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1. Introduction

The wearable robots to support many kinds of movements have been developed for the
elder and disabled people all over the world (Hayashi et al., 2005, Furusho et al., 2007,
Kawamura et al., 1997), because we are facing the elder dominated society. A surface
ElectroMyoGram (EMG) signal, which is measured a little before the start of the movement,
is expected as the trigger signal of movement support.

We have been also developing an EMG controlled intelligent trunk corset, shown in Fig. 1,
to support rollover movement, since it is one of the most important activities of daily living
(ADL). Especially, the rollover movement of bone cancer metastasis patients is focused as
the target movement. The bone cancer metastasis patients feel sever pain when they conduct
the rollover movement. The core of the intelligent trunk corset system is a pneumatic rubber
muscle that is operated by the EMG signals from the trunk muscle. As shown in Fig. 2, in
our study, we first analyzed the EMG signal (Ando et al., 2007) that is used as the input
signal for the intelligent corset to recognize a rollover movement. Second, we proposed an
original neural network algorithm to recognize the rollover quickly and with high accuracy
(Ando et al., 2008a). Finally, we developed the mechanisms of the intelligent corset to assist
rollover movement using the pneumatic rubber actuator (Ando et al., 2008b).

In this chapter, the proposed original neural network, called the Micro-Macro Neural
Network (MMNN), is introduced. In addition, the methodology to determine the optimal
structure of the MMNN to recognize the rollover movement is established. This paper is
organized as follows; Section 2 summarizes the related neural network to recognize some
movements based on the EMG signal. Section 3 discusses the traditional neural network
known as Time Delay Neural Network (TDNN) and MMNN structures, Section 4 establish
the methodology to determine the optimal structure of MMNN, and the rollover recognition
result using the optimal MMNN is compared with that using traditional TDNN. Section 5
presents a summary and future work.
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2 Recent Advances in Biomedical Engineering

2. Related neural network to recognize movement using EMG signal

Since the recognition of rollover is based on noisy and complex EMG signals, a highly
robust system that is unaffected by the possible misalignment of electrodes, individual
differences, or surrounding electrical conditions is necessary to recognize EMG signals
accurately. A Neural Network (NN) is one of the learning machines that use EMG signals to
recognize movement (Kuribayashi et al., 1992, Fukuda et al., 1999, Wang et al., 2002, Kiguchi
et al,, 2003, Hou et al., 2004, Zecca et al., 2002). NN is capable of nonlinear mapping,
generalization, and adaptive learning. There are generally two kinds of NN that recognize a
time series-signal. One is the Time Delay Neural Network (TDNN) (Waibel, 1989), in which
a delay is introduced in the network and past data (the data collected before the current
measurement point) is set as the input signal of the network. The other is the Recurrent
Neural Network (RNN) (Kelly et al., 1990, Tsuji et al., 1999), which uses feedback from the
output signal of the output layer as the input signal of the input layer. To avoid needless
time-stretch properties and to reduce calculation amounts and costs, we selected TDNN as
the base neural network for the work reported here.

Many researchers have used TDNN to recognize movements from EMG signals. For example,
Hincapie et al. (Hincapie et al., 2004) estimated the movement of the affected side of a patient
by using EMG data of the unaffected side in their development of a prosthetic upper limb.
Hirakawa et al. (Hirakawa et al, 1989) and Farry et al. (Farry et al., 1996) recognized
movement using frequency domain information of the EMG signal. Huang et al. (Huang et al.,
1999) proposed the feature vector, composed of an integrated EMG, Zero Crossing and
variance, to recognize eight-finger movement. Finally, Nishikawa et al. (Nishizawa et al., 1999)
recognized ten kinds of movements using a Gabor-transformed EMG signal.

Fig. 1. Intelligent trunk corset to support rollover movement
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Fig. 2. Concept of the intelligent corset using EMG signal, original neural network and
pneumatic actuator.

However, all of these related research efforts share two common problems, which are slow
response time and incorrect recognition of the movement. Consequently, we previously
proposed the original algorithm called the Micro Macro Neural Network (MMNN),
composed of the Micro Part, which detects a rapid change in the strength of the EMG signal,
and the Macro Part, which detects the tendency of the EMG signal toward a continuing
increase or continuing decrease, to improve the response time and accurate recognition of
the rollover movement based on the EMG signal as input. However, the methodology to
design or optimize the structure of the MMNN is not established, because there are many
parameters to determine the structure of the MMNN.

3. Micro - Macro Neural Network (MMNN)

3.1 Traditional Time Delay Neural Network

For the learning machine in this research, we selected the three-layer feed-forward type of
Time Delay Neural Network (TDNN) as the structure of the network and the back
propagation (BP) method with a momentum term as the leaning algorithm, which is a
standard neural network to recognize time-series signals. In addition, we selected the
sequential adjustment method to modify the weight and threshold of each unit. The
relations between each pair of units in the TDNN are shown in (1), (2), and (3).

My

net!" = Z a);’xf_l +0" 1)
X = f(net?) ©
f(net) =1/(1+ exp(—u,net)) €)
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4 Recent Advances in Biomedical Engineering

where m = 2 and 3, i = 1,...,n, ny is the number of the mth layer unit, @™ is the weight
between the (m-1)th layer’s ith unit and the mth layer’s jth unit, x ; i is the output of the mth
layer’s ith unit, @ is the threshold in the mth layer’s ith unit, and uy is the constant to decide
the gradient of the sigmoid function.

In this study, the number of input layer units was typically 75, and, that is, the input of the
input layer was EMG signals, semg (t-i) (i=0,1,...,74). In other words, the time it took the
TDNN system to recognize the rollover movement from the inputted EMG data was 0.075
(msec) (Zecca et al., 2002).

3.2 Concept of Micro-Macro Neural Network

Using TDNN, previous researchers focused on upper limb movement, which is a relatively
fast movement. Since the movement takes only a short time, less time-series EMG data is
inputted into the system. The advantage of this short data length is that there are fewer
calculations to be done and, therefore, less cost; the disadvantage is that less input data
means more false recognitions.

We focused on the rollover movement, which is a relatively slow movement. Since the
movement takes a relatively long time, it is possible to have more time-series EMG data
inputted into the system.

We checked the impact of past time-series EMG data using TDNN on the recognition result.
The structure of TDNN was as follows: the number of input layer units was 1700, the
number of hidden layer units was 850, and the number of output layer units was 1. We
determined the number of input units as 1700 based on our EMG experiment (Ando et al,,
2007), which showed that the shortest time spent on rollover was 1.7 (sec) without taking
into account the time for any previous rollover movement.

To check the importance of each unit in TDNN, the contribution rate of the weight of each
input unit was calculated by (4).

Rcontributi(m (l) = L X 100 (4)

where Reontribution(i) is the contribution rate of the weight of input unit i, whose data is the
EMG data of i (msec) before the current measured point, N = 1700, m = 2.

As a result, it was found that the weights of units in the range of -1 to -10 (msec) were higher
than those of the other units in TDNN (See Fig. 3). It is natural that the EMG data nearest to
the time of measurement has a large impact on the recognition result. However, it is worth
noting that the contribution rate of the inputted EMG data before -10 (msec) is almost
constant. Even though the importance of data from 10-75 (msec) before is the same as that of
data from 76-1700 (msec) before, the latter data was not used to recognize the rollover
movement in the traditional TDNN (See Section 3.1). Therefore, in the traditional TDNN,
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Fig. 3. Contribution rate as a function of input unit

whose input unit number was 75 (msec), a later response and a higher incidence of false
recognition were evident.

When long past time-series EMG data is used in TDNN, the advantage of this long data
length is that more input data means faster response and less false recognition. The
disadvantage is the large amount of calculations and its cost.

In the proposed Micro Macro Neural Network (MMNN), some of the long past time-series
data was compressed. Therefore, the amount and cost of the calculations do not increase.
The basic concept of the Micro Macro Neural Network (MMNN) is to use the long past time-
series EMG data to discriminate the movement accurately and quickly without increasing
the calculation cost by compressing some of the long past data.

3.3 Structure of the Micro-Macro Neural Network

Basically, we upgraded the traditional TDNN to MMNN (Fig. 4). The most important
feature of MMNN is that it can handle an increased amount of input data to the neural
network without increasing the number of calculations. Traditional TDNN is defined in our

network as the Micro Part. The input data, x! in the Micro Part is defined as following;

micro ”*n

x! =semg (t -n +1) ®)

micro " n
where n =1,2,....,Npyicro, and Nyicro is the number of input unit in Micro part

As can be seen in Fig. 5, the data for -Ticro < t < 0 is the Micro Part, and the data for —(Tucro +

Thicro ) < t < -Thicro is the Macro Part. In addition, the input data, aero x; in the Macro Part is

divided into several Tarv (msec), and the average rectified value (ARV) of the EMG signal
among the Tary values, calculated by (6), is defined as the input value of the Macro Part.
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t—=nT py

semg (i)
1 _ i:t_(”Z_I:)TARV | (6)

macro”*n

TARV

where n =1,2,....,Nyuacro
Therefore, the number of input units of the Macro Part is expressed by the following
equation:

N = T acro /TARV (7)

macro m

where Ny is the number of input units of the Macro Part.

The relations between each pair of units in both the Macro Part and the Micro Part are
shown in (1), (2), and (3) above.

The output data of the Micro part and Macro part is defined as the input data of the
Integrated Layer. In the Integrated layer, the output signal is calculated using also (1), (2)
and (3).

MMNN
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Fig. 4. Development of MMNN algorithm from TDNN algorithm
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Fig. 5. Micro Macro neural network. Note that MMNN is divided into the Micro Part and
the Macro Part. The Micro Part is TDNN using the data for Tyico as the input signal. The
input data of the Macro Part uses the data for Tyuco, which is the ARV of the EMG signal
among all Tary values.

4. Optimal structure of proposed MMNN and rollover movement recognition

4.1 Objective

The structure of the MMNN is complex, because many parameters determine the structure
of the MMNN. In this section, based on the contribution rate shown in Fig. 3 and an
experiment about rollover recognition using MMNN, the optimal parameters in MMNN are
determined.

4.2 Methodology of rollover recognition experiment

We defined the rollover movement as a continuous movement involving a deliberate change
of posture from a supine position to a lateral or prone position. In this research, rollover
movements were performed thirty times in advance by each of three young, healthy male
subjects. EMG signals obtained from the internal oblique (IO) muscle were selected as the
input signals based on our previous study (Ando et al., 2007). The EMG signals were
sampled at a rate of 1000 (Hz), rectified with a second-order, low-pass filter with a cut-off
frequency of 20 (Hz), and normalized by the 100% maximal voluntary contraction (MVC)
method (Zaman et al., 2005, Kumar et al., 1989), which shows the ratio of muscle activity in
the MVC of the IO muscle to the measured EMG signal (Helen et al., 2002).

As the learning data for every rollover type, 20% of the data (18 out of 90 rollovers - 30 for
each of the three subjects) was randomly selected (Kuribayashi et al., 1992, Fukuda et al.,
1999). The other 80% of the data was used as test data. Because the numbers of learning and
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8 Recent Advances in Biomedical Engineering

test data were small, the k-fold cross validation estimation (k = 5) was used to prevent
degradation of the accuracy based on the selection of learning data.

The time required to recognize the rollover was measured using TDNN. Furthermore, by
synchronizing the EMG data with the data of a 3D motion-capture system, VICON612
(sampling frequency; 100 (Hz) and measurement accuracy; 1 (mm)) , the start of rollover
movement was recognized.

4.3 Evaluation index

The recognition results of the test data were evaluated according to the response by the
indexes presented below.

(1) The response time, tysponse, is the time from the start of the rollover movement to the
recognition of the rollover movement by the neural network .

t =t

response recognition

- tmovement (8)

where tyecognition i the time when the rollover is recognized, and tysvement is the time when the
rollover starts.

(2) Movement recognition rate before starting movement, Pt

Pstare = Nbefore / Niotal (9)

where Pgyt is the ratio of Niegore, the number of times rollover was recognized before the
movement started to N, the total number of rollover movements.

3) Number of false recognition rate, Ny
Npise is the number of times when false recognition occurred, that is, the times that NN
recognized a rollover movement even though no rollover was actually conducted.

4.4 Structure of TDNN and recognition result

As stated above, for the learning machine in this research, we selected the three-layer feed-
forward type NN and the back propagation method with momentum term, which is a
standard neural network for recognizing time-series signals. The number of input layer
units was 75. The unit numbers of the hidden layer and the output layer were 38 and 1,
respectively.

As shown in Fig. 6 (b), when TDNN was used, the recognition results were as follows: tsponse
was -25 (5.D. 59) (msec), Psirr was 38% (138 out of 360 trials), and Ny was 151 out of 360
trials.

4.5 Optimal structure of MMNN and recognition result

The structure of MMNN was resolved based on many parameters.

First, in the Micro Part, which is the traditional TDNN, the number of input layer units was
fixed at 10 (Ticro = 10 (msec) in Fig. 4), because the contribution rates in -1 ~ -10 (msec) are
higher than those at other input times, as shown in Fig. 2. The number of hidden layer units
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was fixed at 5, and the number of output layer units was fixed at 1. The number of hidden
layer units was determined based on the “rule of thumb” as follow;

Nhidden = (Ninput + Noutput) / 2 (10)

where Niidden, Ninput, and Nougur are the numbers of hidden layer, input layer and output layer
units.

Second, the optimal structure of the Macro Part was determined as follows. The value of
Tarv was changed from 5 to 100 (Tarv = 5, 10, 15,...., 100), and the value of Ny, the
number of input layer units, was changed from 5 to 70 (Nyuacro = 5, 10,15,...., 70). Additionally,
according to the rule of thumb, the number of hidden layer units was set at Ny /2 (if
Nyacro was even) or (Nyacro 1)/ 2 (if Niacro was odd). Based on our EMG experiment (Ando et
al., 2007), which showed that the shortest time spent on rollover was 1.7 (msec), we applied
(11) when we calculated the response time for each rollover movement using MMNN,
without taking into account the time for any previous rollover movement.

TARV x Nmucro <1700 - Nmicro (11)
= 1700-10=1690

We obtained the best results for response with changing values of Tary and Nyuco when
Tarv = 40 (sec) and Nyucro = 40. With these conditions, the average fresponse for MMINN was -65
(S.D. 55) (msec). The average tsponse for TDNN was -25 (S.D. 59) (msec). Negative values
mean the rollover was recognized before the movement started. Therefore, the recognition
time of MMNN was 40 (S.D. 49) (msec) faster that that of TDNN.

Furthermore, as shown in Table 1, the Pst was 86% (310 out of 360 times), and N was
only 50 in 360 trials.

Figure 6 shows an example of MMNN (Tary = 40 (msec), Nyucro = 40). When the results of
TDNN in Fig. 6(b) and the MMNN in Fig. 6(c) are compared, the following observations are
clear: TDNN registers a false recognition four times, and, most importantly, the response
speed in recognizing rollover is faster, steadier, and more accurate when MMNN is used
than when TDNN is used.

www.intechopen.com
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Fig. 6. Comparison between recognition of rollover by TDNN and MMNN. Note that TDNN
fails to recognize the rollover at 0-2 (msec) and 5-7 (msec); however, it does recognize the
rollover after the movement starts. In contrast, MMNN recognizes the rollover before the
movement starts. EMG signal data is included for reference.

Neural Network Py % Npuise
TDNN 38 51/360
MMNN 86 150/360

Table 1. Pgartand Npuse of TDNN and MMNN

4.6 Discussion

In Section 4.5, the effectiveness of MMNN in recognizing the rollover is shown in
comparison with the effectiveness of TDNN.

In this section, the output signal of not only optimal MMNN but also the output of the
Micro part and Macro part in the recognition of the rollover movement is discussed to show
the characteristics of MMNN. In other words, first, the number of input layer units in TDNN
was 10, and the input of the input layer was defined to show the characteristics of the Micro
part as EMG signals, semg (t-i) (i=0,1,..., 9). Second, the number of input layer units in TDNN
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was 40, and the input of the input layer was defined to show the characteristics of the Macro
part as the average reflected values among 40 (msec).

Table 2 shows the result of recognition time and the number of the false recognition using
the TDNN (Input: 75 (msec) raw EMG signal), MMNN (Input: 10 (msec) raw EMG and 40
ARV EMG among 40 (msec)), only Micro Part (Input: 10 (msec) raw EMG) in MMNN and
only Macro Part (Input: 40 ARV EMG among 40 (msec)) in MMNN. The response times
using only the Micro part and the Macro part were t,sponse = -50 (S.D. 26) (msec) and tresponse =
1 (S.D. 55) (msec). The number of false recognitions using only the Micro part and only the
Macro part was Nps = 210 (in 360 times) and Njs = 56 (in 360 times).

When the input data was short past time-series data, the response time was short and the
stability of the recognition was low. However, when the input data was the ARV of 40
(msec), the response time became longer and the stability increased.

The response time tyspons did not show a significant difference (p < 0.05) between the
optimized MMNN and TDNN using 10 (msec) time-series data as did the input data, that is,
when using the only Micro part in MMNN. In addition, the number of false recognitions
was almost the same when the number in the optimized MMNN was compared with that in
TDNN using the ARV of 40 (msec), that is, when using the only Macro part in MMNN.
Therefore, the advantages of quick response in the Micro part (See Fig. 7 (b)), and the stable
recognition of the Macro part (See Fig. 7 (c)), are combined in the developed optimal
MMNN. As a result, the MMNN is an NN that features quick response and little false
recognition (See Fig. 7 (d)).

Neural Network Eresponse 1MS€C Niuise
TDNN -25 (S.D. 59) 150/360
(Input: 75 (msec) raw EMG)
MMNN -65 (S.D. 55) 51/360

(Input: 10 (msec) raw EMG and 40 ARV
EMG among 40 (msec))

Only Micro part in MMNN -50 (S.D. 26) 210/360
(Input: 10 (msec) raw EMG)
Only Macro part in MMNN 1 (S.D. 55) 56/360

(Input: 40 ARV EMG among 40 (msec))
Table 2. Features of TDNN, MMNN, and Micro and Macro parts of MMNN
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Fig. 7. Comparison with the output of TDNN, Micro part in MMNN, Macro Part in MMNN
and MMNN. Note that the EMG signal is included for reference as (a). (b) is the output of
Micro part and shows the quick and unstable response. (c) is the output of Macro part and
shows the slow and stable response and (d) is output of MMNN and show quick and stable
response.
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5. Summary and future work

We have been studying patients with cancer bone metastasis who have a very short time to
live. Specifically, we have developed the EMG controlled intelligent corset to support the
rollover movement.

In this paper, we described an original neural network that we developed, called the Micro
Macro Neural Network (MMNN), for the purpose of recognizing and responding to the
rollover movement based on inputted EMG signals.

First, the structure of the MMNN was optimized with Nyico = 10 in the Micro part and Nyacro
= 40 and Tarv = 40 in the Macro part, and then the response and accuracy of the MMNN
were analyzed. After that, the response and accuracy of the optimized MMNN in
recognizing the rollover movement were compared with those of the traditional TDNN.
Test results showed that recognition in MMNN was 40 (S.D. 49) (msec), which is quicker
than the recognition in TDNN. Additionally, the number of false recognitions in MMNN
was only one third of those in TDNN. Hence, we can verify that our MMNN is effective and
useful in recognizing rollover based on inputted EMG signals, which are noisy and vary
considerably from individual to individual. In addition, by comparing the recognition
results of only the Micro part and only the Macro part, we found that the advantages of
quick response in the Micro part and stable recognition in the Macro part are features of
MMNN.

In the future, we will incorporate MMNN into our rollover support system that uses
pneumatic rubber muscles, and then we will test the effectiveness of the total system in
clinical tests with cancer patients in terminal care.
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