We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



15

Speech Enhancement based on lterative Wiener
Filter using Complex LPC Speech Analysis

Keiichi Funaki
University of the Ryukyus
Japan

1. Introduction

In these days, the speech enhancement plays an important role to improve the performance
of the speech coding or speech recognition since cellular phone or the car navigation system
are being widely used more and more. These systems are often used in noisy environment.
Therefore, the quality of speech coding or the performance of speech recognition is
deteriorated due to the surrounding noise. In order to avoid the deterioration, technology

that removes noise from the noisy speech viz., speech enhancement is strongly desired.
Especially, speech enhancement is an important factor for speech coding to keep the quality
even under noisy environment. 3GPP (The 3rd Generation Partnership Project) thus
provides the minimum performance requirement and the evaluation procedure for AMR-
NB [1]. Several speech enhancement methods such as [2] have already satisfied the
requirement. Moreover, speech enhancement is being sincerely demanded for wide band
speech coding such as [3] since the additive noise in wide band speech can be percept by
human auditory system. Traditional approaches for speech enhancement have been
proposed from the end of 1970's to 1980's [4][5][6]. Spectrum subtraction (SS) method [4] is
widely adopted since it can be implemented easily and it can offer some degree of effect.
However, the SS generates unpleasant artificial sound called musical noise so that it is not
suitable for speech coding. In MMSE-STSA (Minimizing Mean Squared Error-Short Term
Spectral Amplitude) method [5], under an assumption of Gaussian distribution of Fourier
coefficient for speech, speech enhancement is realized by minimizing the mean squared
error for Short Term Spectral Amplitude (STSA) spectrum. On the other hand, MAP
(Maximum a Posterior) method [7] has been proposed, in which the parametric function that
differs from that for the MMSE-STSA, is adopted as a criterion. Wiener filter method has
been proposed by ]J.S.Lim [6], and the method designs the optimal filter minimizing the
mean squared error (MSE) in the frequency domain. The musical noise is reduced by the
Wiener filter method than the SS method. If accurate power spectrum for clean speech and
accurate power spectrum of additive noise can be estimated, the Wiener filter can be
designed accurately. However, the power spectrum of clean speech cannot be observed
directly. Therefore, the iterative Wiener filter (IWF) method is adopted to estimate the
power spectrum more accurately. First, the power spectrum for noise is estimated in silent
segment of speech and the speech power spectrum is estimated by LPC analysis for noisy
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speech. Next, the Wiener filter is designed by using the estimated two spectra and speech
enhancement is carried out by filtering the noisy speech with the Wiener filter to obtain the
enhanced speech. Next, LPC analysis is operated for the enhanced speech and the Wiener
filter is designed again and the filter is operated for the noisy speech to obtain enhanced
speech. These procedures are repeated to obtain more accurate speech power spectrum and
to design more optimal Wiener filter. However, it is known that the spectrum of the
enhanced speech is distorted after several iterations and the optimal number of iteration
cannot be determined [8][9].

On the other hand, the complex LPC speech analysis methods have already been proposed
for an analytic signal [10][11][12]. An analytic signal is a complex signal having an observed
signal in real part and a Hilbert transformed signal for the observed signal in imaginary
part. Since the analytic signal provides the spectrum only on positive frequencies, the
signals can be decimated by a factor of 2 with no degradation. As a result, the complex
speech analysis offers attractive features, for example, more accurate spectral estimation in
low frequencies. The remarkable feature is feasible to design more appropriate Wiener filter
in the IWF and it is expected that it can lead to higher performance of speech enhancement
especially for the additive noise whose energy is concentrated in low frequencies, for
example, babble noise or car internal noise.

In this paper, we propose an improved IWF method by adopting the MMSE based time-
varying complex AR (TV-CAR) speech analysis [12] instead of LPC analysis. The TV-CAR
speech analysis introduces the TV-CAR speech model, in which the AR model parameters
are represented by complex basis expansion.

The reminder of this paper is organized as follows. We will explain the TV-CAR speech
analysis in Section 2 and we will explain the iterative Wiener filter method and the proposed
algorithm in Section 3. The benefit of complex speech analysis will be explained in Section 4.
We will explain the experiments evaluating the performance for additive white Gaussian,
pink, babble, or car internal noise in Section 5.

2. TV-CAR Speech Analysis

2. 1 Analytic speech signal
Target signal of the time-varying complex AR (TV-CAR) method is an analytic signal that is
complex-valued signal defined by

oy YO+ ] vy 20
)= 1

N (1)

where j = V-1 and Y@, y(@), and yy(¢) denote an analytic signal at time 7, an observed
signal at time ¢, and a Hilbert transformed signal for the observed signal, respectively.

Since analytic signals provide the spectra only over the range of (0,7), analytic signals can

be decimated by a factor of two. The term of 1/ V2 is multiplied in order to adjust the power
of an analytic signal with that of the observed one. Note that superscript ¢ denotes complex
value in this paper.
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2. 2 Time-Varying Complex AR (TV-CAR) model

Conventional LPC model is defined as

Yipe(z™) = % )

1+Zal-z_i
i=1
where {g;} and I are i-th order LPC coefficient and LPC order, respectively. Since the

conventional LPC model cannot express the time-varying spectrum, LPC analysis cannot
extract the time-varying spectral features from speech signal. In order to represent the time-
varying features, the TV-CAR model employs a complex basis expansion shown as

L—-1
af (1) =Y, g [, (1) (3)
=0

where {a; (1)} ,1, L, {gi;} and f(¢) are taken to be i-th complex AR coefficient at time ¢,

AR order, finite order of complex basis expansion, complex parameter, and a complex-
valued basis function, respectively. By substituting Eq.(3) into Eq.(2), one can obtain the
following transfer function.

1

-1
Yrvcar(z ) = ——F—55 | n
1+ gifif 0z
i=1 /=0
The input-output relation is defined as
I L L-1
YO == af Oy (=D +u () ==Y gl /Oy (e =) +u (@) ©)

i=1 i=1 [=0
where u°(¢) and y“(¢) are taken to be complex-valued input and analytic speech signal,

respectively. In the TV-CAR model, the complex AR coefficient is modelled by a finite
number of arbitrary complex basis expansion. Note that Eq.(3) parameterizes the AR
coefficient trajectories that continuously change as a function of time so that the time-
varying analysis is feasible to estimate continuous time-varying speech spectrum. In
addition, as mentioned above, the complex-valued analysis facilitates accurate spectral
estimation in the low frequencies, as a result, the TV-CAR analysis allows for more accurate
spectral estimation in low Frequencies. Since more optimal Wiener filter can be designed, it
assigns better performance on speech enhancement.
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Eq.(5) can be represented by vector-matrix notation as

yy=-®r0+us

-7 —T —T —T  —T

0 :[go,gl ,...,gl ,...,gL_l]
—T

8 :[glc,lngg,l:---:gic,la---9g;,1]

¥ = Dy T 41,0+ ),y (N =1)]

-7 6
ur = [u (D), u(I +1),u(I+2),....,u(N-1)] ©)
5/ = [B({,B{,...,B{,...,B{_ﬂ

=/ o/ =/ —f
Di =[dii,....dis,....d11]
=/ ; N pe . N pe : e
dig =1y =) Uy T +1=)fFU+1),..., (N -1-) fF (N -]
where N is analysis interval, ;/, is (N-I,1) column vector containing analytic speech signal,

0 is (L1,1) column vector containing complex parameters, @, is (N-I, L 1) matrix

containing weighted analytic speech signal by the complex basis. Superscript T denotes
transposition.

2. 3 MMSE-based algorithm [12]

Fig.1 shows the block diagram of MMSE estimation. In the estimation, parameters are
estimated so as to minimize the mean-square-error of equation error, or residual. MSE
criterion is defined as

ry=lr (@) r I+ Dy r°(N=D]" = p, + D0, @)
I L—-1
re) =y O+ D> &Ly (=) ®)
i=1 [=0
E=riri=(,+2,0) (b, +,0) o)

where {g},} is the estimated complex parameter, 7“(¢) is an equation error, or complex AR

residual and E is Mean Squared Error (MSE) for the equation error. To obtain optimal
complex AR coefficients, we minimize the MSE criterion. Minimizing the MSE criterion of
Eq.(9) with respect to the complex parameter leads to the following MMSE algorithm.

B b oo
(@@, p-—oy, (10)
Superscript H denotes Hermitian transposition. After solving the linear equation of Eq.(10),

we can get the complex AR parameter at time 7, a“(7), by calculating the Eq.(3) with the

estimated complex parameter, {g;,} .
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() —f A(z) F— ro(r) — 270"
speech residual MSE

Fig. 1. Block diagram of MMSE estimation

3. Wiener Filter Algorithm

3.1 Wiener filter
Assuming that the clean speech, s(7), degraded by an additive noise, w(), the noisy speech,

x(t) , is defined by

x(t) = s(t) + w(t) (11)
Wiener filter is an optimal filter that minimizes the Mean Squared Error (MSE) criterion. In
the case of Eq.(11), the filter can be defined by

S(w) = Hw)X (o) (12)
where o is the frequency index, S(), X (w),H(w) are the discrete Fourier transform of the

clean speech, that of noisy speech and that of Wiener filter, respectively. The MSE can be
defined as follows. The error is defined as

E(w) = S(w) - S(0) = S(w) - H(0) X (0) (13)
The Mean-Squsre-Error of Eq(11) is defined by
E[| E(w) ] = E[| S(0) - H(@) X (o) '] (14)

where E[e] stands for an expectation operator. By minimizing the MSE, the Wiener filter
H(w) can be estimated

Ol E@) ]
O0H (w)
where Pyy (@), Pys (@) are the power spectrum of noisy speech and cross power spectrum

= 2H(@)E[| X (@) *1-2E[X(0)S* ()] = 2H (@) Pyy () — 2 Pyg (@) = 0 (15)

between noisy speech and clean speech, respectively. If there is no correlation between the
speech signal s(7) and additive noise w(¢) , the power spectrum of the noisy speech and the
cross power spectrum can be transformed as follows.

Pyy (@) = E[| X (@) |*1= E[| S(@) |1+ E[| 2S (@)W (@) [1 + E[| W (@) |*]
= E[| S(@) *1+ E[| W (@) |*] = Pgs (@) + Py (@) (16)
Pys (@) = E[(S(@) + W (0))S ()] = E[| S(w) |*] = Pgg ()

Consequently, the Wiener filter can be derived as follows.
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B (@) + By, (@)
From Eq.(12) and (15), the enhanced speech is estimated in the frequency domain by
P
S(w) = (@ v (18)
P,(®)+P,, (o)
and then inverse FFT is operated to obtain enhanced speech as:
s(t) = IFFT(S(w)) (19)

Finally, the OLA (OverLap Add) procedure is carried out in the time domain between
adjacent frames to avoid click sound.

3.2 Iterative Wiener Filter (IWF) algorithm [8][9]
The performance of the Wiener filter depends on the accuracy of speech power spectral
estimation, Py (w). It is possible to make the estimated spectrum close to the true one by

repeating the Wiener filter processing. Fig.2 shows the block diagram of the iterative Wiener
filter algorithm. The two kinds of power spectra can be estimated by LPC analysis as
follows. Noise power spectrum, P, (@), are estimated in the first non-speech segment.
Speech power spectrum, P (w), is estimated by LPC analysis for input noisy speech, x(z) .

By the Wiener filtering in the frequency domain and Inverse FFT operation, enhanced
speech is estimated and then it is analyzed in order to estimate more accurate speech power
spectrum, Py (@), by means of LPC analysis and the Wiener filter is operated again. The

iterative procedure is repeated to obtain more clean speech.

3.3 Proposed Method
The block diagram of the proposed method is shown in Fig.3. The proposed method
employs the estimated two spectra, P(®w) and P,, (@), estimated by the TV-CAR speech

analysis [12] instead of LPC analysis. The two spectra can be estimated as

G2
IJSS (a)) = I L-1 .
1+ )" ghaff e P
i=1 1=0
G2
PWW(a)) = I L-1 L (20)
1+ i e/ P
i=1 1=0

{gs:i,} is estimated by Eq.(10) from analytic speech for the enhanced speech at previous

iteration (input speech at first iteration) and G, is energy of the corresponding residual.

{gwis} is estimated by Eq.(10) from analytic speech for the input speech in first silent
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segment and G,, is energy of the corresponding residual. Note that these two power spectra

provide only one side of spectrum, thus, mirroring is operated to apply to Eq.(17) .

As mentioned above, complex speech analysis can estimate more accurate speech spectrum
in low frequencies. It is expected that the feature leads to higher performance of the IWF
algorithm. In this paper, time-invariant complex speech analysis (L=1), is equivalent to
complex LPC analysis, is adopted.

x(t)=s(t)+w(t)

! !

Noise estimation | | FFT LPC A
| X (@) |
Wiener
Pvw(w) | filtering | Pss(®)
| S(@)
il iteration

s()
Fig. 2. Block diagram of the IWF algorithm

x(1) =| s(2)+w(t)
v v v

Noise estimation FFT TV-CAR <“-—---

lf((a))

— Wiener «——

Pww(@) | filtering | P55(@)
l S()
IFFT Iteration

Fig. 3. Block diagram of the proposed IWF algorithm
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4. Benefit of Complex Speech Analysis

Fig.4 shows example of the estimated speech spectra of natural Japanese vowel /o/ for
analytic signal by complex LPC [11] and conventional LPC analysis for speech signal.
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Fig. 4. Estimated Spectra of vowel /o/ with complex and conventional LPC analysis

In Fig.4, left side denote the estimated spectra. Upper is for real-valued LPC analysis. Lower
is for complex-valued LPC analysis. Blue line means estimated spectrum by LPC analysis
and green line means estimated DFT spectrum. Right side means estimated poles from the
estimated AR filter. Fig.5 and 6 show the estimated running spectrum for clean natural
speech /arayu/ and for the speech corrupted by white Gaussian (10[dB]), respectively. In
Fig.5 and 6, (1) means speech waveform, (2),(3),(4),(5) and (6) mean the estimated spectrum
by auto-correlation LPC speech analysis, by time-varying complex AR (TV-CAR) speech
analysis (L=2), by time-invariant complex AR (CAR) speech analysis (L=1), by time-varying
real AR (TV-RAR) speech analysis (L=2), and by time-invariant real AR (RAR) speech
analysis (L=1), respectively. Analysis order I is 14 for real analysis and 7 for complex
analysis. Basis function is 1st order polynomial function (1,t).

One can observe that the complex analysis can estimate more accurate spectrum in low
frequencies whereas the estimation accuracy is down in high frequencies. Since speech
spectrum provides much energy in low frequencies, it is expected that the high spectral
estimation accuracy in low frequencies makes it possible to improve the performance on the
IWF.
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(1) clean speech waveform /arayu/
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(3) TV-CAR spectrum (L=2)
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(5) TV-RAR spectrum (L 2)
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(6) RAR spectrum (L=1)
Fig. 5. Estimated spectrum for clean speech /arayu/
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5. Experiments

We have already carried out the experiments to compare the performance of the proposed
method (TV-CAR) for analytic speech with that for the conventional one (LPC method) for
observed speech by means of objective evaluation of LPC Cepstral distance (CD). Since the
IWF is based on filtering in the frequency domain, spectral distance such as LPC cepstral
distance is appropriate measure for objective evaluation. Table 1 shows the experimental
conditions. Sampling rates were 16KHz or 8KHz. Additive noises were white Gauss noise,
pink noise, babble noise or car internal noise [13]. Noise levels were -5, 0, 5, 10 or 20[dB]. In
the TV-CAR speech analysis, L is set to be one, thus the TV-CAR speech analysis is
equivalent to non-time varying, complex LPC analysis. Figures 7 and 8 show the
experimental results. Fig.7 means the results for 8 KHz of speech. Fig.8 means the results for
16 KHz of speech. In these figures, (1),(2),(3) and (4) means CDs for additive white Gauss
noise, those for additive pink noise, those for additive babble noise, and those for additive
car internal noise, respectively.

In these figures, X-axis means noise level (20, 10, 5, 0, -5 [dB]) and Y-axis means CD. LPC
denotes the CDs by means of the conventional method based on LPC analysis. CLPC
denotes the CDs by means of the proposed method based on complex LPC analysis. The
results demonstrate that the proposed method can perform better than the conventional one
for additive pink, babble or car internal noise whereas the proposed method does not
perform better for additive white Gauss noise. The reason why the proposed method can
perform better for additive pink, babble or car internal noise is as follows. The complex
speech analysis can estimate more accurate speech spectrum in low frequencies for these
noises whose energy is concentrated in low frequencies.

Speech data Male 10 sentences
Female 10 sentences
ATR database set B

Sampling 8KHz/16bit
16KHz/16bit

Window Length/ Shift Length 20ms/10ms

FFT 1024 samples

LPC analysis 1=14, L=1(time-invariant)

Pre-emphasis None

Complex LPC analysis I=7, L=1(time-invariant)

Noise 1) White Gauss noise

(

(2) Pink noise [13]

(3) Babble noise [13]

(4) Car internal noise [13]

Noise Level 20,10,5,0,-5[dB]

Cepstral Distance (CD) LPC Cepstral Distance
Window Length/ Shift Length 20[msec]/ 20[msec]
LPC order 16 for 8KHz, 32 for 16KHz
Cepstral order 16 for 8KHz, 32 for 16KHz

Table 1. Experimental Conditions
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Fig. 7. CDs for 8KHz speech
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Fig. 8. CDs for 16KHz speech
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6. Conclusions

In this paper, we have proposed the improved iterative Wiener filter (IWF) algorithm based
on the TV-CAR speech analysis in a single channel system. The performance has already
been evaluated by means of LPC cepstral distance (CD) not only for 8KHz but also for
16KHz sampled speech signal corrupted by additive white Gauss, pink, babble or car
internal noise. According to an informal listening test and objective evaluation of CD, the
proposed method outperforms conventional IWF for additive pink, babble or car internal
noise that contains much energy in low frequencies.

Future study is as follows.

(I)Improve the noise estimation

(2)Introduce robust TV-CAR speech analysis based on ELS method [14]

(3)Introduce the time-varying speech analysis (L=2).

(4)Introduce complex-valued Wiener filter.
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