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1. Introduction

One of the most important challenges in the last few years in the medical imaging analysis
field has been automatic cardiac motion estimation, to obtain indicators of heart disease. The
visualization and quantification of the heart motion is an important aid for an early
diagnosis of heart pathologies (Santos & Ledesma-Carbayo, 2006).

In the last few years, there have been numerous technological progresses in non-invasive
cardiac imaging methods (Axel & Dougherty, 1989; McVeigh & Atalar, 1992; Fischer et al.,
1993; Atalar & McVeigh, 1994; Fischer et al., 1994; Zerhouni et al., 1998). Therefore, there are
new clinical options for cardiac illnesses diagnosis (Thomson et al.,, 2004). Coronary
angiography, nuclear imaging, echocardiography and computerized tomography provide
most of the information required by the cardiologist and cardiovascular surgeon (Sinitsyn,
2001). In the 80s, magnetic resonance imaging (MRI) was only used for the evaluation of the
heart anatomy. Lately, great advances have been achieved, which have totally changed the
possibilities of the diagnosis in this area (de Roos et al., 1999; Pohost et al., 2000; Duerden et
al., 2006). Some of the facts that have made magnetic resonance imaging a functional and
flexible modality are the increment in temporal and spatial resolution, the improvement in
signal to noise ratio and the removal of motion artefacts due to motion. Currently, cardiac
magnetic resonance (CMR) is considered the reference gold standard to evaluate ventricular
function. The acquisition is dynamic, so several frames are acquired in a cardiac cycle.
Tissues can be clearly defined without the use of contrast agents, and unlike other
tomographic techniques, it can provide images in the desired plane without limitations due
to the body anatomy. There are no limitations for the angulation of the images.
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82 Recent Advances in Signal Processing

Nevertheless, there are still limitations obtaining cardiac function measurements because
the myocardial tracking is hindered as there are no intramural features (Axel et al., 2005).
With conventional magnetic resonance imaging (MRI) or ultrasound imaging, a qualitative
estimation of the local cardiac motion can be done. Nevertheless, it is quite difficult to
compare the results obtained among different modalities even by experts. The reference
technique to evaluate quantitatively the contractile myocardial function is tagged magnetic
resonance imaging (tagged MRI) (Axel & Dougherty, 1989; Prince & McVeigh, 1992; Dornier
et al., 2004; Sampath & Prince, 2007). Changing the tissue magnetization, a lineal grid can be
superimposed to the myocardium. The tagged grid acts as an intramural intrinsic feature of
the tissue until it vanishes due to the T1 relaxation is the process by which the longitudinal
magnetization attains its equilibrium value. The time constant to approach the equilibrium
value is called T1 of the cardiac muscle. Therefore, the grid moves with the myocardium
during the cardiac cycle and cardiac motion can be tracked by means of the grid. As the grid
is deforming during the cardiac cycle, the material coordinates can be tracked and motion
can be quantified inside the myocardium. The myocardial displacement field and the
parameters derived from it, such as strain, have revealed to be very useful for the diagnosis
of different pathologies (Lelieveldt et al., 2004).

The most important clinical application for the local functional cardiac analysis is the
assessment of the affected but recoverable regions of an ischemic heart (Picano et al., 1991;
Nagel et al., 1999). This is usually done by measuring the width of the cardiac wall on CINE
images of the myocardium (Lieberman et al., 1981, Gotte et al.,, 2001). However, the
myocardial strain calculation implies the accurate computation of the myocardial
displacement field.

The methods proposed for motion estimation from tagged images are based on the use of
different aspects of the heterogeneity of the myocardium intensity (Axelo et al., 2005). These
methods include: tracking the lines of minimum intensity (Guttman et al., 1994; Chen &
Amini, 2001; Quian et al., 2003), optical flow (Prince & McVeigh, 1992; Denney & Prince,
1994; Dougherty et al., 1999) or harmonic phase methods (HARP) (Osman et al., 1999).

The methods based on tracking the tags with minimum intensity use an intensity profile
model of a grid line. These methods are normally very time consuming, and depend on a
user who manually starts to identify the location of the taging lines in the first frame.
Afterwards, the most probable location is searched, or a segmentation using approximations
such as morphological operators (Guttman et al., 1994; Young, 1998; Chen & Amini, 2001),
tuned filters (Young, 1998, Chen & Amini, 2001), Gabor filters (Quian et al., 2003),
deformable grids (Kumar & Goldof, 1993) and manually identified points (Young & Axel,
1992). Although the techniques using tuned filters and Gabor filters are relatively robust to
the intensity loss of the tag lines, the limitation of the methods which perform the tracking
of lines is that the temporal correspondences are only valid for those pixels belonging to the
lines and not for those within them (Axel et al., 2005).

The advantage of the optical flow methods is that they provide a dense estimation of the
motion field in two dimensions, and not only a sparse set of data. Technical details about
this type of methods will be explained later. Nevertheless, there have been several strategies
to perform the tracking of lines in the myocardium using such techniques (Prince &
McVeigh, 1992; Gupta & Prince, 1995; Gupta et al., 1997; Dougherty et al., 1999). The main
limitation of these methods is the difficulty to follow large displacements.
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Combined myocardial motion estimation and segmentation using variational techniques 83

Phase harmonic methods are based upon the fact that tagged magnetic resonance imaging
typically presents a set of different spectral peaks in the Fourier domain corresponding to
the spatial frequency of the tag lines. Each peak contains information about the motion
perpendicular to the tag line (Zhang et al., 1996). The inverse Fourier transform of one of
those peaks is a complex image whose phase is directly related to a directional component
of the real motion (Osman et al., 1999; Osman et al., 2000).

Nevertheless, the assessment of myocardial function not only requires the motion
estimation but also the segmentation of the myocardium over a cardiac cycle (Chenoune et
al., 2005). Identifying the heart chambers, the endocardium and the epicardium is of great
importance for clinical applications. Such information can be used to improve the
diagnostics of cardiovascular diseases, to estimate the ventricular blood volume, wall mass,
wall motion and wall thickening properties (Paragios, 2002). Numerous cardiac
segmentation methods have been developed and used to estimate the myocardial
boundaries accurately and efficiently. Among these, the two main approaches for cardiac
segmentation are based on boundaries, either of an explicit implementation (Montagnat &
Delingette, 2005) or an implicit approach such as level sets (Paragios, 2002; Chenoune et al.,
2005) or regions (Blekas et al., 2005).

Active contour models have also been very effective in segmenting and tracking moving
objects in image sequences, such as cardiac image sequences. Leymarie et al. (Leymarie &
Levine, 1993) used the previously segmented contour as an initial seed contour for the
current frame to track the contour through a sequence of images. Inspired on this, Gupta et
al. (Gupta et al., 1993) proposed an automatic contour propagation scheme throughout the
entire slices and frames in their four-dimensional cardiac analysis study using image
sequences from MRI. Chalana et al. (Chalana et al., 1996) investigated the dependency of the
accuracy of cardiac segmentation on the initial seed contour and proposed a multiple active
contour model to reduce the propagation error in sequential segmentation of myocardial
boundaries on echocardiographic sequences, by adding temporal smoothness and
monotonic motion constraints to the internal and external energy formulation. Li et al (Li et
al., 2002) also proposed a similar approach to take into account a temporal smoothness of
the contour.

Regarding the coupling of segmentation and motion estimation, many researchers have
addressed this problem. In (Wang & Adelson, 1994), they first estimate local motion and
subsequently segment regions with respect to estimated motion. In (Nagel & Enkelmann,
1986; Black & Anandan, 1996; Kornprobst et al., 1999; Weickert & Schnorr, 2001), they
propose to model motion discontinuities implicitly by non-quadratic robust estimators.
Others tackled the problem of segmenting motion by treating first the motion estimation in
disjoint sets and then by optimizing the motion boundaries separately (Schnorr, 1992; Black,
1994; Caselles & Coll, 1996; Paragios & Deriche, 2000). Other approaches are based on
Markov Random Field formulations and optimization schemes, such as stochastic relaxation
by Gibbs sampling, split-and-merge techniques, deterministic relaxation, graph cuts or
expectation maximization (Cremers & Soatto, 2005). A novel variational approach for
segmenting an image plane into a set of regions of parametric motion, based on a
conditional probability for the spatio-temporal image gradient is presented in (Cremers &
Soatto, 2005). In the case of segmentation of cardiac images, several examples can be
mentioned where the optical flow has been included into the segmentation process
(Giachetti et al., 1996; Mikic et al., 1998).
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84 Recent Advances in Signal Processing

In this chapter, a new approach is presented which combines the advantages of the
variational technique for motion estimation with the segmentation process of the
endocardial and epicardial borders by means of a variational-based approach: the well-
known level set technique (Li et al, 2005). For endocardial and epicardial border
segmentation, dual CINE and tagged cardiac magnetic resonance sequences have been used.
A idea was not to develop a new segmentation technique but to implement a hybrid
approach that would benefit from the motion estimation of the variational technique, in
order to build a more robust implementation for both tagged and conventional cardiac
magnetic resonance imaging. The motion estimation technique is based on a variational
approach, improved by taking into account the particular features of tagged magnetic
resonance sequences. Specifically, this variational method has been enhanced by adding a
robustness term based on the accurate tracking at some control points by means of their
phase stability. The main idea of the integration of the two sub-systems is to minimize
computational cost of the segmentation process together with a better accuracy of the
segmentation.

In section 2, we describe the method implemented for segmentation (level sets), for motion
estimation (variational techniques) and the hybrid technique for motion estimation and
segmentation. Section 3 explains the experiments performed to evaluate and validate the
method, and the results obtained. Finally, in section 4, the main conclusions are presented.

2. Methods

2.1 Level Set Segmentation
The level set method technique was introduced by Osher and Sethian (Osher & Sethian,
1988), and later it has been investigated to cope with different image segmentation problems
in several publications. The method proposed for the segmentation of the temporal
sequence of tagged cardiac magnetic resonance images is a modified version of the
variational formulation of the geometric active contours principle proposed by (Li et al.,
2005). The main idea is to evolve the boundary C from some initial curve in the direction of
the negative energy gradient. This is done by implementing the gradient descent equation
(Cremers et al., 2007):

oC  OE(C)

ot oc " @
and modelling the evolution along the normal n with a speed function F. In the implicit
contour representation theory, the contour C is represented as the zero level line of some
embedding function ¢ such as

Cle)={xole,x y)=0} @
In the method proposed by Osher and Sethian in (Osher & Sethian, 1988), a contour is
propagated by evolving a time-dependent embedding function ¢ according to an
appropriate partial differential equation. Having a contour C evolving along the normal n
with a speed F and since ¢(C(t),t)=0, this equation can be derived as

L pc)-veS+ 2L

oc ., 0¢ _ ). 22
= + P =V§(F-n)+ p” 0 (3)
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The evolution equation of the level set function ¢ can be written in the following general

form, inserting the definition of the normal n = %
0
% fvgfe “

ot
which is called the level set equation (Osher & Sethian, 1988). Nevertheless, the level set
function ¢ can suffer of transients, very sharp and/or flat shape during the evolution. For

this reason, it is necessary to initialize the function ¢ as a signed distance function before
the evolution starts, and then “reshape” (or “re-initialize”) the function ¢ to be a signed

distance function periodically during the evolution. Re-initialization has been extensively
used as a numerical remedy in traditional level set methods (Caselles et al., 1993; Malladi et
al., 1995). The standard re-initialization method solving the following equation is

0 .

0 —sign(g, Y1~ V) ®)
where ¢, is the function to be re-initialized, and sign(g) is the sign function. There has been
copious literature on re-initialization methods (Peng et al., 1999; Sussman & Fatemi, 1999),
and most of them are variants of the above partial differential equation (PDE)-based

method. Unfortunately, if ¢, is not smooth or ¢, is much steeper on one side of the border
than the other, the zero level set of the resulting function ¢ can be moved incorrectly with
respect to the original function. Moreover, when the level set function is far away from a
signed distance function, these methods may not be able to re-initialize properly the level
set function to a signed distance function. In practice, the evolving level set function can
deviate greatly from its value as signed distance in a small number of iteration steps,
especially when the time step is not chosen small enough. So far, re-initialization has been
extensively used as a numerical remedy for maintaining stable curve evolution and
ensuring desirable results. From the practical point of view, the re-initialization process can
be quite complicated, expensive, and have subtle side effects.

In this chapter we have used the variational approach explained in (Li et al., 2005), which
can be easily implemented by a simple finite difference scheme without the need of re-
initialization. Provided that a signed distance function must satisfy the desirable property of
IV¢| =1, the minimization of the following integral is proposed

1 2
P(6) - [L{vol-1) dsy ©
Q
With the above defined functional P(¢), it is proposed the following variational formulation
E(p)= uP(¢)+E,,(p) 7)

where x4 > 0 is a parameter controlling the effect of penalizing the deviation of ¢ from a
signed distance function, and E, (¢ ) is a certain energy that would drive the motion of the
zero level curve of ¢ (Li et al., 2005).
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2.2 Proposed Method for Motion Estimation of Tagged Cardiac Magnetic Resonance
Images

The method proposed for the study of the motion in tagged CMR is one of the well-known
differential techniques. The basis of these methods is the constancy of the intensity
structures of local time-varying image regions under motion, at least for a short duration
time (Horn & Schunk, 1981). The use of this method actually assumes intensity conservation
between consecutive frames, that can be admitted in the case of tagged MR image frames
separated by short time intervals as compared with T1 recovery (Ledesma-Carbayo et al.,
2008). However, if required, the T1 signal modulation could also be included in the criterion
(Ledesma-Carbayo et al., 2008). Let us remember the optical flow constraint equation:

V(x,x3)- V(5,20 )+ 1, (x1,%5,1) = 0 ®)
wherev =(v,,0,), I, = 6I/0t and v, = Ox, /ot and v, = Ox, /Ot are the components of the
velocity field. This equation needs an additional constraint, as the problem is undetermined
(ill posed). The one adopted here is based on the regularization of the velocity fields
(Aubert, 1999).The problem originally proposed has to deal with the following energy
minimization, proposed by Horn & Schunk in (Horn and Schunk, 1981)

min [(v-V1+1,Fds+a” [[o +[vvaff b o)
v
Q Q

and modified later on with more robust norms to cope with optical flow discontinuities
(Aubert & Kornprobst, 2006)

i #|vo i + i #|vos iz (10)

where the functions ¢ allow noise removal and edge preservation. Among the different ¢
functions (Deriche et al., 1995), in this approach the norm L! has been chosen. It is also called
Total Variation (TV), ¢(t)=t. Very good anisotropic denoising properties of the TV semi-
norm are well known (Sroubek & Flusser, 2005). Since TV is highly nonlinear and non
continuous, a special attention must be paid to its discretization. Several relaxed
linearization schemes were proposed. We follow the half-quadratic regularization scheme
describe in (Charbonnier et al., 1997) that introduces an auxiliary variable.

On the other hand in homogeneous areas characterized by low image gradients magnitude,
no visible motion can be locally detected. To minimize this undesirable motion, an extra
term is added to equation (11) such as

éfc(x)”v”i dx (11)

where || || 5 is the Euclidean norm, and

1

2 2
\/EiIJ +[ilj +eps (12)
Ox4 0x,

represents a penalizing function, which is small for high image gradients and big for low
image gradients. Finally, including the different terms, the energy minimization equation
that we propose to use has the following form:

min [(v-VI+I,fdx+a’ f¢(||Vv||)lx +af jc(x)|v|2dx (13)
‘Y Q Q Q 2

c(x)=
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In the same way that the homogeneous term c(x) has been added, it is easy to add other

terms in order to adapt the algorithm to the problem. The main idea of the improved
version described here has been introducing a regularization term in order to find a more
accurate optical flow based on prior robust estimates in given control points. The new term
is going to have information of the displacement of several points inside the myocardium
with a very low phase difference with respect to the following frame (estimated below 10-3).
For the sequel, we will name these points as control points. Such term has the following
form,

ﬂZ(Ui _Pi) (14)

where p; is the set of control points. The parameter £ is a mask, with non-zero values only
for the control point position. The final equation yields as

min I(v VI+1, )2 dx+a" J‘¢(||Vv||ﬁx +af jc(x)|v|§ dx+ Y (V,- -p; )2 (15)
v o Q Q i

With this equation, a compromise agreement is reached. The regularization term is going to
provide a more accurate optical flow in the neighbourhood of the control points. In those
regions without any control point, this term does not have any effect.Although the equation
(15) seems to have an easy implementation, obtaining the control points is a challenging
task. The tags of the image are an essential property which will allow obtaining such points.
There are some papers which propose tracking the dark lines as finding points of minimum
intensity (Guttman et al., 1994; Young, 1998; Chen & Amini, 2001). In this case, several tag
line points could be chosen as control points. However, the tag fading is a limitation for
these techniques, as the error allowed in the displacement estimation of those points has to
be very small.

In contrast, techniques using the phase of the images (for instance, the Harmonic Phase or
HARP technique reported in (Osman et al., 1999; Osman et al., 2000)) turn out to be very
accurate for tracking a selected number of points, that is those points whose phases are not
affected by noise and where tag jumping is avoided. As we only need a reduced set of
points and not a dense optical flow for these control points, the control points will be a set of
points with high stability of phase.

In 1-1 SPAMM (Spatial Modulation of Magnetization) tagging pulse sequences, tags are
created with a sinusoidal cross-sectional intensity profile. At any point on or between the
tags, the tissue has both the magnetization intensity and the spatial phase of the periodic tag
magnetization pattern, which are dependent on position (Axel et al., 2005). So, when the
heart moves, a particular piece of tissue has the same phase in the deformed state as it has in
the reference state. The phase of those images is an intrinsic invariant property that can be
tracked.

As the phase of the tagged images is restricted to be in the range [-7,+7], the control points
will be selected among a set of points in the myocardium having a certain phase, using the
criterion explained before to reject the points which phase difference with respect to the
following frame is higher than 10-3. This process is fully automatic and it does not need any
manual interaction. We are going to select one point per tag intersection, forming a grid of
selected points in the myocardium. An example can be seen in Fig. 1.
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Fig. 1. Example of the control points manually chosen in one of the sequences tested.

From those points, a similar procedure as reported in (Osman et al., 1999) and (Osman et al.,
2000) is established for tracking the points, using the Newton-Raphson method. The
Newton-Raphson method is a well-known technique to find the root of a function. We are
going to apply it in a small region centered in the point of interest, to find the roots in the
difference of phase images. To avoid tag jumping, the Newton-Raphson method is only run
in a small window around each point, taking into account tag spacing. In addition to that,
those points whose difference of phases has an error higher than 10 have been rejected.
Therefore, only points with very good phase stability have been chosen as control points.
This automatic selection provides control points with robust tracking estimates including
prior information very valid to enhance the method. In principle it does not matter which
points are selected, although it is desirable that they are evenly distributed. It is also
important to note that the computational time does not increase very much as only a few
points are going to be selected.

Another important point is that the control points are different for each pair of images.
Thus, the errors which could have been made in previous images of the sequence will not
been propagated.

The motion estimation method has been validated with a simulated sequence without noise
and with four different levels of Gaussian noise, and also with five real sequences.
According to the standardized myocardial division of segments (Cerqueira, Weissman et al.
2002), the myocardium has been divided into six regions, and four points of each region
have been manually tracked. Overall, 24 points have been selected along each sequence. The
results obtained with the motion estimation method have been compared with the points
tracked manually. The error has been computed, as the average root mean square error for
each segment. The average root mean square error for synthetic sequences is 0.49
pixels/frame and for real sequences it is 0.62 pixel/frame. Results have been compared to a
reference method (HARP), achieving always better results (Carranza-Herrezuelo, 2009a;
Carranza-Herrezuelo et al, 2009Db).

2.3 Integration of the Motion Estimation and Segmentation Approach

This algorithm has been applied on four sequences where both CINE and tagged CMR
images are available (see an example in Fig. 2). The motion field has been extracted for each
pair of tagged CMR images. This motion field has been computed with the enhanced
variational method, and integrated with the segmentation technique.
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To starting the algorithm, the segmentation of the first image is performed being initialized
with a manually drawn curve. All the rest operations are automatically accomplished. After
the first image is segmented, the next step is to estimate the motion field that applied to this
first segmentation will provide the new contour in the next image of the sequence. When the
curve for the next image is estimated, the level set technique is run only to refine the
solution and for smoothing the first approach. The segmentation algorithm is run on the
CINE sequences, while the motion estimation is run on the tagged sequences. The block

diagram of the previous steps is shown in Fig. 3
Show first dmage of the CINE secquetnce

i

Dram a cwrwe in the myocardium as a
startirg cortour

Segmertt the first image of the
CINE sequence with level sets

L)

Find motion in tagyed sequetice to the
following imadge

Estimare secuertation in CINE imadge wsiveg
the motion field

Befine the semmentation with lewel sets

|
Fig. 3. Block diagram of the system of the motion estimation and segmentation for dual
sequences

By means of this algorithm, the computational time of the segmentation is considerably
reduced, because we only need to compute the segmentation for the first image of the
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sequence. For the rest, the iterative process of the segmentation is stopped when the
evolution of the level-set implementation is below a given threshold.

3. Experimental Results

3.1 Experiments

The four sequences were acquired with a Philips Intera 1.5 T (Philips Medical Systems, The
Netherlands) using a five element phased-array coil dedicated to cardiac imaging. CINE MR
scans were acquired using a breath hold Balanced Fast Field Echo (B-FEE) sequence,
obtaining images with a pixel size between 1 mm? and 1.3 mm?2 As in the previous
experiment the tagging sequence used consists of an enhanced version of the SPAMM
sequence provided by the manufacturer for our Phillips Intera scanner (Santa-Marta et al.,
2006). Both CINE and Tagged MR sequences were acquired using exactly the same
acquisition geometry in order to have precise alignment and pixel correspondence between
both datasets. Some small rigid misalignments due to the acquisitions in different
respiratory positions have been corrected between both sequences before applying the
segmentation approach.

The values of the parameters used in the program have been selected manually, choosing
the parameters which provided better results. For the motion estimation, the parameters
used for the tagged CMR sequences area® =10, o” =107 and #=10". The parameter
that controls the number of iterations explained in the previous section has been set as 3.8
pixels for the endocardium and 0.5 for the epicardium segmentation. The rest of the
parameters employed in the algorithm are the same as stated in (Li et al., 2005).

The computational time has been tested in this experiment. On the other hand, the accuracy
of the segmentation has been evaluated. For this purpose the endocardium and epicardium
have been manually segmented, independently on each sequence. Four sequences have been
analysed selecting the systolic period, and 46 curves from 23 images were manually
segmented. To compare the results obtained with the automatic algorithm, the metrics
proposed in (Chalana & Kim, 1997) have been used, as described in the following
paragraphs.

Let us suppose that we have two curves A and B where the former A is obtained by the
segmentation algorithm and the later B is the one manually segmented. Both curves are
divided into a set of points, a;and b,;. In our case, we have used all the points of the

contour. The minimum distance of each of the points to the other curve is computed, which
is the distance to the closer point in the other curve.

d(a;, B)=min b, - a, (16)

In each image of the sequence, the following measures are obtained:
e  Mean distance between curves. It is obtained from the distances of all the points

d(A,B)= %id(ui,B) (17)

e  Hausdorff distance. Maximum distance of one curve to the other, measured as the
maximum value between the distances of all the points.

e(A,B)= max(maxj {d(ai ,B), max; {d(;, A)}}) (18)
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e Overlapping. From the surfaces defined by the curves, the overlapping degree is
the division of the number of coincident pixels in both surfaces, and the number of
pixels belonging to one or another.

ANB
Overlapping(A,B)= ——
pping(A,B)=—— (19)
An example of the manually and automatic segmentation in two different frames is shown
in Figs. 4-5. It can be seen how the contours are smoother in the case of the automatic
segmentation (see e.g. Fig. 4c-d).

Fig. 4. a) and b) Example of manually segmentation. ¢ and d) Example of automatic
segmentation.

3.2 Results

The results obtained for one of the sequences are visualized in Fig. 5., where the
segmentation result (left column) and the optical flow (right column) on the tagged images
are shown.

il LLE
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Fig. 5. Segmentation results and ptical flow for the first five images of the sequence. The
first column shows the CINE images with the segmentation and the second column shows
the optical flow obtained with the tagged CMR images.

As it can be seen, the results obtained adjust well to the endocardium and epicardium. The
contour fit perfectly to the myocardial border, avoiding the inclusion of the papillary
muscles which can not be achieved so easily on the tagged images. Fig. 6 shows the results
of the computational time. As it can be seen in figure 6, the computational time for the
integrated solution is smaller than the one needed if the sequence were segmented frame by
frame. Fluctuations on the computational time for the integrated method are due only to the
refinement of the segmentation needed for each frame; this fact explains the increase of the
computational time between frames forth and fifth.
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Computational Time
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Fig. 6. Computational time for the proposed integrated solution compared with the time
obtained segmenting each image for the dual sequence.

The results of the evaluation of the 46 curves tested are shown in Table 1. Resultant
arameters show that the segmentation performance is very accurate.

Mean Distance | Haussdorf Overlapping
(pixels) Distance (pixels) | degree (%)
Mean + SD Mean + SD Mean + SD
Sequence 1 Endocardium 0.94+09 2.71+1.44 90 +3.84
Epicardium 1.01 +0.04 2.80+0.21 93 +1.85
Sequence 2 Endocardium 1.25+0.16 3.75+0.97 88 +4.04
Epicardium 0.96 + 0.00 2.65+0.40 94 +0.59
Sequence 3 Endocardium 0.87 +0.18 2.82+0.33 87 +3.12
Epicardium 0.82+0.31 2.60+0.70 92 +2.93
Sequence 4 Endocardium 0.88 +0.43 2.35+1.09 90 +6.01
Epicardium 1.24 +0.22 3.54 +0.74 90 +1.62

Table 1. Evaluation results of the segmentation (mean distance, Haussdorf distance and
overlapping degree) for the four sequences tested in comparison to manual delineations.

The mean distance between pixels is always below 1.25 pixels, and the Haussdorf distance is
smaller than 4 pixels. In the first sequence, results for the endocardium and epicardium
segmentation are similar. In the second sequence, the results obtained for the epicardium
are better. This is due to the fact the manual segmentation of the endocardium is generally
quite difficult. In the second sequence, the resolution of the images was lower than in the
tirst case, and the error obtained with the segmentation algorithm is a bit higher than those
obtained in the first sequence.
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4. Conclusions

A method for segmentation and motion estimation of the myocardium based on level sets
and variational techniques has been presented. The segmentation method uses a level set
method implemented through a variational formulation, which has been integrated with a
motion estimation algorithm, also based on variational techniques. This approach applied to
dual sequences takes advantage of the appealing features from each type of images (detail
resolution form CINE CMR and motion estimation from Tagged MR). The segmentation has
been proved to be feasible in real images, having a low computational cost. On the other
hand the accuracy of the segmentation has been tested in dual CINE + Tagged MR
sequences in comparison to manual delineation of the endocardium and epicardium.
Results show a good performance of the algorithm with a mean error between curves of
approximately one pixel. The proposed approach constitutes a very interesting framework
for the measurement of global and regional functional parameters from both types of data
(CINE+tagged MRI).
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