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1. Introduction

Sleep is a vital physiological function and high quality sleep is essential for maintaining the
good health. Sleep disorders however are amongst the most common disorders suffered by
humans and it is rare for most people to regularly enjoy the amount of quality sleep they
need. The behavioural and social causes of sleep disorders are typically the result of modern
lifestyle, which are usually linked to Obstructive Sleep Apnoea Hypopnea Syndrome
(OSAHS). Healthcare professionals and sleep researchers are currently looking for ways to
improve the clinical diagnosis of OSAH sufferers. OSAH means “cessation of breath”
[Vgontzas, 1999]. Due to this cessation of breath, the sufferer might experience related
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changes in the electrical activity of the brain and heart [Roche, et al., 1999; Cvetkovic et al.,
2009; Dingli, et al., 2003; Jurysta, et al.,, 2006; Task Force of the European Society of
Cardiology and the North American Society of Pacing and Electrophysiology, 1996]. This
activity recorded from electroencephalographic (EEG) and electrocardiographic (ECG)
signals might differ in patients suffering from sleep apnoea. The analysis and tools used in
sleep scoring and detection till now are based on the conventional sleep staging from whole
night polysomnography (PSG) introduced by Rechtschaffen and Kales [Rechtschaffen, et al.,
1968] which covere only a limited part of sleep-related EEG phenomena. A considerable
number of computerised scoring systems have been introduced to attain a more
standardised system of sleep EEG evaluation. In sleep research, the analysis of sleep
microstructure has been recognised. The sleep EEG, in particular during the OSAH episodes
often contains linear and non-linear information as well as stochastic components (noise).
The separation and evaluation of these signal components remains a problem not entirely
solved. Hence, new approaches to the detection and evaluation of sleep EEG transients
during the OSAH episodes are required. The application of non-linear time series analysis
method to sleep EEG was carried in the framework of the chaos hypothesis and
characterized as the Lyapunov exponent [Fell, et al., 1993; Fell, et al., 1996; Ubeyli, 2006].
Positive Lyapunov exponents have indicated that the EEG may result from a low-
dimensional chaotic process. Lyapunov exponents can serve as clinically useful parameters.
Estimation of the Lyapunov exponents is computationally more demanding, but estimates
of these parameters are more readily interpreted with respect to the presence of chaos, as
positive Lyapunov exponents are the hallmark of chaos [Haykin & Li, 1995; Abarbanel, et
al., 1991]. Eigenvector methods are used for estimating frequencies and powers of signals
from noise-corrupted measurements. These methods are based on an eigen-decomposition
of the correlation matrix of the noise-corrupted signal. Even when the signal-to-noise ratio
(SNR) is low, the eigenvector methods produce frequency spectra of high resolution. These
methods are best suited to signals that can be assumed to be composed of several specific
sinusoids buried in noise [Schmidt, 1986; Akay, et al., 1990; Ubeyli, 2008; Ubeyli, et al., 2007;
Cvetkovic et al., 2009]. In this study, the eigenvector’s multiple signal classification (MUSIC)
method, of the linear time series characteristic, was used for estimating frequencies and
powers of EEG signals from noise-corrupted measurements.

The use of Heart Rate Variability (HRV) and EEG signals for detecting cardiovascular
disease and sleep disorder has been proposed to overcome the drawback of PSG method.
The HRV parameters derived from frequency domain analysis of ECG R-R Intervals (RRI)
have been used to assess an Autonomic Nervous System (ANS) which play an important
role in the control of cardiac activity like heart rate and rhythms. The Low Frequency (LF)
and High Frequency (HF) bands are used to reflect the activation of ANS subsystem; the
sympathetic and parasympathetic, respectively. Whereas, the HRV’s Very Low Frequency
(VLF) is believed to reflect thermoregulation mechanism. The LF and HF ratio (LF/HF) is
normally used as the marker of sympathovagal balances [Task Force of the European
Society of Cardiology and the North American Society of Pacing and Electrophysiology,
1996]. Previous studies [Vaughn, et al., 1995; Bonnet, et al., 1997; Vanoli, et al., 1995; Jurysta,
et al., 2003] have suggested that HRV vary with sleep stages; the LF component is dominant
during Wake stage and gradually decreases in Non-Rapid Eye Movement (NREM) and
peaks again in Rapid Eye Movement (REM) stage. An opposite trend was reported for the
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HF component. Few studies have investigated the relationship between specific EEG
frequency bands with the HRV parameters in healthy patients and in the sleep apnoea
hypopnoea sufferers [Ako, et al.,, 2003; Yang, et al., 2002; Brandenberger, et al., 2001;
Ehrhart, et al., 2000].

The aim of this study is two-fold. Firstly, it is set to investigate any possible changes in the
human EEG activity due to OSAH occurrences by applying the non-linear and linear time
series methods. Secondly, it is set to assess the correlation between EEG frequency bands
and HRV in normal and sleep apnoea human clinical patients at different sleep stages. The
parameters obtained from this correlation can be used to distinguish the healthy and
patients suffering from sleep apnoea and hypopnoea syndromes. The first part of this study
consisted of investigating the EEG activity throughout all sleep stages for one patient only.
The second part of the study involved a much larger sample size of healthy and unhealthy
patients to investigate the changes and possible correlation of EEG and HRV activity.

2. Data Description

Subjects

For the first part of this study, one human patient (age: 32, sex: male, weight: 96kg, height:
1.76m), diagnosed with the Apnoea Hypopnoea Index (AHI) of 5.1, was recruited for an
overnight PSG recording at St. Lukes Hospital (Sydney, NSW, Australia). The second part of
the study consisted of 8 healthy (5 males and 3 females) and 11 sleep apnoea patients (9
males and 2 females). Descriptive clinical features and sleep parameters of healthy and sleep
disorder patients are presented in Table 1.

Healthy Sleep Apnoea
Age (years) 48.13 £10.52 50.64 +11.39
BMI (kg/m2) 27.01 +2.94 32.92 +5.30
AHI 275+£1.22 48.97 +27.52
Total sleep time (min) 379.83 £ 59.57 393.83 £ 33.01
Sleep latency (min) 26.45 +30.59 23.25+23.89
REM latency (min) 211.36 + 89.81 161.52 +39.13
Sleep efficiency (%) 82.70 + 8.03 87.89 +8.31
Wake (%) 16.35 £ 8.31 11.32 +8.21
Stage 1 (%) 7.5+6.10 6.47 +3.34
Stage 2 (%) 45.83 +5.42 52.57 £11.22
Stage 3 (%) 12.51+3.32 10.30 +7.82
Stage 4 (%) 1.84 £3.61 2.52+4.36
REM (%) 15.01 £7.48 16.03 + 5.03

Table 1. Patient clinical features and sleep scoring parameters.

Experimental Protocol

An eight-hour standard clinical sleep PSG was recorded with sampling frequency of 256 Hz
using Bio-Logic System and Adults Sleepscan Vision Analysis (Bio-Logic Corp, USA).
Surface electrodes were placed on the scalp’s surface (C3, C4 and O2; 10-20 system) and
referenced to bridged left and right mastoid to record the EEG activity. Two channels were
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used to record the eye movements, with one electrode placed 1 cm above and slightly lateral
to the outer canthus of one eye and the second electrode recording the potentials from an
electrode 1 cm below and slightly lateral to the outer canthus of the other eye. The other
electrodes recorded the EMG from the muscle areas on and beneath the chin, ECG (using
lead-II across the chest area), nasal and oral airflow, snoring sounds, breathing effort
(measured at the chest and abdomen), oxymetry, actigraphy recording body positioning and
leg movements (right and left anterior tibialis).

The respiratory signals of apnoea and hypopnoea events were evaluated using American
Academy of Sleep Medicine (AASM) Criteria [American Academy of Sleep Medicine Task
Force, 1999] and visually scored by the sleep technician from 30 second epochs. The one
patient sleep analysis reported 64.5% sleep efficiency and 91.8% in sleep maintenance with
132 min spent in wake (W) stage, 30 min in stage 1 (S1), 125 in stage 2 (52), 17 min in stage 3
(S3), 49 min in stage 4 (S4), 26 min in stage REM, 220 min non-REM and 3 min in movement
time [Cvetkovic, et al., 2007]. The hypopnoea segments used in this investigation were only
visually detected in S2.

3. Signal Processing Methods

Nonlinear Measures

The Lyapunov exponents are a quantitative measure for distinguishing among the various
types of orbits based upon their sensitive dependence on the initial conditions, and are used
to determine the stability of any steady-state behaviour, including chaotic solutions. The
reason why chaotic systems show a periodic dynamics is that phase space trajectories that
have nearly identical initial states will separate from each other at an exponentially
increasing rate captured by the so called Lyapunov exponent [Haykin et al., 1995;
Abarbanel, et al.,, 1991]. This is defined as follows. Consider two (usually the nearest)
neighbouring points in phase space at time 0 and at time ¢, distances of the points in the i-th
direction being ||s;(0)] and |, (r)|, respectively. The Lyapunov exponent is then defined by

the average growth rate 4, of the initial distance,

||5x5(t)" — 24 (f =5 oo 1

T .
)

b= fim e o) &

The existence of a positive Lyapunov exponent indicates chaos. This shows that any
neighbouring points with infinitesimal differences at the initial state are abruptly separate
from each other in the i -th direction. In other words, even if the initial states are close, the
final states are much different. This phenomenon is sometimes called sensitive dependence
on initial conditions. Numerous methods for calculating the Lyapunov exponents have been
developed in the past decade. Generally, the Lyapunov exponents can be estimated either
from the equations of motion of the dynamic system (if it is known), or from the observed
time series. The latter is what is of interest due to its direct relation to the work in this
chapter. The idea is based on the well-known technique of state space reconstruction with
delay coordinates to build a system with Lyapunov exponents identical to that of the
original system from which our measurements have been observed. Generally, Lyapunov
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exponents can be extracted from observed signals in two different ways. The first is based
on the idea of following the time-evolution of nearby points in the state space. This method
provides an estimation of the largest Lyapunov exponent only. The second method is based
on the estimation of local Jacobi matrices and is capable of estimating all the Lyapunov
exponents. Vectors of all the Lyapunov exponents for particular systems are often called
their Lyapunov spectra [Haykin et al., 1995; Abarbanel, et al., 1991].

Linear Measures

Eigenvector methods are used for estimating frequencies and powers of signals from noise-
corrupted measurements. A number of eigenvector methods have been applied by authors
[Akay, et al., 1990; Ubeyli, 2008; Ubeyli, et al., 2007; Cvetkovic et al., 2009], such as
Pisarenko, Multiple Signal Classification (MUSIC) and Minimum-Norm. The polynomial
A(f) which contains zeros on the unit circle can then be used to estimate the power spectral

density (PSD):
A(f) =) ae ©

k=0
where A(f) represents the desired polynomial, a; represents coefficients of the desired

polynomial, and m represents the order of the eigenfilter, A(f) .

The polynomial can also be expressed in terms of the autocorrelation matrix R of the input
signal. Assuming that the noise is white:

R= E{,x(n)* x(m)T }: SPS* + v (4)

where x(n) is observed signal, S represents the signal direction matrix of dimension

(m+1)xL and L is the dimension of the signal subspace, R is the autocorrelation matrix of

dimension (m+1)x(m+1), P is the signal power matrix of dimension (L)x(L), ov?

represents the noise power, * represents the complex conjugate, I is the identity matrix, #
represents the complex conjugate transposed, T shows the matrix transposed. §, the signal
direction matrix is expressed as:

S=[Sw; Swy - Sw]
where w|, w,, ---, w; represent the signal frequencies:
Sw; = [1 M eI L eiji]T i=12,--,L.

In practical applications, it is common to construct the estimated autocorrelation matrix R
from the autocorrelation lags:

N-1-k
&(k):% Zx(n+k)-x(n) k=01 m )
n=0

where £ is the autocorrelation lag index and N is the number of the signal samples.
Then, the estimated autocorrelation matrix becomes:
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"RO) R RQ) - Rm) |

) RA)  RO) R(1) - Rm-1)

R(k)=|R2) RQA) R(O) -+ R(m-2) (6)
(R(m) R(m—=1) - - R(0) |

Multiplying by the eigenvector of the autocorrelation matrix a, equation (4) can be
rewritten as:
Ra=SPS*a+ovia 7)

A

where a represents the eigenvector of the estimated autocorrelation matrix R and a is
expressed as:

lag. @i, . ay, ]

In principle, under the assumption of white noise all noise subspace eigenvalues should be
equal:

/I] 2/12 ="'=ﬂ,K :O'V2

where A; represents the noise subspace eigenvalues, i=12,---,K and K represents the

dimension of the noise subspace.

The MUSIC method has been applied in this particular analysis, which is a noise subspace
frequency estimator and eliminates the effects of spurious zeros by using the averaged
spectra of all of the eigenvectors corresponding to the noise subspace. The resultant PSD is
determined from:

®)

Pyusic(f)=

1
1 K-l 2
EZi:O [4(7)

where K represents the dimension of noise subspace, 4,(f) represents the desired

polynomial that corresponds to all the eigenvectors of the noise subspace [Schmidt, 1986;
Akay, et al., 1990; Ubeyli, 2008; Ubeyli and Cvetkovic, 2007; Cvetkovic et al., 2007, 2009].

EEG and HRV Signal Processing and Analysis

The EEG, EOG and ECG data was processed and analysed using Matlab software
(Mathworks, USA). The EEG-EOG correction was applied based on the regression analysis,
together with source noise removal using the 50 Hz notch filter. The EEG data was
processed in 30 sec segments.

A five-minute ECG data window of free movement artefacts for each sleep stage was
visually selected for the HRV analysis for each patient. Signal processing algorithm
implemented in Matlab, identified a QRS complex for extraction of RR Intervals (RRI) which
was based on Hilbert transformation [Benitez, et al., 2001]. RRI was re-sampled at 4 Hz
using Berger algorithm [Berger, et al., 1986]. Further non-parametric spectral analysis based
on Fast Fourier Transform (FFT) with no windowing function was performed according to
Task Force [Task Force of the European Society of Cardiology and the North American
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Society of Pacing and Electrophysiology, 1996]. The absolute and normalised spectral power
within each frequency band was computed using trapezoidal integration of the area under
spectral curve. The HRV frequency bands are as follows: very low frequency (VLF: < 0.04
Hz), low frequency (LF: 0.04-0.15 Hz) and high frequency (HF: 0.15-0.4 Hz). The normalised
value was calculated as LFnu=LF/(Total power - VLF) and HFnu= HF/(Total power -
VLEF).

From the raw EEG signals, the same five-minute segments used for processing ECG signals
were applied for spectral analysis. For the present analysis, EEGs’ C3-A2 derivation was
used due to our earlier study which has shown significant changes of EEG activity in an
apnoea-hypopnoea patient [Cvetkovic et al., 2009]. The power spectral of 10x30-second
epochs for each segment was computed using FFT with no windowing points. The
estimated power is grouped into five EEG frequency bands: delta (0.5-4.5 Hz), theta (5-8.5
Hz), alpha (9-12.5 Hz), sigma (13-16.5 Hz) and beta (17-30 Hz). Initially, an absolute power
was computed followed by the relative power which was derived by dividing the power
within each band by the total power (0.5-30 Hz). For further analysis, the relative powers
were averaged every five-minutes.

4. Results

Average Lyapunov Exponent Method

Multiple Wilcoxon (matched-pairs) signed-ranks non parametric tests were performed to
analyse the pre and during-hypopnoea average Lyapunov exponents for individual EEG
electrodes (C3, C4 and O2), using SPSS 17 (SPSS Inc., USA). For the average Lyapunov
exponent results, a significant decrease (z=-2.934, p<0.0003) was revealed from pre-
hypopnoea (mean=5.806, SD=0.434) to during-hypopnoea (mean=5.425, SD=0.539) at C3, as
shown in Table 3 and Figure 1A) and 1B). It was evident for C3 electrode that throughout
the 11 epochs, the average Lyapunov exponent values were significantly lower during the
hypopoea in comparison to pre-hypopnoea. The other significant decrease (z=-2.312,
p<0.021) from pre-hypopnoea (mean=5.664, SD=0.468) to during-hypopnoea (mean=5.445,
SD=0.492) was evident at O2 electrode (see Table 3 and Figure 1B). Similar for C3 electrode,
at O2, the average Lyapunov exponent values were lower during-hypopnoea (throughout
the 11 epochs except for epoch 10). A post hoc analysis with alpha rate correction of p<0.017
was calculated using Bonferroni test for multiple average Lyapunov exponent values.
According to this alpha rate correction, the only significant difference recognised was at C3
electrode of (p<0.0003).

MUSIC Method

For the MUSIC results, a significant increase (z=-2.045, p<0.041) was revealed from pre-
hypopnoea (mean=0.005, SD=0.004) to during-hypopnoea (mean=0.009, SD=0.009) at O2
and sigma EEG band, as shown in Table 2 and Figure 2A). Throughout the 11 epochs, the
average MUSIC values were significantly higher during the hypopoea in comparison to pre-
hypopnoea (except for epochs 2 and 6) (Figure 2A)). The similar significant increase (z=-
2233, p<0.026) from pre-hypopnoea (mean=0.004, SD=0.002) to during-hypopnoea
(mean=0.005, SD=0.003) was evident at the same O2 electrode and beta EEG band (see Table
2 and Figure 2B)).
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Fig. 1. The comparison of A) pre and during hypopnoea average Lyapunov exponents (y-
axis) vs. 1-11 epoch (x-axis) for each EEG electrode (C3, C4 and O2) is represented. B) The
confidence intervals of Lyapunov exponents (y-axis) vs. pre and during-hypopnoea
conditions (x-axis) for each EEG electrode (C3, C4 and O2) is illustrated.
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Fig. 2. The comparison of pre and during hypopnoea relative MUSIC powers (y-axis) vs. 1-
11 epoch (x-axis) for specified EEG electrode is represented together with the confidence
intervals of relative MUSIC powers (y-axis) vs. pre and during-hypopnoea conditions (x-
axis) for each EEG electrode (C3, C4 and O2) at A) sigma, B) beta and C) gamma bands.
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A significant decrease was revealed at gamma EEG band at C3 electrode (z=-2.667, p<0.008)
from pre-hypopnoea (mean=0.0003, SD=0.0003) to during-hypopnoea (mean=0.0001,
SD=0.0001) (see Table 2 and Figure 2B)). Epoch 1 only showed a slight inconstancy in this
significant decrease throughout all the epochs. According to a post hoc analysis with the
Bonferroni test alpha rate correction of p<0.0028, calculated for multiple average MUSIC
values, none of the significant differences were recognized as actually being significant.
Therefore, no significant finding could be concluded from the MUSIC method.

Linear Z
MUSIC Asymp.

Sig. (p) [ delta theta alpha sigma beta gamma

z -1.156 -1.156 -0.356 | -1.511 -0.711 -2.667
<3 p 0.248 0.248 0722 | 0131 0477 | 0.008

Z 062  |-1156 | -0178 |-0711 | -1334 | -1.067
Ca p 0.534 0.248 0859 | 0477 0182 | 0.286

Z 0445 | -1.067 | -0089 |-2045 | 2233 |-1.778
02 p 0.657 0.286 0929 | 0.041 0026 | 0.075

Table 2. Wilcoxon (matched-pairs) signed-ranks test analysis of pre and during-hypopnoea
average MUSIC values for individual EEG electrodes (C3, C4 and O2) and bands (delta,
theta, alpha, sigma, beta and gamma).

Non- Z
linear Asymp.
Sig. (p) | Lyapunov
z -2.934
<3 p 0.003
z -1.156
i p 0248
Z -2.312
02 p 0.021

Table 3. Wilcoxon (matched-pairs) signed-ranks test analysis of pre and during-hypopnoea
average Lyapunov exponents for individual EEG electrodes (C3, C4 and O2).

Statistical Correlation Between EEG and HRV Results

The Mann-Whitney, a non-parametric test was used to asses the differences of HRV
parameters and EEG frequency bands with sleep stages between the healthy and the sleep
apnoea patients. To study the relationship between HRV parameters and EEG frequency
bands in different sleep stages, Pearson’s correlation was applied in both groups. An alpha
level of 0.05 was used for statistical test using SPSS 17 (SPSS Inc., USA) software.
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Fig. 3. Comparison of mean relative power and 95% confidence intervals (CI) of five EEG
frequency bands (delta, theta, alpha, sigma and beta) versus sleep stages in the healthy and
sleep apnoea groups.

Figure 3 shows that only delta EEG increased from Wake to Stage 4 and decreased in REM.
Other EEG frequency bands indicated an increase from Wake to Stage 1, further decreased
throughout sleep Stages 1-4 and increased again in REM. In sleep apnoea group, the relative
power of theta EEG was lower compared to the healthy group during Wake (z=1.98,
p=0.048), Stage 2 (z=-2.63, p=0.008) and Stage 4 (z=-2.15, p=0.032) (Figure 3). In addition to
Stage 2 (z=-4.19, p<0.001), the relative power in alpha EEG of sleep apnoea group was lower
in Stage 3 (z=-4.26, p<0.001). Likewise, the difference of relative power in sigma EEG for the
sleep apnoea and the healthy groups were observed in Wake (z=-2.22, p=0.026), Stage 2 (z=-
5.13, p<0.001) and Stage 3 (z=-2.37, p=0.018). Conversely, the relative power of beta EEG in
the sleep apnoea group was higher than the healthy group during Stage 3 and lower during
Stage 2 (z=-2.95, p=0.003) and REM (z=-2.58, p=0.01).

In the healthy group, the LFnu and LF/HF ratio continuously decreased from Wake to Stage
4 and peaked during REM while HFnu had the converse effect (Figure 4). In the sleep
apnoea group, the LFnu was higher than the healthy group during Stage 3 (z=-3.11,
p=0.002). Despite the fact that the sleep apnoea group had similar trends in HFnu
component, its activity was slightly lower during Stage 3 (z=-2.42, p=0.016). The sleep
apnoea group also revealed a higher LF/HF activity during Stage 2 (z=-2.13, p=0.033) and
Stage 3 (z=-2.93, p=0.003) in comparison to the healthy group (Figure 4).
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Fig. 4. Mean and 95% confidence intervals (CI) normalized power of low frequency (LF),
high frequency (HF) and the ratio between LF and HF of HRV versus sleep stages in normal
and patients with sleep apnoea.

The relation between the five frequency bands of EEG and HRV parameters for each sleep
stage in both groups were summarized in Table 4. In the healthy groups, delta EEG
negatively correlated with LF/HF and LFnu during sleep Stage 3, 4 and REM and positively
correlated with HFnu in Stage 3 and 4. In contrast to healthy group, the LF/HF, LFnu and
HFnu in sleep apnoea group correlated with delta EEG only in Stage 3. Theta EEG only
correlated with LFnu (Stage 1) in the healthy group and with HFnu (Stage 1-2) in the sleep
apnoea group. Correlation between HRV parameters and alpha EEG did not exist in the
sleep apnoea group however it was only correlated with LFnu for the healthy group.
Interestingly, for sleep apnoea group, sigma and beta EEG showed positive correlation with
HFnu and negative correlation in LF/HF and LFnu both in Stage 2 and REM. Similar
correlation trends for sigma and beta EEG bands was observed but only in LFnu and HFnu
in the healthy group.

A post hoc analysis with Bonferroni alpha rate correction of p<0.002 revealed that in the
healthy group, only delta EEG was negatively correlated with LF/HF during Stage 4.
Whereas a positive correlation was observed in the sleep apnoea patients. Sigma and beta
EEG also showed a significant difference for LF/HF and LFnu during Stage 2 and REM
respectively in the sleep apnoea group.
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delta theta alpha sigma beta
H S H S H S H S H S
LF/HF W 0.10 0.12 0.08 | -0.13 | -0.05 | -0.08 | -0.11 -0.09 -0.18 -0.12
S1 0.02 0.09 029 | -019 | 002 |-025| -0.14 -0.05 -0.30 0.23
S2 0.09 -0.04 | -020 | -0.12 | -0.32* | -0.14 | -0.25 | -0.31** | -0.15 | -0.33**
S3 -0.36* | 0.29* | -0.06 | 012 | 0.05 | -0.07 | -0.22 -0.04 -0.18 -0.17
S4 -0.88** | 0.14 | -0.17 | 0.01 021 | -0.06 | 0.28 -0.09 0.25 -0.08
REM | -0.29* | -0.04 | -0.06 | 0.05 | 0.11 | -0.15| -0.18 | -0.32* | -0.16 | -0.31*
LFnu W 0.21 023 | 022 | -0.01 | -0.04 | -0.24 | 0.01 0.03 -013 | -0.04
S1 -0.07 -0.09 | 048 |-013 | 026 | -017 | 0.02 0.13 -0.16 0.26
S2 0.03 -0.05 | -0.09 | -0.06 | -0.20 | -0.13 | -0.37* | -0.33* | -0.09 | -0.43*
S3 -0.25 | 0.39** | -011 | 020 | 0.06 | -0.18 | -0.29* | -0.13 | -0.29* | -0.25
5S4 -0.79* 022 | -041 | -010 | 0.63* | -0.18 | 0.20 -0.24 0.15 -0.24
REM | -0.30* | -0.01 | -0.02 | 0.08 | 0.14 | -0.19 | -0.10 | -0.32** | -0.08 | -0.32**
HFnu W -0.18 -0.12 | 0.06 | 0.08 | 0.29* | 0.21 | 0.17 0.03 0.14 -0.03
S1 -0.25 -022 | -0.07 | 047% | 021 | 025 | 0.28 0.15 0.41* 0.07
S2 -0.14 013 | 011 | 0.26* | 020 | 0.13 | 0.31* | 0.29* 0.15 0.35*
S3 0.39* | -0.27* | 0.01 | -0.08 | -0.04 | 0.04 | 0.09 -0.01 0.19 0.09
S4 0.74* -0.01 | 007 | -0.20 | -0.18 | -0.16 | -0.20 -0.17 -0.15 -0.16
REM 0.20 0.05 0.05 | -011 | -018 | 0.05 | 0.15 0.24* 0.16 0.21*
Table 4. Correlation coefficients between EEG frequency bands and HRV parameters
throughout different sleep stages in the healthy (H) and sleep apnoea (S) groups.
*alpha level at p<0.05, ** alpha rate correction at p<0.001.

5. Discussion & Conclusion

The evaluation of sleep EEG transients from low-dimensional chaotic process during the
OSAH episodes was conducted using the established non-linear time series analysis
method, the positive Lyapunov exponent [Fell, et al., 1993; Fell, et al., 1996]. Whereas, the
eigenvector’'s multiple signal classification (MUSIC) method, of the linear time series
characteristic, was used for estimating frequencies and powers of EEG signals [Ubeyli and
Cvetkovic, 2007; ["Jbeyli, 2008; Cvetkovic et al., 2007, 2009]. Previous studies investigated the
analysis of the EEG signals using Lyapunov exponents, which were used as inputs of the
multilayer perceptron neural networks (MLPNNSs) [Ubeyli, 2006], and multiclass support
vector machine (SVM) [Ubeyli, 2008]. Similar research demonstrated the performances of
Lyapunov exponents and eigenvector methods in representing the EEG signals [Andrzejak,
et al., 2001]. The power levels of the power spectral density estimates (PSDs) obtained by the
eigenvector methods can be used to represent the features of the PPG, ECG, EEG signals
[Ubeyli and Cvetkovic, 2007].

The statistical results from this first part of our one-patient EEG sleep study needed to
consider the Bonferroni test alpha rate correction which depended on the number of factors
involved in the multiple tests. The reason MUSIC method revealed corrected non-significant
findings was due to six EEG bands and three electrodes (18 factors). Whereas, for the
Lyapunov alpha correction, only three factors were considered. As the result, the corrected
alpha rate was much lower (p<0.017) and the only ‘true’ significant finding was revealed at
the left central region (C3). Therefore, the results from this first part of study indicated
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significant changes in the human EEG activity due to OSAH occurrences by applying the
non-linear series methods at C3 electrode.

The results from the second part of this study confirmed the existence of association
between the HRV parameters and delta EEG frequency band in normal patients which
varies with sleep stages as reported in previous studies [Jurysta, et al., 2003; Ako, et al., 2003;
Yang, et al., 2002; Brandenberger, et al., 2001]. The power extracted from HRV and EEG
bands was computed using spectral analysis based on Fast Fourier Transform (FFT). Our
results showed that in healthy group, delta EEG which often prevails in deep sleep was
inversely correlated with LFnu and LF/HF and positively correlated with HFnu suggesting
a decrease in sympathetic activity and an increase in parasympathetic activity. The present
study also found an increase in LFnu and LF/HF particularly during Stage 2 in sleep
apnoea patients compared with the healthy. This finding was in line with study by [Roche,
et al, 1999; Cvetkovic, et al.,, 2009] which suggested an increase in sympathetic and
parasympathetic activity around apnoea-hypopnoea episodes which occurred mostly
during NREM sleep. As reported by [Svanborg, et al., 1996], increased during NREM
apnoea. Our results revealed that delta EEG and LFnu positively correlated, observed in
sleep apnoea group during Stage 3. In addition, beta and sigma also showed a negative
association with the LFnu and LF/HF parameters. This association observed during Stage 2
and REM may be due to predominance of cardiac sympathetic during apnoea-hypopnoea
episodes.

In conclusion, our study elucidates a significant correlation between HRV activity and EEG
frequency bands particularly in delta, beta and sigma in sleep apnoea group. Further studies
using non-linear methods for EEG and ECG feature extraction are necessary to verify this
association.
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