We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 185,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



P300-Based Speller Brain-Computer Interface

Reza Fazel-Rezai
Department of Electrical Engineering, University of North Dakota
USA

1. Introduction

In this chapter, recent advances in the P300-based speller brain-computer interface (BCI) are
discussed. Brain Computer Interface (BCI) technology provides a direct interface between
the brain and a computer for people with severe movement impairments. The goal of BCI is
to liberate these individuals and to enable them to perform many activities of daily living
thus improving their quality of life and allowing them more independence to play a more
productive role in society and to reduce social costs. A BCI involves monitoring conscious
brain electrical activity, via electroencephalogram (EEG) signals, and detecting
characteristics of brain signal patterns, via digital signal processing algorithms, that the user
generates in order to communicate with the outside world.

A BCI system has an input, an output, and a pattern recognition algorithm that maps the
input to the output (Wolpaw et al.,, 2002). Based on the type of input, there are four
categories for a BCI system. A P300-based BCI is one of them. The focus in this chapter is the
P300-based BCI. The P300 evoked potential speller was introduced by Farwell and Donchin
(Farwell & Donchin, 1988). This paradigm has been the most widely used P300-based speller
and a benchmark for many research groups.

Several shortcomings of existing P300-based BCIs have been identified, and many research
groups have tried to overcome those shortcomings. However, more progress in resolving
many of the challenges currently experienced in P300-based speller should be made to move
BCI into the realm of practicality and to take it outside research laboratories into practical
applications.

This chapter is organized as follows. First, a brief introduction to a BCI system will be given.
Then, different types of BCI systems and P300-based speller BCI will be introduced. Details
of a P300-based speller BCI including signal processing methods, sensitivity parameters,
habituation, applications, and different variations of the system will be explained in detail.
Then, recent advances including a new P300-based speller paradigm will be presented and
results will be discussed.

2. Brain Computer Interface (BCI)

BCI technology involves monitoring conscious brain electrical activity, via EEG signals, and
detecting characteristics of EEG patterns, via digital signal processing algorithms, that the
user generates to interact with environment. It has the potential to enable the physically
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disabled people to perform many activities. Therefore, it can improve their quality of life
and productivity, allow them more independence, and reduce social costs. The challenge
with BCI, however, is to extract the relevant patterns from the EEG signals produced by the
brain each second.

EEG signals (typically 64 channels) can be recorded from the scalp or brain surface using a
specific system of electrode placement called the International 10-20 system (Jasper, 1957).
EEG signals are voltage changes of tens of microvolts at frequencies ranging from below 1
Hz to about 50 Hz. A BCI system has different components; an input, a pattern recognition
algorithm, an output (Wolpaw et al., 2002). In addition, it has a protocol that determines the
interaction of the BCI system with the user. A simple schematic diagram of a BCI system is
shown in Figure 1.

The input of a BCI system is the EEG signal. EEG signals can be recorded invasively (i.e.,
intracortical) or non-invasively (i.e., surface EEG). The EEG signals can be the results of an
evoked or a spontaneous signal. Evoked EEG is due to a stimulus and spontaneous EEG is a
brain activity rhythm that is not the result of any stimulation. Pattern recognition
components of a BCI system are the parts of the system that analyze EEG to extract a
signature from EEG signals as shown in Figure 1. This includes signal processing methods
for preprocessing (e.g., noise removal), feature extraction, classification, and post processing
methods. Many different approaches from linear to nonlinear have been used (Mirghasemi
et al., 2006). The output of a BCI system is connected to a computer, or a device that is
supposed to be controlled using the BCI system. Spelling devices, i.e., virtual keyboard, is
one of them. The operating protocol of a BCI system determines how the system interact
with the environment, e.g., if the system supposed to work continuously or not and how the
system should be turned off.

~
:>[ Pre-processing :>{ Feature Extraction ]
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a o
I:ﬂmh Post-Processing ]<: Classification ]

\

Fig. 1. A BCI system receives recorded EEG signals and extract signatures of the brain
activity using several signal processing algorithm to interact with outside environment.

3. Different Brain Computer Interface (BCI) Systems

Based on the type of input, components, output, and protocol, BCI systems are categorized
in different groups. Various properties in EEG can be used as the input of a BCI system such
as rhythmic brain activity, event-related potentials, event-related desynchronization (ERD)

www.intechopen.com
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and event-related synchronization (ERS). In general, four different types of brain activity
reflected in EEG signals have been mostly used as the BCI system inputs: 1) visual-evoked
potentials, 2) slow cortical potentials, 3) mu and beta rhythms, and 4) the P300 component of
Event-Related Potentials, or ERPs) (Wolpaw et al., 1991; Blankertz et al., 2004; Pfurtscheller
et al., 1993; Scherer et al., 2004; Birch & Mason, 2000; Kostov & Kostov, 2000).

3.1 Rhythmic brain activity

Normal brain waves show different rhythmic activity based on the level of consciousness.
This happens not only during the sleep (different sleep stages) but it can be seen in EEG
during the waking state. These rhythms are affected by internal parameters such as subject’s
actions and thoughts and external factors such as fatigue and stress. For example, when a
subject plans to move an object (without performing the task), a particular rhythm can be
generated in EEG signal. The fact that mere thoughts affect the brain rhythms can be used as
the input for a BCI system. The frequency bands from low to high frequencies are called
delta (9), theta (@), alpha (), beta ( ), and gamma ( y) as shown in Table 1.

Band Frequency Range
S 0.5-4 Hz
0 4-75Hz
o 8-13 Hz
B 14-26 Hz
4 >30Hz

Table 1. EEG rhythmic frequency ranges.

EEG waves below 4 Hz (usually 0.5-3.5 Hz) belong to the delta () waves. Infants show
irregular delta activity of 2-3.5 Hz in the waking state. However, delta waves are only seen
in deep sleep in adults and they have not been used in BCI systems. Theta (@) waves are
between 4 and 7.5 Hz. The alpha (&) rhythm is in the range of 8-13 Hz and is seen with eyes
closed and under conditions of physical relaxation. Mu (8-12 Hz) and beta (14-26 Hz)
rhythms are mostly used in BCI systems. In people who are awake, the primary sensory or
motor cortical areas often display 8-12 Hz EEG activity when they are not engaged in
processing sensory input or producing motor output. This idling activity is called the mu
rhythm when focused over the somatosensory or motor cortex. These mu rhythms are
usually associated with 14-26 Hz beta rhythms. While some beta rhythms are harmonics of
mu rhythms, some are separable from them by topography and/or timing, and thus are
independent EEG features. It has been shown that subjects were able to raise and lower mu
rhythm waves by thinking about activities such as relaxing (raising mu activity) and lifting
weights (decreasing mu activity) (Pfurtscheller, 1993). In addition, it has been shown that
mu rhythm is modulated by the expression of self-generated movement and observation
and imagination of movement (Pineda et al., 2000).

3.2 Event-Related Potentials (ERPs)

Event-related potentials (ERPs) are changes in the EEG that occur in response to a stimulus.
ERP is a voltage fluctuation in the EEG induced within the brain that is time-locked to a
sensory, motor, or cognitive event. The stimulus can be visual, auditory, or somatosensory.
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ERPs provide a different indication of how the stimulus is processed. They are measures to
reflect the responses of the brain to events in the external or internal environment of the
organism. Although they are not easy to be detected, they have wide usage for clinical-
diagnostic and research purposes. It should be noted that whereas the amplitude of ongoing
EEG activity is in the range of 50 microvolts, the amplitude of the ERP is much smaller in the
range of 5 to 10 microvolts. The “peaks” and “valleys” in the ERP are termed components,
with positive deflections labelled with “P” and negative deflections labelled with “N”. The
N400, for example, is the negative peak near 400 milliseconds after a stimulus onset. The P300
component is the fourth major positive peak. The P300 component of ERP was first reported
by Sutton (Sutton et al., 1965). The P300 component of ERP is a positive peak at about 300ms
after stimulus. It is elicited with a simple, two-stimulus discrimination task. This procedure
has been dubbed the “oddball paradigm”, whereby two stimuli are presented in a random
series such that one of them (the “oddball”) occurs relatively infrequently. A user is asked to
distinguish between the stimuli by mentally noting each oddball stimulus, which creates a
P300 wave, and ignoring the standard stimulus. Unfortunately, the P300 has a relatively small
amplitude (5-10 microvolts), and cannot be readily seen in an EEG signal (10-100 microvolts).
The averaging process is used to decrease the influence of the background EEG, but it typically
takes 30 to 50 trials before the contribution of the background EEG subsides and a good, clean
representation of the P300 is obtained.

4. P300-BCI Speller

The most widely used P300-based BCI is a spelling device designed by Farwell and Donchin
in 1988 (Farwell & Donchin, 1988). Since then, it has been a benchmark for P300-based BCI
systems in the research laboratory. In this speller, a matrix of six by six symbols, comprising
all 26 letters of the alphabet and 10 digits (0-9), is presented to the user on a computer screen
(Figure 2). The rows and columns of the matrix are intensified successively for 100ms in a
random order. After intensification of a row/column, the matrix is blank for 75ms. At any
given moment, the user focuses on the symbol he/she wishes to communicate, and mentally
counts the number of times the selected symbol flashes. In response to the counting of this
oddball stimulus, the row and column of the selected symbol elicit a P300 wave, while the
other 10 rows and columns do not. Detection of the P300 makes it possible to match the
responses to one of the rows and one of the columns, and thus identify the target symbol.

KA B C D E F\
G H I J K L
M N O P Q R
s T U V W X
Y zZz 1 2 3 4

Q 6 7 8 9 y

Fig. 2. The P300-based BCI speller originally introduced by Farwell and Donchin (Farwell &
Donchin, 1988).
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One of the greatest advantages of the P300-based BCI is that it does not require intensive
user training, as P300 is one of the brain’s “built-in” functions. However, P300 detection for
real-time applications is not easy. Although signal-processing methods play a crucial role in
BCI design, they cannot solve every problem. While they can enhance the signal-to-noise
ratio, extract proper features, and classify them into different groups, they cannot directly
address the impact of changes in the signal itself. There are several issues to be addressed
before any P300-based BCI can be taken outside the research laboratory and put to practical
application:

A) Transfer rate: Typically, many channels and several features should be used. In addition,
the ensemble averaging of a large number of trials is required to improve the signal-to-noise
ratio, because the P300 is buried in the ongoing EEG (Donchin et al., 2000).

B) Accuracy: For real-time applications, the P300-based BCI accuracy should be very high to
be reliable to be used in real-world environment.

C) EEG pattern variability: EEG signal patterns change due to factors such as motivation,
frustration, level of attention, fatigue, mental state, learning, and other nonstationarities that
exist in the brain. In addition, different users might provide different EEG patterns.

4.1 Recent Advances in the P300-BClI Speller

Recently, many research groups have been trying to increase both transfer rate and
accuracy, which are interdependent (Serby et al., 2005). The following parameters have to be
addressed by a BCI system:

(a) Attentional blink: Attentional blink occurs if the interval between two targets is less than
500ms (Raymond et al., 1992). In such a case, the first target is correctly identified, while the
second is not detected at all. This can be a source of P300 speller error if a non-target
row/column near the target attracts attention by flashing less than 500ms before the target is
flashed.

(b) Repetition blindness: If two identical targets in a stream of non-targets are flashed at
intervals of less than 500ms, the second target may be missed (Kanwisher, 1987). This can be
a source of error whenever a target row (column) is flashed less than 500ms after flashing a
target column (row). Although they are intensified in random sequences, because the total
intensification plus blank time is 175 ms, there are several cases where the interval between
two targets is less than 500ms. This is another source of error.

(c) Target probability: It has been shown that the P300 amplitude is related to the probability
of oddball occurrence (target row/column flashing) (Donchin et al., 2000). The less probable
the oddball event, the larger the P300 amplitude. Although, in this paradigm, the probability
of creating the P300 wave is 0.17 (2/12), the P300 amplitude can be increased by decreasing
the oddball probability.

(d) Habituation: Attention decreases with repeated presentation of the same stimulus. When
the user loses focus on the target character, the P300 is not elicited, and the system error
increases with time.

(e) Row/Column error sensitivity: In the P300-based speller, the target symbol is the
intersection of the target row and column, both of which, therefore, have to be detected
correctly. This creates a sensitive system to error in detecting target row and column.
Fazel-Rezai (Fazel-Rezai, 2007) performed an analysis to reveal potential human error in the
P300-based BCI system. In this work, two data sets were used. The first dataset was from
BCI 2003 competition provided by Blankertz (Blankertz, et al, 2004), Wadsworth Center,
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Albany, NY. This dataset was selected, because the results can be compared with the results
of other works and repeated by other research groups. Features were extracted from
averaged Mexican hat wavelet coefficients. More details of the feature extraction can be
found in (Fazel-Rezai & Peters, 2005; Fazel-Rezai & Ramanna, 2005; Ramanna & Fazel-Rezai,
2006). It should be noted that since the objective of analysis was to reveal the possible errors
and compare speller paradigms, no learning set was used.

In the first data set, BCI competition (Blankertz, et al, 2004), EEG signals were recorded from
64 electrodes; however, they used only Fz, Pz, Cz, C1, and C2 channels. Row/column
intensifications (100msec) were block randomized in blocks of 12. Sets of 12 intensifications
were repeated 15 times for each character. Each sequence of 15 sets of intensifications was
followed by a 2.5 s period, and during this time the matrix was blank. This period informed
the user that this character was completed and to focus on the next character in the word
that was displayed on the top of the screen. In other words, for each character, 180 entries of
feature values are stored 90 for row intensification and 90 for column intensification. For
example, “A” is recognized only when row 7 and column 1 features indicate a P300
component. The signals were digitized at 240Hz and collected from one subject in two
sessions. Each session consisted of a number of runs. In each run, the subject focused
attention on a series of characters. Target words presented to the subject were: BOWL, CAT,
DOG, FISH, FISH, GLOVE, HAT, HAT, RAT, SHOES, and WATER. Note that words FISH
and HAT were presented two times. The total number of target characters in these words is
42. The results of analysis is shown in Table 1.

Word BOWL CAT DOG FISH FISH GLOVE

Target |B{O|{W|L|C|A|T|D|O|G|F|I|S|H|F|I|S|H|G|L|O|V|E

Detected |[B|O|W|E | C|A|T|D|O|G|F[HIM|(H|E|D|S|A|G|H[7|V|E

E(Col) |OfO|O|O|OjO|O|O|O|O|O}2({O|O|-Lf1T O0Of-1|{0f4/0(0]|0

E(Row) [0|0|0f-1/0|0|0|O0O|0[0|O0O|O|-2|0[0}|-2|O-2({0[0|3]|0]|0

Word HAT HAT RAT SHOES WATER

Target |H|A|T|H|A|T|R|A|T|S|H|O|E|[S|W|A|T|E|R

Detected |[H|{B|T|L|A|T|R|A|Z|S|H|A|QM|[S|A|T|E|R

E(Col) |Of1|0(4|0(0|0]|0O|0]|0O|0}|-2(/0|0f4|0[0]|0]O0

E(Row) |0|O0|0O|0[0O|O|O|Of2|{0|0O|-2({2[-1/0|0|0|0]O

Table 1. Target character and detected character in the target words presented to subject.
The shaded cells show when an error occurred. Differences between column/row of the
target and that of the detected characters are shown in the fourth/fifth row of the table,
respectively.
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The first and second rows in Table 1 show the target words and characters for the first data
sets, respectively. The detected character is shown in the third row. Differences between
detected columns/rows and target columns/rows are shown in the fourth and fifth rows of
the table. If the target row or column is detected correctly, zero is shown. If the detected row
is at the bottom or top of the target row, a positive or negative number is shown
respectively. In a similar notation, if the detected column is at the right or left of the target
column a positive or negative number is shown, respectively. Shaded cells in this table show
if there is an error in detection. From total 42 target characters, 27 characters (65%) were
detected correctly and 15 characters (35%), shaded in the table, were not detected correctly
because their row or column (or both) was identified wrongly. Since no training set was
used, low accuracy results were expected. In this study, error cases were analyzed to search
for a consistent pattern for the error.

Figure 3 shows another representation of the row and column differences. The focus in this
representation is how close the detected character is to the target character. It shows that 27
times target character was detected correctly. However, any other nonzero number shows
an error in detection (they are shaded cells). In Figure 3, for example, number “3”, located
on the top of “27”, indicates that “three times” the detected row was one row above target
row while the column was detected correctly or number “2”, located at the far left in the
figure and four cells away from 27, indicates that “two times” a column was detected which
was on the left side of target column and four columns away from it, while the row was
detected correctly.

S5|-41-3|-2|-1{0]1]2]3(4|5

<4—— Column Difference——»

5 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
2], 0 0 o0 00 0 0
1]5 0 0 o 00 0 0
o?‘goo 000
113 0 0 0 0 0 0 0
2% 0 0 o 00 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0

Fig. 3. Error in detecting target row and column as a function of the distance between target
and detected row and column. In this figure the target row/column is considered at the
center. The shaded cells indicate when an error occurs and the value of the cells show the
difference between target and detected row or column.
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Fig. 4. Percentage of error for Farwell-Donchin paradigm as a function of distance between
target (center cell) and detected row/column for both data sets. The Chebyshev distance
was considered.

Using the Chebyshev distance, the distance between detected row/column and target
row /column was calculated as follows:

/

=2 -0 = - g
where  and represent the locations of the target (center) and the wrongly detected
characters, respectively. Percentage of the error cases for different values of D is shown in
Figure 4.
It can be concluded that the majority of the error cases in detecting a character are when the
adjacent row/column to the target row/column (D=1) was detected (48%). This can be
attributed to subject’s attention where the subject is unable to focus precisely only on the
target letter and flashing of the adjacent row/column elicits the P300. It confirms the

hypothesis that intensification of adjacent rows and columns to the desired character creates
unwanted P300.

4.2 Region Based P300-Basd BCI

To overcome the problem described in the pervious section and several other shortcomings,
an innovative P300-based speller, in which the screen is divided into seven regions (Figure
5) was proposed (Fazel-Rezai, 2008). In addition to 26 alphabet letters and 10 digits (0-9), 13
special characters (@,# %, *, /, ...) are included, for a total of 49 symbols. The target symbol
is recognized at two levels. First, the 49 symbols are placed in seven regions (seven symbols
per region), and the regions are flashed in a random sequence. The user focuses on the
region with the target symbol. Second, after the target region has been detected using the
P300 wave, the seven symbols in the target region will be distributed among the seven
regions (one symbol per region). Flashing these seven regions again will enable the
identification of the target symbol. The challenges mentioned in the pervious section (a-e)
were addressed as follows:
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(a) Attentional blink: In the region-based system, the regions can be widely spaced on the
screen, to reduce the error caused by attentional blink.

(b) Repetition blindness: Although the regions are intensified in random order, the time
between intensifications in a region will be set for more than 500ms, to eliminate the
repetition blindness error.

(c) Target probability: The probability of the oddball in this paradigm is 14% (1/7) - less
than that for the Farwell and Donchin paradigm. Lower oddball probability increases P300
amplitude, and has two benefits; it decreases the number of trials required for each
character, thereby increasing the transfer rate, and it makes P300 detection easier, which
increases the accuracy.

(d) Habituation: Habituation in the new speller can be reduced by changing the region
locations on the screen, their background, and other visual effects that create a novelty in the
paradigm. This novelty increases the user’s attention for the later presentation of a new
symbol stimulus.

(e) Row/column error sensitivity: This speller has no row/column error sensitivity.
Although it has a two-level error sensitivity, a “backup” word can be displayed (as the
eighth region) and flashed at the beginning of the second level. If the region is not detected
correctly at the first level, the user can go back to the first level by focusing on a region that
is considered for “backup” (not shown in Figure 5).

Furthermore, the new region-based P300 BCI speller has several new features:

(f) Number of symbols: The total number of symbols has increased from 36 to 49.

(g) User selection: The user can choose several parameters, including region locations,
region shapes, and background colors.

(h) Adaptive detection: This is one of the most important features of the proposed P300-
based BCI. The objective is to design a system which adapts to the user’s performance. In
general, when a user has significant response (e.g., when the P300 amplitude is high), fewer
trial repetitions, channels, and features are needed for a correct decision (P300 detection).

TS N

L
F G M N O P

() (b)
Fig. 5. The region-based paradigm. a) The first level of intensification, each group contains
up to 7 characters. b) One of the regions is expanded in the second level.
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To evaluate the new paradigm, a data set was recorded from 10 subjects (20-29 years, 2
females). Before each experiment the procedure was explained to the subjects and they
signed the informed consent approved by the Ethics Board. Subjects were seated on a chair
in front of the screen and asked to be relaxed and avoid moving as much as possible during
the experiments. Two paradigms were presented to all subjects. They were asked to spell
“P3A”. Therefore, EEG signals for total of 30 characters for each paradigm were collected.
They were recorded across midline recording sites of Fz, Cz, and Pz referenced to the left
mastoid with a forehead ground. EEG signals were sampled at 500 Hz.

The results for the new data set and for the Farwell-Donchin paradigm and the new
paradigm are shown in Table 2 and Table 3, respectively (Abhari & Fazel-Rezai, 2006). Table
2 shows in 22 error cases out of 60 cases. However, this error was reduced to 11 out of 60
cases in a region-based paradigm (Table 3), that is 50% improvement in the accuracy.

Target character — p 3 A
Target column/row — 4 | 3 5 ‘ 5 1 | 1 Total Error
Subject Detected column/ oW

1 4 2
2 1 1 2
3 4 T 11 3
4 4 1 1 1
5 5 1 1 2
6 > BN s 1 AN s
7 5 5 1 | 3
8 3 e s 3
9 4 3 5 5 2
10 4 3 5 1 1

Total Error 5 | 3 6 1 | 3 | 4 22

Table 2. Detected and target regions in spelling “P3A” using Donchin-Farwell paradigm.
Target character — P 3 A
Target region — 3 | 2 5 l 1 1 | 1 Total Error
Subject Detected region

1 5 1 1 1 2
2 3 5 1 1 1 1
3 3 e 5 1 1 1 1
4 3 2 5 1 1 1 0
5 3 2 [ 1 1 1 1
6 2 5 1 1 1 1
7 3 2 1 BN 1 2
8 3 1 1 1 2
9 3 2 5 1 1 1 0
10 3.2 H 1 11 1

Total Error 2 | 4 4 0| 1 ] 0 11

Table 3. Detected and target regions in spelling “P3A” using 7-region paradigm.

www.intechopen.com



P300-Based Speller Brain-Computer Interface 147

5. Conclusion

In this chapter, different components and types of BCI systems were discussed briefly and
P300-based BCI was discussed in more details. In order to reveal the possible sources of
error in the P300-BCI paradigm, an analysis was presented. It showed that in the Farwell-
Donchin paradigm, the majority of error cases happened when a row/column adjacent to
the target row/column is detected. Therefore, in the design of any new P300 speller
paradigm this perceptual error should be considered. Then, a new paradigm which is based
on dividing computer screen to different regions was presented. Experimental results of two
paradigms confirmed that the accuracy in the region-based paradigm could be increased. In
addition to higher accuracy, the 7-region paradigm has several advantages. 1) The number
of characters has been increased from 36 to 49. This gives more flexibility to subjects in
spelling a word. 2) The oddball probability in flashing a row/column in Farwell-Donchin is
2/12 or 1/6. This is reduced to 1/7 in the new paradigm. It has been shown that the lower
probability in oddball paradigm results in higher amplitude in the P300 (Donchin et al.,
2000). Therefore, in the new paradigm, P300 amplitude is larger and the detection of the
P300 would be easier. This means that smaller number of flashing is required for a
successful P300 detection that results in a faster P300 speller.
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