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1. Introduction

Recently, recognition of web documents and characters in natural scenes has emerged as a
hot, demanding research field (Doermann et al, 2003). In particular, recognition of
characters in scene images with a wide variety of image degradations and complex
backgrounds poses the following two key problems.

The first problem is figure-ground discrimination (Herault & Horaud, 1993) or correct
binarization of color characters in scene images as a crucial step to the success of subsequent
recognition. Most of the binarization methods are based on global, local/adaptive or multi-
stage selection of threshold (Trier & Jain, 1995; Wolf et al., 2002; Wu & Amin, 2003).
However, color-based binarization has not yet been fully addressed (Miene at al., 2001).

The second problem is distortion-tolerant character recognition under the condition of a
small sample size because there is only a limited quantity of data against a wide variety of
fonts and image degradations. Hence, we cannot make good use of statistical pattern
recognition techniques, including sophisticated discriminant functions, neural networks,
support vector machines or kernel methods.

Regarding the first problem we propose three promising approaches. The first approach is
application of genetic algorithms (GA) to a combinatorial problem of determining an
optimal filter sequence that correctly binarizes an input image (Kohmura & Wakahara,
2006). The filter bank contains a number of typical image processing filters as applied to one
of the RGB color planes and logical/arithmetic operations between two color planes. The
second approach is selection of a maximum separability axis in the RGB color space and an
appropriate threshold on the axis for binarizing an input image as the two-category
classification problem (Yokobayashi & Wakahara, 2006). Here, the key idea for solving this
problem is application of the Otsu’s criterion (Otsu, 1979) to the distribution of color pixels
of the input image projected onto every possible axis in the RGB color space. The third
approach is application of K-means clustering in the HSI color space to color pixels of the
input image, generation of temporally binarized images via every dichotomization of K
clusters, and their classification into two categories: character and non-character (Kato &

www.intechopen.com



378 Pattern Recognition

Wakahara, 2009). Here, a character vs. non-character classification is effectively
implemented by support vector machines (SVM).

Regarding the second problem we try to make use of elastic image matching techniques
(Uchida & Sakoe, 2005). Here, we apply two kinds of distortion-tolerant template matching
based on the deterministic character deformation models. The first one is our global affine
transformation (GAT) correlation technique (Wakahara et al., 2001). The GAT correlation
absorbs distortion expressible by affine transformation by determining optimal affine
parameters that maximize a normalized cross-correlation value between an affine-
transformed input image and a template. In particular, image matching by means of
normalized cross-correlation was shown to be robust against image blurring and additive
random noise (Sato, 2000). The second one is the well-known tangent distance (TD) (Simard
et al., 1993). The tangent distance absorbs distortion expressible by a linear combination of
predefined geometric and topographical transformations as applied to both an input image
and each template.

We show experimental results made on the public ICDAR 2003 robust OCR dataset (ICDAR
Datasets, 2003) containing a wide variety of single-character images in natural scenes.

In Section 2, we explain ICDAR 2003 robust OCR dataset. Section 3 proposes three kinds of
techniques for figure-ground discrimination or correct binarization of color characters in
scene images. In Section 4, we describe two competing techniques of distortion-tolerant
image matching for recognizing binarized characters. Section 5 shows experimental results.
Section 6 is devoted to discussion and future work.

2. ICDAR 2003 robust OCR dataset

Several datasets used in ICDAR 2003 robust reading competitions (Lucas et al., 2003) are
available for download from the website (ICDAR Datasets, 2003). We use the robust OCR
dataset containing JPEG single-character images in natural scenes. In particular, we select a
total of 698 images from “Sample” subset.

Figure 1 shows examples of images with a variety of image degradations and complex
backgrounds.

Waril A

Fig. 1. Examples of images used in our experiments.

3. Figure-ground discrimination of color characters in scene images

In this section, we propose three kinds of techniques for figure-ground discrimination or
correct binarization of color characters: determination of an optimal sequence of filters for
binarization using GA, binarization using a maximum separability axis in a color space, and
K-means clustering in a color space and figure-ground discrimination by SVM.
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3.1 Determination of an optimal sequence of filters for binarization using GA

This technique is for binarization of color characters in scene images using genetic
algorithms (GA) to search for an optimal sequence of filters through a filter bank. The filter
bank contains simple image processing filters as applied to one of the RGB color planes and
logical/arithmetic operations between two color planes. First, we classify images extracted
from the ICDAR 2003 robust OCR dataset into several groups according to degradation
categories. Then, in the training stage, by selecting training samples from each degradation
category we apply GA to the combinatorial optimization problem of determining a filter
sequence that maximizes the average fitness value calculated between the filtered training
samples and their respective target images ideally binarized by humans. Finally, in the
testing stage, we apply the optimal filter sequence to binarization of remaining test samples.

3.1.1 Grouping of character images according to degradation categories

By carefully examining a total of 698 images from “Sample” subset we classified them into
six groups according to degradation categories: clear, background with pattern, character
with pattern, character with rims, blurring, and nonuniform lighting. The criterion upon
how to classify degradation categories is rather subjective just to show a wide variety of
binarization problems. In practical application degradation categories should be selected
automatically, and, also, it is necessary to automatically decide which degradation category
a given input image belongs to.

Figure 2 shows examples of images in six degradation categories.

@ () (©) @ @ (H
Fig. 2. Examples of images in six degradation categories. (a) Clear. (b) Background with
pattern. (c) Character with pattern. (d) Character with rims. (e) Blurring. (f) Nonuniform
lighting.

3.1.2 Image transformation by a sequence of filters and filter bank

Figure 3 shows a total flow of image transformation using a sequence of filters as applied to
an original image so that a filtered image approximates its target image ideally binarized by
humans as closely as possible.

We use GA in search of an optimal sequence of filters, equivalent to the image
transformation L*, while L specifies the ideal binarization. The degree of approximation of
L*to L is evaluated in terms of the fitness value calculated between target and filtered
images.

Table 1 shows a list of filters in our filter bank. These filters are not sophisticated but rather
primitive ones (Gonzalez & Woods, 2000).
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Fig. 3. Total flow of image transformation by a sequence of filters.

No. Filter name Function
1 Mean local mean in a 3x3 window
2 Min local min in a 3x3 window
3 Max local max in a 3x3 window
4 Sobel (1) horizontal differential
5 Sobel (2) vertical differential
6 Sobel (3) the norm of differential
7 LightEdge Laplacian
8 DarkEdge Laplacian + 255
9 Erosion morphological erosion
10 Dilation morphological dilation
11 Inversion 255 - g; ¢ = pixel value
12 Logical sum max of two color planes
13 Logical product min of two color planes
14 Algebraic sum sum of two color planes - their product / 255
15 Algebraic product | product of two color planes / 255
16 Bounded sum g = sum of two color planes; if g > 255, g = 255
17 Bounded product | product of two color planes - 255; if g <0, g =0

Table 1. List of filters in a filter bank.

Each filtering operation is specified in either of the following two ways.

One way is to select one of one-operand filters from no. 1 to no. 11 and one of the RGB color
planes to which the selected filter is applied. The other way is to select one of two-operand
filters from no. 12 to no. 17 and two of the RGB color planes to which the selected filter is
applied, where the filtering result is overwritten onto either of the two color planes.

Hence, the total number of filtering operations is 3 x 11 plus 6 x 6, and equals sixty nine.
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3.1.3 Gene encoding and specifications of GA

We use GA (Goldberg, 1989) to search for an optimal filter sequence that transforms an
original image so as to yield the maximum fitness value against its target image ideally
binarized by humans. Here, the fitness value serves as a similarity measure.

As described in Section 3.1.2, the total number of filtering operations equals sixty nine. We
specify each filtering operation by an ID number selected from one to sixty nine. Hence, a
filter sequence or a chromosome is encoded as a string of 8-bit integers. Also, we set the
maximum number of constituent filters in a chromosome at 80.

The initial population of 300 is randomly generated. We adopt the roulette selection rule
based on the fitness values in each generation. We use the modified one-point crossover
method that exchanges respective tails with the rate of 80%. Mutation also exchanges every
constituent ID number within a chromosome for a different one with the rate of 0.1%.
Finally, we stop the GA process when the maximal fitness value of an elite chromosome
exceeds the threshold value of 0.9 or when the number of generations arrives at the
predetermined number of 800.

Here, by denoting target and filtered images by T={ Tk (x, y) } and F={ Fk(x, y) } (k =R, G,
B), respectively, we calculate a fitness value, f (T, F), between target and filtered images by

PP IAIACSIRSACSI]
f(T,F)=1- k=R,G.B ’ (1)
3XW_ x Wy x 255
where W, and W, specify width and height of the image, respectively.
Figure 4 shows examples of binarization of training samples belonging to the degradation
category “nonuniform lighting” using an optimal sequence of filters determined via GA.

'f.,"‘q
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(b)

(a)
Fig.4. Examples of binarization of training samples belonging to the degradation category
“nonuniform lighting” using an optimal sequence of filters determined via GA. (a) Input

images. (b) Binarized images.

It is to be noted that this technique provides us with an optimal sequence of filters for
binarization of color characters in each of predetermined degradation categories. In other
words, this technique cannot generate a single, all-purpose filter sequence to deal with a
wide variety of image degradations and complex backgrounds. In this sense, we can say that
this approach is very powerful when we know in advance that all of input images being
considered belong to a particular kind of degradation category.

3.2 Binarization using a maximum separability axis in a color space

This technique is for binarization of color characters in scene images following two steps.
The first step is temporary binarization by selecting one optimal projection axis with a
maximum two-class separability in the RGB color space and an approriate threshold on the

www.intechopen.com



382 Pattern Recognition

axis. Here, we apply Otsu’s criterion to a two-class classification problem. The second step is
figure-ground determination based on the figure-to-ground ratio on the image periphery
and common characteristics that a character pattern should have.

3.2.1 Temporary binarization via Otsu's criterion in the RGB color space

First, color points of all pixels in an input image are projected onto an arbitrarily chosen axis
in the RGB color space. Here, we adopt spherical polar coordinates, (v, 6, ¢), in 3D color
space, and try all axes with angles, (0, @), selected at intervals of one degree, respectively.
Namely, a total of 180 x 180 axes in 3D color space are considered.

Second, for each point distribution on a chosen axis we calculate maximum between-class
separability by setting an optimal threshold according to the Otsu’s binarization technique
(Otsu, 1979). We know that this idea is also based on the well-known Fisher criterion
(Bishop, 2006) as applied to a two-class classification problem. Namely, the between-class
separability, S, is defined as the difference of two means normalized by the averaged
variance on the chosen axis according to

2
m, —m . )
S = % — max for a bisection on the axis. )
c! +0;

Finally, we select the axis that gives the largest between-class separability and the
corresponding threshold for temporary binarization of the input image. Here, from the
viewpoint of figure-ground discrimination it is clear that this binarization result is only
temporary because there are two possibilities of either class being a character.
Figure 5 shows projection of pixels onto a chosen axis in the RGB color space.
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Zenith Angle ¢
Red

Green
Fig. 5. Projection of pixels onto a chosen axis in the RGB color space.

3.2.2 Figure-ground determination using common characteristics of characters
We assume that an input image contains only one character and a character belongs to
alphanumeric characters as shown in Fig. 1.
Granting this assumption, we can enumerate common characteristics that such single-
character images should have as follows.
(1) The majority of pixels on the image periphery belong not to a character but to a
background.
(2) The number of connected components in a character is one except “i” and “j.”
(3) The width of a character is narrower than that of a background.
Based on these common characteristicc we propose a procedure for figure-ground
determination written in a pseudo-code as shown below.
If the figure-to-ground ratio on the image periphery is less than a threshold value of Th, then
consider the present binarized image as the correct one and goto END.
Else if the figure-to-ground ratio on the image periphery is more than the inverse of Th, then
consider the reversed image as the correctly binarized one and goto END.
Else if the width of a figure is narrower than that of a ground, then consider the present
binarized image as the correct one and goto END. Here, we define the width of a figure or
a ground in the image as twice the number of erosion operations (Gonzalez & Woods,
2000) applied to the corresponding region until it vanishes.
Else consider the reversed image as the correctly binarized one and goto END.
END: Select and save only the maximum connected component of the figure and output the
resultant image as the final result of figure-ground discrimination.
Figure 6 shows examples of binarization using a maximum separability axis in a color space.
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(b)
Fig. 6. Examples of binarization using a maximum separability axis in a color space. (a)
Input images. (b) Binarized images.

It is to be noted that this technique assumes that a character in an input image is made up of
color pixels with similar values in the RGB color space and, hence, binarization is handled
correctly as a two-class classification problem using only color information. Therefore, this
technique is not well suited to deal with multi-color characters and/or characters with
nonuniform backgrounds.

3.3 K-means clustering in a color space and figure-ground discrimination by SVM

This technique is for binarization of color characters in scene images following three steps.
The first step applies K-means clustering in the HSI color space to points in an input image,
and, then, generates a set of tentatively binarized images by every possible dichotomization
of a total of K clusters or subimages. The second step calculates the degree of character-
likeness of each tentatively binarized image by SVM in an appropriately chosen feature
space. In advance, SVM is trained to determine whether and to what degree each binarized
image represents a character or non-character. The third step outputs the binarized image
with the maximum degree of character-likeness as an optimal binarization result.

3.3.1 K-means clustering in the HSI color space

First, values of R, G, and B in the RGB color space are converted to values of H, S, and I in
the HSI color space, where H, S, and I represent hue, saturation, and intensity, respectively
(Gonzalez & Woods, 2000). In particular, we scale each value of H, S, and I to range from 0
to 255 as follows.

1 :max(R,G,B), m :min(R,G,B),
if 1=0or I=m then S=0, H =indefinite ,

else S:I_m

x 255, 3)

I-R  I-G I-B
I—m’g I-m’ I-m

if R=1I then hzg(b—g), if G=I then h=§(2+r—b),

r

if B=I then h=§(4+g—r), if h<O then h=h+2n,
H =hx255.
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When an input image of size W, x W, is given, a total of W, x W, points corresponding to

those pixels are scattered in the HSI color space.

Second, K-means clustering is applied to a total of IV, x IV, points in the HSI color space to

generate K clusters, where a number of clusters, K, is determined in advance. The K-means

clustering algorithm or nearest mean reclassification algorithm (Bishop, 2006) is as follows.

Step 1: Select K points at random from a total of W, x W, points scattered in the HSI color
space as initial cluster centers, { u(=0}, (k =1, ..., K). T specifies an iteration number.
Then, assign each of W, x W, points to its nearest cluster center among { u(=0}, (k =1,
..., K), and a set of points assigned to the same cluster center forms one cluster.

Step 2: Compute a mean vector of each cluster and set the mean vector as an update on its
cluster center. Then, T = t + 1, and cluster centers thus updated are denoted by { (@}, (k
=1, ..., K).

Step 3: Each point is re-assigned to a new set according to which is the nearest cluster
center among { ™}, (k=1, ..., K), and each new set of points corresponds to a cluster.
If there is no further change in the grouping of the data points, output the present K
clusters as the clustering result and stop. Otherwise, go to Step 2.

By inverse projection of a set of points forming each cluster in the HSI color space onto a 2D

image plane, respectively, we obtain a total of K subimages the sum of which is equivalent

to the input image.

3.3.2 Generation of tentatively binarized images by dichotomization of K subimages
We dichotomize K subimages into two groups, and set values of pixels belonging to the one
group at 0 (black) and the other group at 255 (white). As a result, we obtain one binarized
image, where black pixels represent figure and white pixels represent background.

By considering every possible dichotomization of K subimages we can generate multiple
tentatively binarized images the total number of which, Npinan, is given by

K-1

Nbina}y = Z KCi = 2K - 29 (4)
i=1

where xC; denotes a binomial coefficient.
Figure 7 shows one example of generation of tentatively binarized images from an input
image.
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"'?
| M
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Fig. 7. One example of generation of tentatively binarized images from an input image. (a)
An input image. (b) K subimages obtained by K-means clustering (K = 5). (c) (2K - 2)
tentatively binarized images.

From Fig.7, it is seen that a correctly binarized image is included in a set of tentatively
binarized images even when a character is represented by multiple colors in the original
input image.

It is to be noted that this technique has the possibility of correctly binarizing multi-color
characters and/or characters with complex backgrounds. However, it is necessary to devise
a means of selecting a correctly binarized image from a set of tentatively binarized images.
Also, the total number of clusters, K, should be large enough to just guarantee that a
correctly binarized image will be included in a set of (2K - 2) tentatively binarized images.

3.3.3 Feature extraction from a binary image for estimating character-likeness

We extract a feature vector from a binary image so that a feature vector should represent a
kind of character-likness as much as possible. Selection of a good feature vector is a clue to
the success of SVM that determines whether and to what degree each binary image
represents a character or non-character in the given feature space.

As preprocessing, position and size normalization is applied to each binary image by using
moments (Casey, 1970). Namely, the center of gravity of black pixels is shifted to the center
of the image, and the second moment around the center of gravity is set at the
predetermined value. Here, we set a size of a preprocessed binary image at 80 x 120 pixels.
Then, we extract three kinds of feature vectors all of which are well-known in the field of
character recognition: mesh feature, direction code histogram feature, and weighted
direction code histogram feature.

Mesh feature:

We divide the input binary image into a total number of 8 x 12 (= 96) square blocks each of
which has a size of 10 x 10 pixels and, then, calculate the percentage of black pixels in each
of blocks. Finally, those measurements together form the 96-dimensional mesh feature
vector.

Direction code histogram feature:

One of 4-directional codes, i.e., H (horizontal), R (right-diagonal), V (vertical), and L (left-
diagonal), is assigned to every contour pixel of black regions. Then, we divide the input
binary image into a total number of 4 x 6 (= 24) square blocks each of which has a size of 20
x 20 pixels. Finally, in each block we count the number of contour pixels assigned to H, R, V,
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and L, respectively, and their measurements together form the 96-dimensional direction
code histogram feature vector.

Weighted direction code histogram feature:

In order to improve robustness against shape distortion we introduce a locally weighted
sum of the direction code histogram feature (Kimura et al., 1997). First, we divide the input
binary image into a total number of 8 x 12 (= 96) square blocks each of which has a size of 10
x 10 pixels. Hence, we obtain the 384-dimensional direction code histogram feature vector.
Then, using a locally weighted sum around each block taken at intervals of two blocks, both
horizontally and vertically, the dimension of the feature vector is reduced from 384 to 96. As
a result, we obtain the 96-dimensional weighted direction code histogram feature vector.
Figure 8 shows a Gaussian mask for generating the weighted direction code histogram
feature.

009 | 017 | .009

.008 | .057 | .108 |.057 | .009

-

19;\1 105 | 017

017 | .105

.009 | .057 | 105 | .057 | .0D9

009 | 017 ) .009

Fig. 8. A Gaussian mask for generating the weighted direction code histogram feature. A
circle denotes the loci of a block around which a locally weighted sum is calculated.

3.3.4 Discrimination between character and non-character via SVM

The support vector machines, SVM, (Vapnik, 2000) map the input feature vectors, x, into a
high-dimensional feature space, @(x), through some nonlinear mapping, chosen a priori. In
this space, an optimal separating hyperplane that maximizes the margin is constructed.

The training data set comprises N input feature vectors x, ..., xn, with corresponding target
values y1, ..., yn where y; € { -1, +1 }, and new data points x are classified according to the

sign of f(x) given by
S0 =20, (®(x)-D(x))-b

N
= Zai Y, K(x,.,x)—b,
i=1

where (@(x)-@D(y)) is an inner product in the high-dimensional feature space, and is replaced
with the kernel function K(x, y) by making use of the kernel trick.

Non negative coefficients { a; } that maximize the margin are determined by solving a
convex quadratic programming problem. The data points { xx } for which coefficients { ax}
are nonzero are called support vectors because they correspond to points that lie on the
maximum margin hyperplanes in the high-dimensional feature space.

®)
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We implemented SVM via SVM/sht (Joachims, 1998), and made use of the following three
kinds of the kernel functions: linear, polynomial, and radial basis functions.

K (x,y)=(x-p), K, (x,p)=(sx(x-p)+c),
[x-y ©
K,(x,y)=exp [—72}
20

where parameter values are set at default ones: s =c=1.0, d =3 and 202 =1.0.

Training data were prepared for the training phase of SVM to discriminate between two
classes of character and non-character as follows.

Training data for the character class:

First, we selected correctly binarized images from a total of (2K - 2) tentatively binarized
images obtained for each of training samples. Secondly, we added a total of 136 available
font sets to the training data.

Training data for the non-character class:

We selected incorrectly binarized images from a total of (2K - 2) tentatively binarized images
obtained for each of training samples.

Figure 9 shows examples of training data for the character and non-character classes.

zAKMg t

3 [ EER

Fig. 9. Examples of training data. Character class (correctly binarized images). (b)
Character class (available fonts). (c) Non character class (incorrectly binarized images).

3.3.5 Selection of correctly binarized image via SVM

For a given color character image a total of (2K - 2) tentatively binarized images are
generated by K-means clustering. Then, feature vectors are extracted from each tentatively
binarized image. Those feature vectors are fed into the trained SVM. SVM outputs the
values of f(x) of Eq. (5), where positive and negative values of f(x) indicate character and
non-character classes, respectively.
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Here, we regard the value of f(x) as estimating the degree of character-likeness, and, also,
assume that the larger the value of f(x) is the more its character-likeness is.

Then, we select a single tentatively binarized image with the maximum value of f(x) among
those of (2K - 2) candidates as an optimal binarization result.

It is to be noted that this technique tackles the problem of how to discriminate between
character and non-character using SVM in the high-dimensional feature space based not on
deterministic but on probabilistic means. In particular, this technique has a possibility for
correctly binarizing both multi-color characters and/or characters with nonuniform
backgrounds. Of course, K-means clustering in the HSI color space should generate a
sufficient number of subimages for obtaining a successful dichotomization that corresponds
to a correctly binarized image.

4. Distortion-tolerant character recognition as elastic template matching

In this section, we compare two competing techniques of distortion-tolerant template
matching or elastic image matching. The first one is our global affine transformation (GAT)
correlation technique (Wakahara et al., 2001). GAT correlation absorbs distortion expressible
by affine transformation by determining optimal affine parameters that maximize a
normalized cross-correlation value between an affine-transformed input image and a
template. The second one is the well-known tangent distance (TD) (Simard et al., 1993). The
tangent distance absorbs distortion expressible by a linear combination of predefined
geometric and topographical transformations as applied to both an input image and each
template.

First of all, considering that there is only a limited quantity of data against a wide variety of
fonts and image degradations we dare to take the position that only a single template is
provided for each character category.

Here, we use the “HGP Gothic E” font set for 62 alphanumeric characters as templates. As
preprocessing, positon and size normalization together with blurring operation is applied to
each template. We set a size of each preprocessed gray-scale template at 28 x 28 pixels.
Figure 10 shows examples of templates.

048AdGEKDPT

Fig. 10. Examples of templates.

4.1 GAT correlation

This technique provides a computational model for determining optimal affine parameters
that deform an original input image, f, so as to yield the maximum correlation value against
a template image, g.

First, both an input image, f = {f(r)}, and each template, g = {(r)}, are linearly transformed to
take the zero mean and the unit variance. As a result, a normalized cross-correlation value is
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made equal to an inner product (f, g). It is to be noted that image matching by means of
normalized cross-correlation was shown to be robust against image blurring and additive
random noise (Sato, 2000).

We denote the GAT-superimposed input image by Affine[f]. Here, Affine[e] stands for the
operation of affine transformation in the 2D space, defined by a 2 x 2 matrix, A, representing
rotation, scale-change, and shearing, and a 2D translation vector, b:

A=[aoo am]’ b=(b0]. 7)
a, ay b

The objective function ® to maximize the value of (Affine[f], g) is given by

O =(Affine[f1, g) = Affine[ f1(r)xg(r)
=3 f(r)g(F) — maxforAandb, ®)

where F=Ar+b.

Then, to avoid an exhaustive search for optimal A and b, we employ another objective
function ¥ with Gaussian kernels given by

¥=3 > v /(g G(A,b,r.r')
— max for A and b,
where vy :a function of V/ and Vg,

~ 12
|~ -7]

G(A,b,r,r'")=
( r,r") exp( D

J, F=Ar+b,

where the weight function y serves as matching constraints. Also, D controls the spread of
the Gaussian kernel.

Here, we explain how to practically design the values of y and D.

First, y of Eq. (9) is a function of Vf and Vg as matching constraints with the aim of
promoting matching between pixels with the similar gradients. Here, we propose the
concrete form of y given by

Y(V/.Ve) ={ Lo (10
0 otherwise.

where gradients Vf and Vg are quantized into eight directions at intervals of n/4. The
introduction of y into ¥ has an effect that optimal affine transformation forces matched
pixels to have the same gradient direction.

Second, the parameter D of Eq. (9) controls the spread of the Gaussian kernel or the radius
of search area for matching pixels by affine transformation. Hence, a suitable selection of D
is the key to stabilizing the whole matching process. We propose to adaptively determine
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the value of D proir to GAT application according to the disparity of input and template
images in a gradient space as follows.

D:%{Av{min(“r—r'

r

y(V/.Vg) = 1)}

+Ay[min (“r—r’ ;y(Vf,Vg)zl)}},

where Av stands for an averaging operation over either input or template images. Namely,
D is the average minimum distance between two points, one in f and the other in g, with the
same gradient direction.

Now, by setting the derivatives of ¥ with respect to each of six unknown parameters, ago, 401,
a0, a1, bo, and by, equal to zero, respectively, we obtain a set of nonlinear equations. Next, by
using the 0th order approximation that sets A =1 and b = 0 in the Gaussian kernel, we have a
set of simultaneous linear equations. Finally, we solve these simultaneous linear equations
by conventional techniques and obtain a sub-optimal solution of A and b.

In order to obtain the true optimal GAT of Eq. (8), we use the successive iteration method by
iteratively updating the input gray-scale image by sub-optimal affine parameters of Eq. (9)
until the value of @ arrives at a maximum.

4.2 Tangent distance

This technique encourages invariance of distance-based methods to a set of predefined
transformations, which realizes distortion-torelant template matching.

Concretely, by using a set of predefined geometric or topographical transformations
applicable to an input image, f, and each template, g, we generate a tangent vector
corresponding to each geometric or topographical transformation. Here, it is to be noted that
all elements of both input/template images and tangent vectors are gray-scale values in the
image plane.

The tangent distance, Dr(f, g), is calculated as the minimum distance between two hyper-
planes expanded by a set of tangent vectors around input and template images given by

f-%

2

D.(f.8)= mfm 12)

~

f=f+T,a,, g=g+Ta,,

where matrices T and Tg have their corresponding tangent vectors as column vectors. Also,
ar and ag represent expansion coefficient vectors.

Tangent vectors are obtained via convolution between input/template images and Gaussian
tilters operated in advance by corresponding geometric or topographical transformations.
Here, 2D Gaussian filters are given by
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G, (r)=exp [ "2rc||2] , (13)

where the value of o was set at 6 = 0.7, and the size of a convolution mask was 19 x 19.

We deal with seven kinds of geometric or topographical transformations: X-translation, Y-
translation, rotation, scaling, parallel hyperbolic transformation, diagonal hyperbolic
transformation, and thickening (Simard et al., 1993).

Figure 11 shows examples of tangent vectors.

Fig. 11. Examples of tangent vectors. (a) X-translation. (b) Y-translation. (c) Rotation. (d)
Scaling. (e) Parallel hyperbolic transformation. (f) Diagonal hyperbolic transformation. (g)
Thickening.

5. Experimental results

In this section, we show two kinds of experimental results using ICDAR 2003 robust OCR
dataset: figure-ground discrimination of color characters in scene images and distortion-
torelant character recognition as elastic template matching.

5.1 Abilities of figure-ground discrimination of color characters in scene images
Determination of an optimal sequence of filters for binarization using GA:

Figure 12 shows examples of binarization results obtained for both training and test samples
in all of six degradation categories.

From Fig. 12, it is found that binarization of test samples is remarkably successful even if
embedded characters in training and test samples are totally different in shape.

Moreover, In order to evaluate the ability of binarization in a more quantitative manner, we
calculated a normalized cross-correlation value between optimally filtered images and their
respective target images ideally binarized by humans.

Figure 13 shows relations between average correlation values and image degradation
categories obtained from both training and test samples against their target images.

From Fig. 13, it is found that optimal sequences of filters determined by GA have the
marked ability to achieve a fairly high correlation value, more than 0.9, between filtered and
target images against most of all image degradation categories.
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These results show clearly that we can select the optimal filter sequence for binalization of a
given image if its degradation category is automatically determined. In other words, when
we deal with the case where the cause of degradation is found to be unique and specific, this
technique for binarization using the optimal filter sequence is expected to be very powerful.

Group Training samples Test samples

o BallN WmBe

- ItHa EENo
IOHN

Fig. 12. Examples of binarization results. (a) Clear. (b) Background with pattern. (c)
Character with pattern. (d) Character with rims. (e) Blurring. (f) Nonuniform lighting.
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‘ B Traning samples & Test Samples

Correlation values

(@) (b) ©) (d) (€) (f)

Image degradation category

Fig. 13. Relations between correlation values and image degradation categories. (a) Clear.
(b) Background with pattern. (c) Character with pattern. (d) Character with rims. (e)
Blurring. (f) Nonuniform lighting.

Binarization using a maximum separability axis in a color space:

Table 2 shows rates of successful and unsuccessful binarization.

Figure 14 shows examples of unsuccessful figure-ground discrimination.

From Table 2 and Fig. 14, it is found that the task of temporary binarization poses a more
serious problem than that of figure-ground determination does.

Results Rates
Successful binarization 75.3%
Unsuccessful temporary binarization 17.5%
Unsuccessful figure-ground determination 7.2%

Table 2. Rates of successful and unsuccessful binarization.

< mi

Fig. 14. Examples of unsuccessful figure-ground discrimination. ( Unsuccessful temporary
binarization. (b) Unsuccessful figure-ground determination.
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K-means clustering in a color space and figure-ground discrimination by SVM:

The number of clusters, K, in the K-means clustering was set at 5, and, hence, a total number
of tentatively binarized images was 30 (= 25 - 2).

First, we evaluated the ability of discrimination between character and non-character via
SVM using three kinds of feature vectors extracted from tentatively binarized images. Here,
we adopted the technique of S-fold cross-varidation (Bishop, 2006), which allows a
proportion (S-1)/S of the available data to be used for training while making use of all of
the data to assess performance. We set at the value of S at 10.

Based on evaluation of false reject/acceptance rates (FRR, FAR) according to the sign of f(x)
of Eq. (5), we found that the radial basis function (RBF) as a kernel function of SVM
achieved the minimum sum of FRR and FAR.

Figure 15 shows the distribution of SVM outputs for test samples using the RBF kernel and
the weighted direction code histogram feature.

m Character m Non-character

2500

2000

1500

1000

Occurrences

500

0
-40 -80 -20 -1.0 0.0 1.0 20 29

SVM outputs

Fig.15. Distribution of SVM outputs for test samples using the RBF kernel and the weighted
direction code histogram feature.

Figure 16 shows ROC (Receiver Operating Characteristic) curves obtained by moving a
threshold for discrimination between character and non-character on the SVM output.

From Fig. 16, it is found that SVM fed with the weighted direction code histogram feature is
the top of the three feature vectors and achieved the minimum equal error rate, EER, of 6.2%.
Next, we investigated the ability of selecting a correctly binarized image from a total of 30
tentatively binarized images based on the values of SVM outputs. Here, we selected the
binarized image with the maximum value of SVM outputs as an optimal binarization result.
Namely, a total of 30 candidate binary images were arranged in the decreasing order of
SVM outputs, and the top one was selected as a correctly binarized image.
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Fig.16. ROC curves obtained for three kinds of feature vectors via SVM with the RBF kernel.

Figure 17 shows cumulative binarization rates via SVM. The kth cumulative binarization
rate is an average rate at which the top k candidate binary images contain a correctly
binarized image.

From Fig. 17, it is found that the correct binarization rate or the 1st cumulative binarization
rate is 92.2%, and the 7th cumulative binarization rate is over 99.0%.

100 W Y
99

98 el

97

96 ,/
95
o /
93
0 4
91
90

Cumurative binarization rates [%)]

1 6 11 16 21 26
Candidate order

Fig.17. Cumulative binarization rates via SVM.

5.2 Abilities of distortion-tolerant character recognition as elastic template matching
In this subsection, we show results of distortion-tolerant recognition of correlctly binarized
characters by the GAT correlation and the tangent distance (Wakahara, 2008).
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Input images were normarized with respect to position and size, and were set at a size of 28
x 28 pixels. The matching measure of the GAT correlation is a normalized cross-correlation
value, while the matching measure of the tangent distance is a pixelwise distance in gray-
scale values, as described in Section 4. The dimension of a feature vector is 28 x 28. It is to be
noted that f(r) and g(r) in the GAT correlation can be any features extracted from images as
far as they are a function of 2D loci vectors, r. On the other hand, the tangent distance can
use no features besides gray-scale values.

Table 3 shows recognition rates for correctly binarized characters. The matching measure of
simple correlation is a normalized cross-correlation value calculated between an input
image and each template. Moreover, in the GAT correlation, we tried the well-known
gradient features for correlation matching. Here, the dimenstion of a gradient feature vector
is 28 x 28 x 8, where an original 2D gray-scale image is decomposed into eight gradient
images calculated along the direction at intervals of ©/8.

Methods Recognition rates (%)
Simple correlation (gray-scale values) 80.4
GAT correlation (gray-scale values) 90.3
GAT correlation (gradient values) 94.1
Tangent distance (gray-scale values) 91.6

Table 3. Recognition rates for correctly binarized characters.

From Table 3, it is first found that both GAT correlation and tangent distance reduced the
error rate of the simple correlation more than by half. Secondly, it is found that the use of
gradient features in GAT correlation improved the recognition accuracy markedly.

Figure 18 shows examples of correctly recognized and misrecognized images by both of
GAT correlation and tangent distance.

FWeALt NaEK.

Fig. 18. Examples of correctly recognized and misrecognized images by both of GAT
correlation and tangent distance. (a) Correctly recognized. (b) Misrecognized.

Furthermore, in order to evaluate the robustness of GAT correlation and tangent distance
against rotation which cannot be compensated by position and size normalization, we fed
each of recognizers with artificially rotated templates to be matched against upright
templates.

Figure 19 shows relations between rotation angles and mean of normalized cross-correlation
values, where elastic image matching was performed between each upright template and
their artificially rotated templates from -45 degrees to +45 degrees at intervals of 5 degrees.
From Fig. 19, it is clear that the GAT correlation is superior to the tangent distance in
robustness against rotation at an angle of more than 20 degrees.

www.intechopen.com



398 Pattern Recognition
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Fig. 19. Relations between rotation angles and mean of normalized cross-correlation values.

6. Discussion and future work

We tackled two challenging problems: figure-ground discrimination or correct binarization
of color characters in scene images as a crucial step to the success of subsequent recognition,
and distortion-tolerant character recognition under the condition of a small sample size.
Regarding the first problem, we proposed three kinds of techniques. Although each of three
techniques showed promising preliminary results, we dare to enumerate their weak points,
respectively, as follows.
The first technique of generating an optimal sequence of filters for binarization using GA
had the following two disadvantages: not automatic but manual selection of degradation
categories and the limited ability against a wide variety of complex backgrounds even if the
degradation category is specified.
The second technique of using a maximum separability axis in a color space based on Otsu's
criterion had also one major disadvantage: the insufficient adaptability to multi-color
characters and/or characters with nonuniform backgrounds.
The third technique of using K-means clustering in a color space and figure-ground
discrimination by SVM showed the most promising preliminary results mainly because of
its potential ability to deal with multi-color characters and/or characters with nonuniform,
complex backgrounds.
Hence, we enumerate several issues concerning the third technique of using K-means
clustering in a color space and figure-ground discrimination by SVM still need to be
addressed.

(1) Adaptive and stable determination of the optimal number of clusters in K-means

clustering,
(2) Selection of more efficient feature vectors for evaluating character-likeness, and
(3) Systematic expansion of training data in SVM using a kind of degradation or
deformation models.
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Regarding the second problem, we compared two competing techniques as elastic template
matching: GAT correlation and tangent distance. Although both of them achieved
recognition rates of more than 90% for correctly binarized characters, the recognition
accuracy still needs to be much improved to meet the practical demands of the market.
From this viewpoint, the following issues remain to be solved.

(1) Appropriate selection of multiple templates per category, and

(2) Cooperation between distortion-tolerant template matching and statistical pattern

recognition techniques.

Finally, it is necessary and interesting to extend and apply techniques of recognizing single-
character images to recognition of character strings in scene images.
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