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1. Introduction

Polarization-sensitive imaging systems have emerged as a very attractive vision technique
which can reveal important information about the physical and geometrical properties of
the targets. Many imaging polarimeters have been designed in the past for several fields,
ranging from metrology (Ferraton et al., 2007), (Morel et al., 2006) to medical (Miura et al.,
2006) and remote sensing applications (Chipman, 1993).

Imaging systems that can measure the polarization state of the outgoing light across a scene
are mainly based on the ability to build effective Polarization State Analyzers (PSA) in front
of the camera enabling to acquire the Stokes vectors (Chipman, 1993), (Tyo et al., 2006).
These Stokes polarimeters produced four images called “Stokes images” corresponding to
the four Stokes parameters. Accordingly, polarization-encoded images have a
multidimensional structure; i.e. multi-component information is attached to each pixel in the
image. Moreover, the information content of polarization-encoded images is intricately
combined in the polarization channels making awkward their proper interpretation in the
presence of noise.

Noise is inherent to any imaging systems and it is therefore present on Stokes images. It is of
additive nature when the scene is illuminated by incoherent light and multiplicative when
the illumination is coherent (Béniére et al., 2007), (Corner et al., 2003). Its presence degrades
the interpretability of the data and prevents from exploring the physical potential of
polarimetric information. Few works in the literature addressed the filtering of polarimetric
images. We note nevertheless the use of optimization methods by (Zallat et al., 2006) to
optimize imaging system parameters that condition signal to noise ratio, or the
improvement of the accuracy of the degree of polarization by (Béniere et al., 2007) with the
aim of reducing the noise in Stokes images.

The main problem in filtering polarization-encoded images so as to remove their noise
content is to respect their physical content. Indeed, mathematical operations which are
performed on polarization information images while processing them alter in most cases the
physical meaning of the images. The same problem has been encountered for polarization
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238 Recent Advances in Signal Processing

images segmentation in (Ainouz, 2006a) and (Ainouz, 2006b). Therefore, because of the
duality between the polarization images filtering and their physical constraint, a trade-off is
to be reached in order to minimize the effect of the noise affecting polarimetric images and
to preserve their physical meaning.

In this chapter, we present a technique which, estimate the additive noise (images acquired
under incoherent illumination), and eliminate it such that the physical content of the
polarimetric images is preserved as much as possible. Our technique combines two
methods; Scatter plot (Aiazzi et al., 2002) and data masking (Corner et al., 2003) previously
used in the field of multispectral imaging and to take advantage of both them.

As the information content of polarization-encoded images is intricately combined in
several polarization channels, Peano-Hilbert fractal path is applied on the noisy image to
keep the connectivity of homogeneous areas and to minimize the impact of the outliers. The
performances and the bias of our method are statistically investigated by Bootstrap method.
The rest of this chapter is organized as follows: the next section deals with the principle of
polarisation images acquisition, the third part details our noise estimation technique
whereas part 4 presents the results obtained while filtering polarization encoded images.
The chapter ends with a short conclusion.

2. Polarization images acquisition

The next two subsections respectively present the principle of a Stoke’s imaging system as
well as the model for the additive noise resulting from the acquisition set-up.

2.1 Stokes imaging
The general polarization state of a light wave can be described by the so called Stokes vector
S which fully characterizes the time-averaged polarization properties of a radiation. It is

defined by the following combination of complex-valued components E, and E_  of the

electric field, along two orthogonal directions x and y as (Chipman, 1993):
s,) [(E.E.)+(EE,)
s |S|_ <EEx> - <EyE;>

S, 2 Re <EEy>

Ss 2Im|\(E,E;) )

The first parameter (Sp) is the total intensity of the optical field and the other three
parameters (S1, Sz and Sz) describe the polarization state (Chipman, 1993). S is the tendency
of the wave to look like a linear horizontal vibration (S; positive) or a linear vertical
vibration (S; negative). S; and S reflect the nature and the direction of rotation of the wave.
It is straightforward to show that

S;>8'+S;+8S;
(2)
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This condition is known as the physical condition of Stokes formalism. An arbitrary vector
that does not satisfy this condition is not a Stokes vector and doesn’t possess any physical
meaning.

The general scheme of Stokes images acquisition is illustrated in Figure.1 (Chipman, 1993).
The device used for the acquisition is named a classical polarimeter. The wave reflected

from the target, represented by a Stokes vector S, , is analyzed by a polarization-state

in /
analyzer (PSA) by measuring its projections over four linearly independent states. A PSA
consists of a linear polarizer (LP) and a quarter wave (QW) rotating about four

angles (t9i )i=1 4 - Incoming intensities are then measured with a standard CCD camera.

The complete set of 4 measurements can be written in a vectorial form as:

[ = A4S, 3)

I is a 4x1 intensity matrix measured by the camera. The Stokes vector S;, can then easily

be extracted from the raw data matrix / provided that the modulation matrix A of the PSA,
is known from calibration. For the ideal case (theory), matrix A can be given as (Chipman,
1993):

1 —cos”20, —%sin49i sin® 20,

A6,)=|-1 cos®20, %sin 46,  —sin® 20, @)
0 0 0
0 0 0 0

The angles €, are chosen such that the matrix 4 is invertible to easily recover the Stokes

parameters from the intensity matrix. Each of the four intensity component corresponds to
one image, leading to four images carrying information about the Stokes vector.

PSA

A
r A

Target _\E

Qw LP
Fig. 1. Stokes imaging device; classical polarimeter

Figure. 2 shows an example of a set of Stokes images obtained with the Stokes imaging
device. In order to test the performances of our algorithm, Stokes images were acquired in
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strong noisy conditions. In order to have these strong noisy conditions, addition to the
natural noise, a hair dryer is turned between the PSA and the camera. The scene is made of 4
small elements of different composition glued on a cardboard. Objects A and D are
transparents whereas objects B and C are darks.

S, S,
Fig. 2. Stokes image of four small objects glued on a cardboard

The following subsection describes the noise model which was used through out this study.

2.1 Noise in Stokes images

It has been established that under incoherent illumination, the noise affecting the images can
be modelled as additive and independent (Corner et al., 2003). This type of noise can be
modelled by a zero mean random Gaussian distribution which probability density function
(PDF) is expressed as follows (Aiazzi et al., 2002):

1 x>
folx)= %TH exp[— EJ ©)

Where 0',3 is the noise variance. The effect of an additive noise n, on a digital image g at

the pixel position (l', j) is expressed as the sum of the noise free image / and the noise in
the form :

g=1+n,
6)

In perfect acquisition conditions, the Stokes vector is recovered from equation (3) such that:

S(i, j)=A71(i, ) )

In the presence of noise, equation (7) becomes:
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S(i,j)= 4" (1, j)+n,G )
=410, j)+ A 'n, (i, j)
= 8(i, j)+ 650 /) ®)

The estimated Stokes vector S is an independent sum of the theoretical Stokes vector (noise
free) S and the termdS due to the additive noise effects. The estimation of the noise
distribution is then needed to reconstruct the noisy image S and minimize its effects on the

estimated Stokes image S .
However, as explained above, in the introduction, direct filtering of polarimetric

measurements can induce a non physical meaning of the filtered Stokes image S -85 . This

means that for an important number of pixels, the vector S — A5 does not satisfy the physical
constraint stated in equation (2) and therefore cannot be considered as a Stokes vector which
fully fulfils physical constraints. In such conditions, these images have no interest and
additional steps have be taken to obtain a trade-off between filtering and physical meaning
for as many pixels as possible. The following section presents three methods for noise
estimation in the case of additive Gaussian noise.

3. Parametric noise estimation

Inasmuch as the estimated noised Stokes image is an independent sum of the noise and the
noise free image, the estimation of the dS distribution is sufficient to have information about
the additive noise. Two multi-spectral filtering methods: Scatter plot method (SP) (Aiazzi et
al., 2002) and data masking method (DM) (Corner et al., 2003) were used to process the
images. The proposed filtering algorithm takes advantages of both methods.

In order to eliminate the impact of non relevant data, the image is first transformed to a
Peano-Hilbert fractal path. This method is applied onto gray level images and the results are
compared to the results obtained with SP and DM methods.

3.1 Scatter plot and Data masking methods reminder

3.1.1 Scatter plot method (SP)

In the SP method, the standard deviation of the noisy observed image can be evaluated in
homogeneous areas (Aiazzi et al., 2002). Under the assumption that the noise is Gaussian
with zero mean, local means p and local standard deviations ¢ are calculated in a sliding
small window within the whole image. The scatter plot plane of local standard deviations
(o) versus local means (u) is plotted and then partitioned into rectangular blocks of size
LxL (100x100 for example). After sorting the blocks by decreasing number of points,
denser blocks are considered as the homogeneous areas of the image. The estimated
standard deviation of the noise, & , is found as the intersection between the linear regression
of the data set corresponding to homogenous areas with the ordinate ( y ) axis.
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3.1.2 Data masking method (DM)

DM method deals by first filtering the image to remove the image structure, leaving only the
noise (Corner et al., 2003). The Laplacian Kernel presented in equation.9 is used for that
purpose. The image obtained after the convolution with the Laplacian kernel (Laplacian
image) mainly contains the noise as well as the edges of the objects present in the original
image. The Laplacian image is further filtered with a Sobel detector (Kazakova et al., 2004),
followed by a threshold in order to create a binary edge map. This edge map is subtracted to
the Laplacian image (to produce the Final Image) in order to reduce the contribution of the
edges to the noise estimation.

The optimal threshold is established by varying the threshold and choosing the one for
which the variance in the final image (Laplacian - edge map) is maximum

Then, on the final image, standard deviations are calculated on 9x9 blocks and the median
value of the histogram of the standard deviation is used as the estimate of the noise
standard deviation.

1 -2 1
L=|-2 4 -2 9)
1 -2 1

The outline of the noise estimation procedure can be summarized by the following
algorithm:

1-Start

2-Acquire Image

3-Apply Laplacian Kernel

4-Apply Sobel Kernel

5-Select the optimal threshold

6-Subtract edges map to the Laplacian Image

7-Calculate the variance in a 9x9 blocks

8-Create the histogram of the standard deviation

9-Select the median value as the noise standard deviation estimate.

10-Stop

3.2 Fractal vectorization filtering algorithm (FVFA)
The two previous methods have limitations which can be summarized as follows:
e SP method is not appropriate for rich textured images. It is time effective because
of the calculation of local statistics within the image.
e DM method overestimates the noise parameters due to edges points which remain
in the final image.
In order to estimate the final noise parameters, our algorithm keeps the idea of calculating
the residual image and the use of the local statistics. The remaining limitations of these
combined ideas will be compensated by a vectorization of the residual image by the Peano-
Hilbert fractal path.
As for the DM method, operations 1 to 6 (with a fixed filter) are applied to the original
image. The resulting image is then transformed on a vector following a fractal path as
presented in an 9x9image example of Figure.3. The path deals with the Peano-Hilbert

www.intechopen.com



Noise Estimation of Polarization-Encoded Images by Peano-Hilbert Fractal Path 243

fractal path and the vector is designed in the same way as the numbering of Figure.3, from 1

to 81.
L] 6|7 |48 149545560 |61
2 |5 | 8 [ 47150 |53 |56 (59062
304 |9 [46 51 52|57 (58|63
16 ] 15| 10|45 40 |39 |70 |69 | 64
171411 |44 |41 | 38 | 71 | 68 | 65
I8 | 13| 12|43 |42 | 37 | 72 | 67 | 66
1912412513031 3673|7879
20 [ 23126 129 32|35 |74 |77 |80
20 [ 22 127 |28 | 33 | 34 | 75 | 76 | &1

Fig. 3. Peano-Hilbert fractal path

Local means u and standard deviations ¢ are calculated on the resulting vector by using a

shifting interval. The local mean and non-biased standard deviation are respectively defined
as:

(10)

where v is the portion of the Laplacian image vector limited by the shifting interval of
size 2m + 1. These local statistics are the vectorial version of those calculated in SP algorithm
applied on the residual no-edges image.

The plane (,u, O') is then plotted. Two types of points are formed in that plane (Aiazzi et al.,
2002). The first type is a dense cloud and the second is an isolated set of points
corresponding to the remaining edges pixels that are not eliminated by the Sobel filtering.
The intersection of linear regression of the cloud points and the y axis gives the better
estimation of the noise standard deviation. Similarly, the mean of the noise may be
estimated by applying the same instructions on the plotted plane (O', ,u) .

The advantage of the fractal path is double: it eases the task of calculating the local statistics
within the image with keeping at most the neighbourhood of image pixels. Moreover, the
vectorization of the image disperses so much the isolated points of the plane (/J,O')
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preventing the regression process from taking them into account. This fact decreases the
overestimation of the noise as in the DM method.

3.3 Application to gray level images

To prove the efficiency of the proposed algorithm, three experiments were carried out on
two 256x256 gray level images (Figure.4). The first image is a chessboard image and the
second image is a section of the 3D MRI (Magnetic Resonance Imaging) of the head.
Additive noises of zero mean with variances 5, 10, 30 and 60 are added to these two images.
The noise variance is then estimated by the three methods exposed previously: SP method,
DM method, and our proposed algorithm (FVFA). In order to have robust statistical results,
the estimated standard deviation ¢ is the empirical mean of 200 estimations found by the

re-sampling Bootstrap method (Cheng, 1995). The dispersion o, is then estimated showing

that the exact value of the standard deviation lies in the interval [6' -30,,0+ 30'd]with a
probability of 99,73 %.

(@) (b)
Fig.4. Gray level images used to the validation of the proposed algorithm, (a) chessboard, (b)
section of a 3D MRI of the head.

The results of the estimation are summarized in Table 1 for the Figure.4. (a) and in Table 2
for the Figure. 4. (b). The dispersion o is displayed between brackets.

Our algorithm proved to exhibit better performances than the two other methods. As
expected our method is even better when dealing with textured image (table 1).

Combined with some physical considerations, in the next section this method is applied to
estimate the noise present in polarimetric images.
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Simulated noise SP method DM method FV method
2 ~ 2 ~ 2 ~ 2
o) (o3 (o a
5 10.23[0.5] 0.3[041] 5.8[0.04]
10 16.84[0.45] 11.45[0.32] 10.97[0.02]
30 35.00[0.3] 32.75[0.27] 20.50[0.01]
60 63.75[0.27] 62.04[0.12] 60.75[0.01]

Table 1 - Comparison of the noise estimation parameters using SP>, DM and FVFA methods
on the image of Figure.4. (a).

Simulated noise S5P method DM method FV method
2 ~ 2 ~ 2 ~ 2
(o) (o) O O
5 0.13[0.48] 7.8[041] 5.4[0.01]
10 13.12[0.41] 11.23[0.3] 0.38[0.01]
30 32.45[0.29] 31.01[0.15] 30.25[0.009]
60 57.41[0.16] 61.08[0.2] 60.09[0.007]

Table 2 - Comparison of the noise estimation parameters using SP, DM and FVFA methods
on the image of Figure. 4. (b).

4. Polarimetric images filtering

4.1 Polarization-based filtering

As seen in section 2 the measured Stokes vector § attached to the pixel (l', J ) is given as an

independent sum of the perfect Stokes vector S, and an attached noise term &5 by:

S(i.j)=S,(i.j)+a5(. /) (11)

The term &S is equal to A7'6/ (I =n,). Under Gaussian assumption of the additive noise,

noise parameters are estimated by FVFA method. The intensity noise ¢/ is reconstructed and
the polarimetric noise attached term JS is calculated.
Naturally, the real Stokes vector S, can be derived from equation (11) by:

S,(i.j)=S(i.j)- 5. /) (12)

Furthermore, the richness information of our images is extremely conditioned by the
physical content, .ie. the vector §,must satisfy equation (2). However, the direct

application of equation (12) to filter polarimetric image may induce the non physical
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behaviour of a large amount of image pixels. Mathematically, this is due to the fact that the
set of physical Stokes vectors is not a space vector. Therefore, any addition or subtraction of
two Stokes quantities may lead to a no physical result.

In order to handle this fundamental limitation, a new tool is needed to find the best trade-off
between the filtering and the physical constraint of Stokes images.

The Stokes vector S, must satisfy equation (2), which is equivalent to the following formula:

STGs >0, G =diag(1-1-1-1
’Gs, g ) )

Where diag refers to the diagonal. To control the physical condition on the vectorS,, a

parameter & which lies in the interval [0,1] is inserted into equation (12) such that:
S,=S-ads (14)

If this parameter is too large the physical condition will not be respected whereas if it is too
small the filtering is not efficient. The parameter ¢ cannot take negative values; it will result
in noise amplification.

Combining equations (13) and (14), one has to search the parameter « that satisfies:

(S‘—a&S)TG(S“—a&S‘)ZO (15)

Developing equation (15), one has to search the parameter « that respects the inequality:
fla)= (5 - a&S‘)r G(S‘ - a&'):

A

16
§7GS - (857GS + §7GaS e + (357 GoS ) 2 0 1o

Assuming thata = 857 GSS , b= 65"GS + 8" GSS, ¢=S"GS, equation (16) is written in the
simplified form as:

f(a)zaa2+ba+c20 (17)

Two real solutions are given by:

—b-~A —b+A
o0 =——, or o =——
2a 2a

Assume that «aj always refers to the smallest solution and &, to the greatest one. For an

,with A= b* —4ac

infinitesimal & such that if «;is positive, «; —¢is still positive and after the classical
resolution of the inequality (17), three cases arise depending on the sign of a:
sign(a) >0
o If le[al,az]thus a=1
e Ifle [al,az] and a; >0thus a=a,—¢
e  Otherwise there is no & between 0 and 1
Sign(a) <0
o If le[—oo,al]u[az,+oo]thus a=1

e If0<a,<lthusa=a,-¢
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e  Otherwise there is no & between 0 and 1
a=0

. . c
e  One solution exists a; =a, = Z

e IfO0<g <lthusa=a-¢
e If oy >1thus =1

e  Otherwise there is no & between 0 and 1
These three cases take in account the fact that & must belong to [0,1]. Finally the algorithm
can be summarized as:
1. Construct the noise term oS attached to each image pixel by the FVFA method
Compute equation (10) for each pixel
2. If the pixel’s Stokes vector is physically realisable (equation (2) verified for the
pixel), set o to 1
3. Otherwise, search the parameter « by following the above instructions.
4. If the discriminate A is negative or if there is no « in [0,1], choose the Stokes vector

satisfying the maximum between STGS and § ; GS,

4.2 lllustration and discussion
Our algorithm is run on two images: one simulated Stokes image for which the noise
additive contents is known and a real Stokes image. The synthetic image is built as follows:

the Stokes vector at the image center is set to § = [1 1/ \/g 1/ \/g 1/ \/E ] (white elliptical

part) and to zero elsewhere. Stokes images are multiplied by the modulation matrix 4 as in
equation (3) in order to have the corresponding intensity channels. Then, a Gaussian noise
of zero mean and variance 0.2 is added to each intensity channel. Noisy images are inverted
as in equation (7) to get the noisy Stokes image (Figure. 5).

The estimated variances using FVFA filtering algorithm on the four intensity channels
corresponding to S, S;,S5, and §3 are respectively 0.18, 0.19, 0.194 and 0.187.
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Fig. 5 . Noisy Stokes channels. Gaussian zero-mean noise and of variance 0.2 is added to the
correspondent intensity channels

These values are very close to the simulated variance. The results also show that the noise
affecting the four polarimetric measurements is roughly the same. The regularization
parameter ¢ is calculated for each pixel. Figure. 6 shows the binary values of this parameter.
Pixels for which « is found between 0 and 1 appear white otherwise black.

Te: Y

- w:

Fig. 6. Binary values of the regularizaton parameter o

The use of the regularization parameter allows the processing of an important amount of
pixels in the image. Indeed without this parameter (equation 12), the image is well filtered

but only 10% of the pixels in S, have physical meaning whereas it reaches 70% with the use

of parameter « (equation 14). The amount of remaining pixels having no physical meaning
is less important. It is due to the fact that conditions 1 to 4 of the algorithm are not satisfied

and neither S”GS nor § ; GS , are positive (step 4). The result of the two filtering processes

is illustrated in Figure. 7.
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5 5, S, 5,
(@) (b)

Fig.7. Filtered Stokes images with: (a) regularization parameter (equation 10), (b) without
regularization parameter (equation 12)

As shown in Figure.7. (a), our algorithm ensures an improvement in polarimetric
information carried by Stokes image preserving its physical constraint for most of the pixels.
The real measurement case deals with the Stokes image of Figure. 2. The inherent noise
variances estimated on the correspondent intensity images are respectively up to 10.75,
10.52, 9.78 and 9.88 on a gray scale value of 8 bits. Results of the physical filtering on noisy
Stokes images are presented in Figure. 8. The new filtering ensures 64% of physical pixels
whereas the classical filtering ensures only 7% of physical pixels. Again, real experiment
shows the performances of our method. The proposed algorithm is thus a trade-off between
a fully filtered image and a physical constrained (of the most pixels) image. Only additive
independent noie is considered herein. Consequently, most of the imperfections remaining
after the physical filtering (Figure. 8. b) arise from other sources of noise. This problem will
be addressed in future works.

5. Conclusion

A new algorithm to filter polarimetric images is introduced in this chapter. Based on the
filtering methods of multispectral images and combined with a fractal vectorization of the
image, the new algorithm is a trade-off between a classical filtering (noise smoothing) and
preserving the physcial meaning of the data. No comparison with other methods is done in
this paper, because in the best of our knowledge, this work is the first dealing with the
trade-off between filtering of polarimetric images and preserving the physical condition.
Our methods are tested on simulated and on real images acquired with a classical
polarimeter. Promising results were presented at the end of the chapter. As the additive
noise in not the only noise affecting polarimetric measurement, other sources of noise are
currently being investigated especially multiplicative noise.
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82 5‘3 SZ

(@)
Fig. 8. (a) Noisy Stokes image, (b) Filtered Stokes image
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