axis: 1 = 'Monday', 5 = 'Friday')

4. Analysis Results

Using the developed model, we performed extensive investigations of the health outcomes.
We compared the risk body regions and provided various severity rankings of the discomfort
rate changes with respect to computer-related workload statically and dynamically.

4.1 Average Ranking of Discomfort Severities

Firstly we performed two Waller-Duncan k-ratio ¢ tests for a(t) (Equation 6 and Figure 2) in
order to investigate detailed contrast of the health outcomes in different body regions. Table
2 shows the results.

Waller Grouping Mean Locations
6 4.58 mood
5 4.31 thighs
5 4.30 hips
5 4.24 knees/shin
5 4.22 feet
4 4.07 wrist
4 4.05 forearm
4 4.04 fingers
3 3.93 head
3 3.87 low back
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2 3.80 upper back

2 3.80 shoulder joint/upper arm
2 3.78 eyes

1 3.67 shoulders

1 3.63 neck

Table 2. Average ranking of discomfort severities in different body regions

The results show that the severity levels of musculoskeletal discomfort can be grouped into
the following categories roughly from severe to moderate as

e level 1: neck and shoulder;

e level 2: eyes, shoulder joint/upper arm and upper back;

e level 3: low back and head;

e level 4: fingers, forearm and wrist;

e level 5: feet, knees/shin, hips and thighs;

e level 6: mood.

Note that this testing is for multiple means comparison which probably has too rough
classification results for nonlinear data. In the following we give a much more detailed
classification scheme for the severity levels of musculoskeletal discomfort.

4.2 Average Weekly Changing of Discomfort Severities

Regarding to weekly severity changes over time, Table 3 demonstrates some of the
elementary evaluations: weekly change rates and weekly changes with respect to initial
discomfort rates. Using these two parameters, we perform another Waller-Duncan k-ratio ¢
test and the results show that the dynamic changes of discomfort ratings can be grouped
into two categories:

e bigger change group: mood, neck, eyes, head, shoulder, shoulder joint/upper arm and
upper back;

e smaller change group: fingers, wrist, low back, forearm, knees/shin, feet, thighs and hips.
This result implies that computer-related workload is more likely to be associated with
upper extremity symptoms. The discomfort ratings of hips and thighs keep nearly constants
over the working week meaning that practically no association between the computer-
related workload and fatigue symptoms in these body regions. A weak association exists
between the computer-related workload and fatigue symptoms in fingers, wrist, low back,
forearm, knees/shin and feet.

Body regions Weekly change | Weekly change/initial discomfort rating
head 0.126 0.032
eyes 0.126 0.042
neck 0.150 0.040
shoulder 0.123 0.033
shoulder joint/upper arm 0.117 0.030
forearm 0.049 0.012
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wrist 0.066 0.016
fingers 0.075 0.018
upper back 0.117 0.030
low back 0.049 0.012
hips 0.010 0.002
thighs 0.019 0.004
knees/shin 0.047 0.011
feet 0.044 0.010
mood 0.948 0.019

Table 3. Weekly changes of discomfort ratings in different body regions

4.3 Dynamic Weekly Changing of Discomfort Severities

Recall that the dose-response relation between the time and discomfort ratings has been
described in Equation 6 with three parameters a1, a2, a3, dependent on body regions as listed
in Table 1. The model parameters have biological meanings, supposing accumulated fatigue
due to the exposures leading to discomfort. We give biological interpretations in this
section.

Firstly, a3 in Equation 6 describes the halfway result of the discomfort ratings from Monday
(t =1) to Friday (¢ = 5). Take the body region 'neck' as an example, Table 1 shows that at 2.19
days the discomfort level is half of the levels at Monday and Friday which presents the
minimum value. This means that neck gets tired much quicker than other body regions. The
halfway results of the studied body regions in increasing order are: neck (2.19 days),
shoulder (2.25 days), eyes (2.29 days), head (2.63 days), shoulder joint/upper arm (2.63
days), upper back (2.78 days), mood (2.88 days), forearm (3.15 days), low back (3.43 days),
thighs (3.44 days), hips (3.51 days), knees/shin (3.72 days), wrist (3.73 days), fingers (3.83
days) and feet (4.14 days). The order is consistent with Table 2 and many published reports.
Note that such halfway outcome for feet appears at the day 4.14 which means that no
discomfort or a little discomfort was developed in feet among the study subjects.

Secondly, for the change rates of discomfort ratings during the working week presented as
a - a1, the rate for eyes decreases maxima unit of 0.17. This means the resulting weekly
discomfort appear to be maximum in eyes. More results of such evaluations are illustrated
in Table 4. The decreased units of discomfort ratings in descending order are: eyes (0.17),
neck (0.16), head (0.13), shoulder (0.13), shoulder joint/upper arm (0.12), upper back (0.12),
fingers (0.08), wrist (0.07), low back (0.05), forearm (0.05), knees/shin (0.05), feet (0.05),
thighs (0.02), hips (0.01) and mood (-0.47).

Body regions az -1

eyes 017

neck 0.16

head 0.13

shoulder 0.13
shoulder joint/upper arm 0.12
upper back 0.12
fingers 0.08

wrist 0.07
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low back 0.05
forearm 0.05
knees/shin 0.05
feet 0.05
thighs 0.02
hips 0.01
mood -0.47

Table 4. Dynamic weekly changes of discomfort ratings in different body regions

An interesting result is obtained for the discomfort rating 'mood' with negative sign which
means that the discomfort severity of mood decreases during the week. The office staff
tended to be in much better moods during the weekend Friday. The result seems to be
rational based on our common knowledge.

4.4 More Findings

Take the body regions 'neck' and 'eyes' as an example, we can find that the faster fatigue rate
is discovered in neck, however eyes has the largest discomfort change over weekly time due
to the nonlinearity of the week change for discomfort rates. This implies that the fatigue rate
is faster in neck at the beginning of the week and gradually slows down over the week, or in
another word the fatigue rate of eyes is faster at the end of week when comparing neck and
eyes. This conclusion is also valid to the discomfort ratings of the following body site pairs
with the same dynamic behavior: shoulder and eyes, see some examples displayed in Table 5.

Faster fatigue change in Faster fatigue change in late week
early week
neck eyes
shoulders eyes
shoulders head
forearm low back
low back, forearm fingers, wrist
thighs fingers, wrist, knees/shin, feet
hip fingers, wrist, knees/shin, feet

Table 5. Comparison of weekly change rates of discomfort ratings in different body regions

5. Conclusion

We obtained a model that represents functional variations of discomfort levels of different
body sites associated with computer-related workload. The advantages with such explicitly
functional model over ‘black box” of risk factor models are enormous. The explicit-formed
model can provide an insight into dynamic interplay between time duration, workload and
health outcomes. For example, an implication of the model is that the discomforts of eyes
and neck, compared with other body regions, are maximal regarding to the changes of
severity over time. It is, therefore, easy to see that the study of such interplay can lead to
better understanding of biological responses to workload over time among office workers.
This kind of modelling might help in the identification of potentials for the prevention of

www.intechopen.com



Modelling and Analysing Time-Dependent Health Outcomes 179

MSDs. There is scarce information in literature that deals with the dynamic relationship
between health outcomes and computer-related workload due to the involvement of many
unknown social psychological and individual factors. This chapter makes a contribution to
such research.

The application of the proposed model to the systematic analysis of dynamic changes of
health outcomes, represented as discomfort ratings, in head, eyes, neck, shoulder, arms and
almost all body regions, in response to computer-related workload among the office
workers were illustrated. It was discovered that the highest average severity level of the
discomfort existed in neck, shoulder, eyes, shoulder joint/upper arm, upper back, low back
and head etc. The biggest weekly changes of discomfort rates were in eyes, neck, head,
shoulder, shoulder joint/upper arm and upper back etc. The fastest discomfort rate was
found in neck, followed by shoulder, eyes, head, shoulder joint/upper arm and upper back
etc. It is obvious that analysis of cross-sectional data, which is the most common technique
in such research, cannot provide such broad findings especially related to dynamic changes.
Several limitations need to be considered. Firstly, the size of the study population was not
large. Missing data existed in the dataset especially for the survey data of the
musculoskeletal outcomes. Moreover, collection of time series of these data was short and
the sample sizes varied very much in the dataset. The longest duration was three weeks. The
collected time duration varied a lot and it was impossible to select common time duration
for all the subjects. Therefore our study was limited for weekly model only. However, in
practice, people get recovery during the weekends. So the musculoskeletal discomfort often
demonstrates periodic properties during the working weeks. Hence, a weekly model should
be enough. Secondly, assessment of the computer-related workload on the basis of
cumulative duration of keystrokes and mouse clicks was somewhat crude. In this study, the
study population consisted of secretaries, technicians, architects and engineers etc. whose
work composed of multiple tasks, each of them with its own specific exposure profile. The
associations with work-related exposures occurring as use of keyboard or mouse in
combination with other tasks should be considered in future studies. Our exposure
measurement did not include environmental factors that can have effects on discomfort on
different body regions. Thirdly, self-reported response for musculoskeletal outcomes was
adopted. The self-reports might be prone to response error.

In spite of these limitations of the available data, a broad of findings were found and most of
them are consistent with the literature (Lu et al., 2009). In a review of the literature, we did
not find any single report that covered such broad spectrum of investigations. The findings
provide important addition to the available literature.

Finally, the mathematical methodology described in this chapter can be easily extended to
accommodate more complicated medical data such as (i) rank r of the sample matrix is
bigger than 1. Then more terms have to be added in Equation 3. The calculation load is
small. For example, the main calculation procedures, SVD for example, contain only a few
lines of code in MATLAB. The proposed methodology is a flexible and broadly applicable
one, which can be utilized by a variety of research.
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