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1. Introduction

Undoubtedly, Markov Random Fields (MRF) define a powerful mathematical tool for
contextual modelling of spatial data. With advances in probability and statistics
(Hammersley & Clifford, 1971), as the development of Markov Chain Monte Carlo (MCMC)
simulation techniques (Metropolis et al., 1953; Geman & Geman, 1984; Swendsen & Wang,
1987; Wolff, 1989) and relaxation algorithms for combinatorial optimization (Besag, 1986;
Marroquin et al., 1987; Yu & Berthod, 1995), MRF's became a central topic in fields including
image processing, computer vision and pattern recognition. In this chapter, we are
concerned with the multispectral image contextual classification problem. A Bayesian
approach is used to combine two MRF models: a Gaussian Markov Random Field (GMRF)
for the observations (likelihood) and a Potts model for the a priori knowledge. Hence, the
problem is stated according to a Maximum a Posteriori (MAP) framework.

One of the main difficulties in contextual classification using a MAP-MRF approach relies on
the MRF parameter estimation stage. Traditional methods, as Maximum Likelihood (ML),
cannot be applied due to the existence of a partition function in the joint Gibbs distribution,
which is computationally intractable. A solution proposed by Besag to surmount this
problem is to use the local conditional density functions (LCDF) to perform maximum
pseudo-likelihood (MPL) estimation (Besag, 1974). The main motivation for employing this
approach is that MPL estimation is a computationally feasible method. Besides, from a
statistical perspective, MPL estimators have a series of desirable and interesting properties,
such as consistency and asymptotic normality (Jensen & Kiinsh, 1994). However, a serious
limitation of contextual classification has been the wuse of extremely restricted
neighbourhood systems. Actually, traditional methods often consider only first-order
neighbourhood systems.

The main motivation for this chapter is to discuss the incorporation of higher-order
neighbourhood systems in MRF models, since among several drawbacks existing in
classification problems, the lack of an accurate contextual modelling is definitely a major
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224 Pattern Recognition

one, especially when we are dealing with real image data, often degraded by noise. And,
with the introduction of higher-order systems, novel, robust and suitable parameter
estimation methods are also required. This chapter presents a novel framework for Bayesian
image contextual classification through the definition of statistical inference and parameter
estimation techniques in higher-order systems. Pseudo-likelihood equations for both Potts
and GMRF models are presented and analysed using asymptotic evaluations and MCMC
simulation algorithms. Two combinatorial optimization algorithms for MAP-MRF
contextual classification are described and compared: Iterated Conditional Modes (ICM) and
Maximizer of the Posterior Marginals (MPM). Experiments on real Nuclear Magnetic
Resonance (NMR) images illustrate the proposed methodology.

The remaining of this chapter is organized as follows: Section 2 introduces the reader to the
combined GMRF + Potts MRF model for contextual classification and discusses how to
perform parameter estimation using the maximum pseudo-likelihood approach. In Section 3
we present asymptotic evaluations to assess the accuracy of MPL estimation by means of
approximations for the MPL estimators’ variances. Section 4 introduces the combinatorial
optimization algorithms for contextual classification. Section 5 discusses metrics for
quantitative performance evaluation, more precisely Cohen’s Kappa coefficient. Section 6
shows results of the proposed classification methodology on real multispectral magnetic
resonance images. Finally, Section 7 presents the conclusions and final remarks.

2. MAP-MRF Contextual Classification
(p)

w

Let x. ' be the label field representing the classification map at the p-th iteration, y the
observed multispectral image, 6 the vector of GMRF hyperparameters, @ the vector of
GMRF spectral parameters for each class (p,,, X,) and S the Potts MRF model

hyperparameter. Considering a multispectral GMRF model for the observations and a Potts
model for the a priori knowledge, according to the Bayes’ rule, the current label of pixel

(i, ]) can be iteratively updated by choosing the label that maximizes the functional
(Yamazaki & Gingras, 1996):

T
1 ., 1 .| AT act | » 51
Q(xij:mlng),y,g,q,,ﬂ):__ln Em|——{yij—ﬂm|:9 y,,..—2(230f)”m}} z,

2 ) 1] ct (1)

~ | AT Act |~ 5
x {yij — [6 Yo~ 2(§9c )”m }} + U, (m)
where 6 is a diagonal matrix whose elements are the horizontal, vertical and diagonals
hyperparameters (4 x 4), ct=1,...,K, where K is the number of bands, éT is a matrix

build by stacking the 6 diagonal matrices from each image band (4 x 4K), that is,

o7 = [éCtl,éCtz,...,éCtK} and Y, isa vector whose elements are defined as the sum of the
i
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two neighbouring elements on each direction (horizontal, vertical and diagonals) for all the
image bands (4K x 1).

2.1 MPL Estimation for GMRF model parameters

As the proposed model for contextual classification of multispectral images assumes
independency between different image bands, it is quite reasonable to perform MPL
estimation in each image band separately. Assuming this hypothesis and considering a
second-order neighbourhood system, the pseudo-likelihood equation for the GMRF
hyperparameters becomes (Won & Gray, 2004):

1

1 2
log PL (6, i, 02) = (i%;,W {— E log (27r0'2 ) - F [y,-]- - HT‘I’Z']' —H (1 - 291):| } @)

where W represents an image band, BT = [01,02,03,04] is the hyperparameters vector

and W = [(%41]' tYiaj ) , (yij+1 *Yija ) , (%‘+1j—1 Y14 ) ’ (%’-1]'—1 tYivj4 ):| - Fortunately,
the MPL estimator of 6 admits a closed solution, given by (Won & Gray, 2004):

1
0= { > (yij—ﬁ)‘i’i? ]{ > W ] ®)
(i.]) (i,j)ew

- 1
where £ is the sample mean of the image pixels, 1111-]- = ‘Ifl-j N 2 W, and N is the
(k)

number of image pixels.

2.2 MPL Estimation for Potts MRF model parameter

One of the most widely used prior models in Bayesian image modelling is the Potts MRF
pair-wise interaction (PWI) model. Two fundamental characteristics of the Potts model
considered here are: it is both isotropic and stationary. According to (Hammersley &
Clifford, 1971), the Potts MRF model can be equivalently defined in two manners: by a joint
Gibbs distribution (global model) or by a set of local conditional density functions (LCDF's).

For a general s-th order neighbourhood system 7", we define the former by the following
expression:

exp{ ﬁuij(m)}
l]iZA}l exp{ ﬂuij(l)}

p (xij =’ /ﬂ) =
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where U (1) is the number of neighbours of the i-th element having label equal to I, A is

the spatial dependency parameter (known as inverse temperature), m,l € G =1{1,2,...,M},

with M denoting the number of classes. So, the pseudo-likelihood equation for the Potts
model is given by:
exp{ﬁuij(m)}

PL(B) =
(i,j)eW Afexp{ﬂuij(l)}
1=1

®)

Taking the logarithms, differentiating on the parameter and setting the result to zero, leads
to the following expression, which is the basis for the derivation of the proposed equations:

M
5 > Uij(l)exp{ﬂuij(l)}
SplogPL(p)= T Uj(m)- X 15 =0 ©)
ﬂ (i,j)eW (i,7)eW > eXp{ﬂU,-j(l)}
=

where m denotes the observed value for the ij-th element of the field.

Looking at equation (6) it is possible to see that its first term is independent of the
parameter. Thus, it is possible to expand the second term of (6) in all possible spatial
configuration patterns that provide different contributions to the pseudo-likelihood
equation regarding a pre-defined neighbourhood system. For example, in first order
systems, the enumeration of these configuration patterns is straightforward, since there are
only five cases, from zero agreement (situation of four different labels) to total agreement
(situation of four identical labels), as shown in Figure 1.

A A A A A
|B c| (A B| (A B| A Al [a Al
D C B B A

Fig. 1. Contextual configuration patterns for Potts MRF model in first-order neighbourhood
systems

These configuration patterns can represented by vectors, as presented in relations (7),

indicating the number of occurrences of each element around the central element. In the
Potts model location information is irrelevant since it is an isotropic model:

v, =[1111]; v, =[2,1,1,0]; v,-[220,0]; v;-[3100]; v,-[4000]; (7

Let N be the number of elements in the neighbourhood system 7°. For each L =1,...,N,
let:
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L
Ay (L) = (”1""'“L)/ai € {1,2,...,N} 0y S < aL,Elai =N 8)

and 1y (L) the number of elements of the set Ay (L) . Then, the number of configuration

patterns for the neighbourhood system n'is A= ny (1) + ny (2)+-+ ny (L).

Thus, the problem of finding the possible contextual configuration patterns can be solved
automatically. The solution vectors can be found by exhaustive searching, by isolating one
variable and searching on the subspace spanned by the remainder variables. Table 1
presents the number of configuration patterns for several neighbourhood systems.

Neighbourhood System Number of configuration patterns (1)
First order 5

Second order 22

Third order 77

Fourth order 637

Fifth order 1575

Table 1. Number of possible contextual configuration patterns for five neighbourhood
systems

Now, given the complete set of contextual configuration patterns for a neighbourhood
system, it is possible to expand the second term of equation (6). We can regard its numerator

as an inner product of two vectors u; and @i s where U;; represents the contextual

configuration vector for the current pixel (i.e., Ui]. = [5,2,1,0,0,0,0,0} in case of a second-

order system) and @ is a vector such that @;; [1] = exp {,Buij [n]} Similarly, the

denominator is the inner product of @;; with the identity column vector r = [1,1,...,1] . So,

the second term of equation (6) can be expanded as a summation of A terms, each one
associated with a possible configuration pattern. However, as it involves a summation for all

elements of the MRF, we define constants K.,i=1,...,1, representing the number of
number of occurrences of each possible configuration patters along the entire image.
Basically, the idea is that the set of all K; coefficients defines a contextual histogram, that is,

instead of indicating the distribution of individual pixel gray levels, this set shows the
distribution of spatial patterns defined in terms of the adopted neighbourhood system. For
instance, in image analysis applications, smooth images, with many homogeneous regions,
tend to present more concentration of configuration patterns with similar labels. On the
other hand, heterogeneous regions tend to present concentration of configuration patterns
with higher variation in the labels. Figures 2, 3 and 4 show an example with the Lena image.
It is worthwhile noting that in a physical interpretation we are using the proposed equations
to estimate a quantity called inverse temperature in a system of particles arranged on a 2-D
lattice using only pair-wise interactions. The proposed pseudo-likelihood equation for
second-order neighbourhood systems is given by equation (9) (Levada et al., 2008a).
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Similarly, for third-order systems, the equation is obtained by expanding (6) on the 77
configuration patterns derived by solving (8) for N=12. The proposed pseudo-likelihood
equation for third-order systems is given by equation (10) (Levada et al., 2008b).

Fig. 3. Noisy regions present more heterogeneous contextual configuration patterns
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Fig. 4. Comparison between the distribution of contextual configuration patterns for both

smooth and noisy Lena images (k, stands for total agreement and k,, for zero agreement).
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The derived transcendental equations do not have closed solution, so in order to solve them
a root-finding algorithm is required. In all experiments along this chapter, the MPL
estimator is obtained by Brent's method (Brent, 1973), a numerical method that does not
require the computation (not even the existence) of derivatives or analytical gradients. In
this case, the computation of derivatives of the objective function would be prohibitive,
given the large extension of the expressions. Basically, the advantages of this method can be
summarized by: it uses a combination of bisection, secant and inverse quadratic
interpolation methods, leading to a very robust approach and also it has super-linear
convergence rate.

3. Statistical Inference and Asymptotic Evaluation on Markov Random Fields

Unbiasedness is not granted by either maximum likelihood (ML) or maximum pseudo-
likelihood (MPL) estimation. Actually, according to statistical inference theory, there is no
method that guarantees the existence of unbiased estimators for a fixed N-size sample.
Often, in the exponential family, ML estimators coincide with UMVU (Uniform Minimum
Variance Unbiased) estimators because they are functions of complete sufficient statistics (if a
ML estimator is unique then it is a function of sufficient statistics). Besides, there are several
characteristics that make ML estimation a reference method (Lehman, 1983; Bickel, 1991;
Casella, 2002). Making the sample size grow infinitely (N — o), ML estimator becomes
asymptotically unbiased and efficient. Unfortunately, there is no result showing that the
same occurs in MPL estimation. In this section, we show how to approximate the asymptotic
variances of Potts and GMRF model parameters in terms of expressions for the observed
Fisher information using both first and second derivatives.
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3.1 Observed Fisher Information
Often, in practice, it is not possible to calculate the expected Fisher information I (). In such
cases, we can adopt the observed Fisher information, I, (@) instead. Furthermore, it has

been shown (Efron & Hinkley, 1978) that the use of the observed information number is
superior to the expected information number, as it appears in the Cramér-Rao lower bound.
The observed Fisher information, in terms of the pseudo-likelihood function, is defined by

www.intechopen.com



Statistical Inference on Markov Random Fields: Parameter
Estimation, Asymptotic Evaluation and Contextual Classification of NMR Multispectral Images 231

2
L (0) =] Z10g PL0)] )
00
and can be estimated by the following, justified by the Law of Large Numbers:

~1

1 NTo 2
Lops (60) = N El [Qlogp(xi;g)} (12)

0=0

1
obs

since 1(6) = E[f(}bs(ﬁﬂ , making [

the second derivative of the pseudo-likelihood function:

(0) ~1(0) . Similarly, I obs (#) can be estimated using

~2 1 N 52
Iobs (0) =T Z —zlogp(xi ;6) (13)
N i=1| 00 5
0=0
3.2 On the Asymptotic Variances of GMRF model MPL estimators
The asymptotic covariance matrix for MPL estimators is given by (Liang and Yu, 2003):
c(o)=rH " (0)](0)H " (o) (14

where J(8) and H(8) are functions of the Jacobian (first order partial derivatives) and

Hessian (second order partial derivatives) matrices respectively:

H(8)=E, | V*F(X8)

] (8) = Var, [VF(X ;e)] (15)

with F(X;8) denoting the logarithm of the pseudo-likelihood function.

Considering that the GMRF hyperparameters 6,,6,,0,,60, are uncorrelated, we have a

diagonal covariance matrix, given by:

C11(9) 0 0 0
_ 0 C22(9) 0 0
c(6)= 0 0 c33(0) O e
0 0 0 c44(9)

with asymptotic variances given by:
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0
Vi ——log PL(0O
W‘{aek og PL( )}

oy (8) = E{ 5 J (17)

5| O
——log PL(0O
89;{2 g ()

for k =1,...,4 . Rewriting the above equation using the definition of variance leads to:

Egl(a‘zkmgm(e)ﬂ B

Crk (B) = 82 ~ ~ 2 (18)
Ej| -~ log PL(8) [124(8) ]
00
since the expected value of the log PL equation is zero:
o N
E,| —logPL(0)|~ W > {— logp(x In® 9)}
aek =1 gzéMPL
1 0 N
=N a6, log H P(x1|77 9) A 19)
0=6nipr
1 0
= Nﬁlog PL(B)‘HZHAMPL = 0

Thus, from the LCDF of the GMRF model and after some simple algebraic manipulations,
we obtain the following expression for I cl;bs (8) (Levada et al., 2008c):

it (o) = ﬁ > {[yij—BTWij—y(l—ZHTI)}[‘Pg—Z @}2 (20)

o i=1

where ‘PS denotes the k-th element of ‘Pij , k=1,...,4 . Similarly, for 1 gbs (B) we have:

A2 B 1 N k 2
Iy (0) = “NoZ El {‘Pi]'—zll} (21)

obs

The proposed approximation allows the calculation of the asymptotic variance of maximum
pseudo-likelihood estimators of the GMRF model in computationally feasible way. From
previous works on statistical inference it can be shown that MPL estimators are
asymptotically normal distributed. Therefore, with the proposed method, it is possible to
completely characterize the asymptotic behavior of the MPL estimators of the GMRF model,
allowing interval estimation, hypothesis testing and quantitative analysis on the model
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parameters in a variety of research areas, including image processing and pattern
recognition (Levada et al., 2008d).

In order to demonstrate the application of the asymptotic variance estimation in stochastic
image modeling, we present the results obtained in experiments using Markov Chain Monte
Carlo simulation methods (Dubes & Jain, 1989; Winkler, 2006) by comparing the values of

A

0,,p; and asymptotic variances regarding second order neighbourhood systems using

synthetic images, representing several GMRF model outcomes. For the experiments below,
we adopted the Metropolis algorithm (Metropolis et al., 1953), a single spin flip MCMC
method, to simulate occurrences of GRMF model using different known parameter vectors.
Simulated images are shown in Figure 5. The MPL estimators, obtained by (3) were

compared with the real parameter vectors. In all cases, the parameters x and o’ were
defined as zero and five, respectively. The vector parameters used in the simulated images
were 6 =[0.25,0.3,-0.1,0.2] and 6 =[0.2,0.15,0.07,0.05] .

a) ©b) T o) d)
Fig. 5. Synthetic images generated by MCMC simulation for GMRF model using a second-
order neighbourhood system.

A major difficulty in GMRF models is the selection of parameters 6 for which the
correlation matrix is positive definite, introducing one more problem in parameter
estimation. With discrete MRF’s almost any parameter in the parametric space lead to a
mathematically valid model. However, only a portion of the parametric space generates
valid GMRF models. The region of validity is known only for first-order systems, but not for
higher-order GMRF’s (Dubes & Jain, 1989). In fact, even parameters estimated by standard
procedures may not be in the region of validity and simulations may not work properly.
Table 2 shows the MPL estimators, estimated asymptotic variances, 90% confidence
intervals regarding the GMRF model parameters for the synthetic image indicated in Figure
la. Similarly, Table 3 shows the same obtained results for the images shown in Figure 1b.
The results on MCMC simulation images show that, in all cases, the true parameter value is
contained in the obtained intervals, assessing the accuracy of the proposed methodology for
asymptotic variance estimation.
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A

K 0, 0, G, 90% CI

1 0.25 0.2217 0.0390 [0.1799 0.3077]
2 0.3 0.2758 0.0387 [0.2398 0.3667]
3 0.1 -0.1145 0.0394 [-0.1711 -0.0479]
4 0.2 0.1743 0.0386 [0.1150 0.2416]

Table 2. MPL estimators, asymptotic variances and 90% confidence intervals for GMRF
hyperparameters on simulated images (1a).

A

K 0, b, 6, 90% CI

1 0.2 0.1908 0.0506 [0.1079 0.2738]
2 0.15 0.1605 0.0524 [0.0746 0.2464]
3 0.07 0.0716 0.0482 [-0.0074 0.1506]
4 0.05 0.0523 0.0418 [-0.0146 0.1192]

Table 3. MPL estimators, asymptotic variances and 90% confidence intervals for GMRF
hyperparameters on simulated images (1b).

3.3 On the Asymptotic Variance of Potts MRF model MPL estimator
Similarly to the GMRF model, we define an approximation for the asymptotic variance of

Potts model MPL estimators through expressions for I sbs (8) and I (@) . From the LCDF

obs
of the Potts model (4) we have:

» 1N > U;(1exp{ pU;(1)}
I (B) ﬁZ Ui (m)-=1 (22)
i=1 3 exp{ﬁui(l)}

which, after some few algebraic manipulations, becomes (Levada et al, 2008a):

EE AZA[%(Ui(m)—ui(l))(uz'(m)—ui(k))eXP{ﬂ(ui(l)+ui(k))}}

| L%exr){ﬂui(l)}}2

(23)

Calculating the observed Fisher information using the second derivative of the pseudo-
likelihood function leads to the following;:

=

O Euewtmn)|

2

Lif;l (1 exp! ﬂui(l)}}[

hsy
<

exp{

(24)
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2
obs

Simplifying equation (24), we have the final expression for I, (8) (Levada et al, 2008b):

x| ] w-uweslaun o)

UK FEEHs M 2
Lglexp{ﬂui(l)}}

Mz

1

This approximation allows the calculation of the asymptotic variance of the maximum
pseudo-likelihood estimator of the Potts MRF model. In order to demonstrate the
application of the asymptotic variance in testing and evaluating the proposed pseudo-
likelihood equation, some results obtained in experiments with Markov Chain Monte Carlo

simulation methods are presented. The results show the values of ﬁMPL , asymptotic

variances, test statistics and p-values for several synthetic images generated using MCMC
algorithms on second and third order neighbourhood systems. The objective is to validate
the following hypothesis:

H: the proposed pseudo-likelihood equations provide results that are statistically
equivalent to the real parameter values, that is:

H:pB=Bypr (26)

Using the consistency property of MPL estimators and adopting the derived approximation
for the asymptotic variance it is possible to completely characterize the asymptotic
distribution of the Potts model parameter estimator and define the following test statistic:

lﬁAMPL
Z = = ~NI(0,1 27
Tz K PLj ( ) (27)

creating the decision rule: Reject H if |Z| > ¢ . Considering a test size a (in all experiments

along this chapter we set « = 0.1), that is, the maximum probability of incorrectly rejecting
His a,we have ¢ =1.64. However, in order to quantify the evidence against or in favor of
the hypothesis a complete analysis in terms the test size, test statistic and p-values,

calculated by P(|Z|>Zobs) , is required. In case of a small p-value, we should doubt of the

hypothesis being tested. In other words, to reject H we should have a test size «
significantly higher than the p-value. This approach provides a statistically meaningful way
to report the results of a hypothesis testing procedure.

For the experiments, to illustrate the example of statistical analysis in MRF, we adopted both
single spin-flip MCMC methods, Gibbs Sampler and Metropolis, and a cluster-flipping MCMC
method, the Swendsen-Wang algorithm, to generate several Potts model outcomes using
different known parameter values. Figures 6, 7, 8 and 9 show the simulated images.
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b i ; " -

Fig. 6. Synthetic i y simulation algorithms using second-order
neighbourhood systems for M=3: Gibbs Sampler (f =0.45), Metropolis (f =0.5) and
Swendsen-Wang ( f = 0.4 ), respectively.

Fig. 7. Synthetic images generated by MCMC simulation algorithms using third-order
neighbourhood systems for M=3: Gibbs Sampler (f =0.45), Metropolis (f =0.5) and

Swendsen-Wang ( f = 0.4), respectively.

Fig. 8. Synthetic iages geeratd“y MCMC simulation algorithms usin second-order
neighbourhood systems for M=4: Gibbs Sampler (f =0.45), Metropolis (£ =0.5) and
Swendsen-Wang ( f = 0.4), respectively.

}- ol L : \*

Fig. 9. Synthetic imes generateci by MCMC simulation algoﬁtms using second-order
neighbourhood systems for M=4: Gibbs Sampler (S =0.45), Metropolis (£ =0.5) and
Swendsen-Wang ( f = 0.4), respectively.
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The MPL estimators, obtained by the derived pseudo-likelihood equations were compared
with the real parameter values. This information, together with the test statistics and the p-
values, obtained from the approximation to the asymptotic variance provide a mathematical
procedure to validate and assess the accuracy of the pseudo-likelihood equations. Tables 4
and 5 show the obtained results.

Swendsen-Wang Gibbs Sampler Metropolis
M 3 4 3 4 3 4
yij 0.4 0.4 0.45 0.45 0.5 0.5
Y 0.4460 0.4878 0.3849 0.4064 0.4814 0.4884
MPL
| _A | 0.0460 0.0878 0.0651 0.0436 0.0186 0.0111
B=BumpL
~1 0.4694 0.6825 0.8450 1.3106 0.3908 0.8258
[ obs (9)
72 3.0080 3.3181 3.8248 4.5387 2.2935 2.6436
[ obs (9)
22 (A 0.0519 0.0620 0.0578 0.0636 0.0743 0.1182
6, (Burr)
7 0.2458 0.3571 0.2707 0.1729 0.0682 0.0322
n
p-values 0.8104 0.7264 0.7872 0.8650 0.9520 0.9760

Table 4. MPL estimators, observed Fisher information, asymptotic variances, test statistics
and p-values for synthetic MCMC images using second-order systems.

Swendsen-Wang Gibbs Sampler Metropolis
M 3 4 3 4 3 4
B 0.4 0.4 0.45 0.45 0.5 0.5
i 0.3602 0.3772 0.4185 0.4309 0.4896 0.4988
MPL
‘ _A ‘ 0.0398 0.0228 0.0315 0.0191 0.0104 0.0012
B=Pmpr
71 0.2738 0.5372 0.1104 0.1433 0.0981 0.1269
[ obs (B)
+2 3.5691 4.6800 1.8703 2.3416 1.4165 1.4547
[ obs (9)
A2 ( 5 ) 0.0215 0.0245 0.0316 0.0261 0.0489 0.0600
o, \ PmpL
7 0.2510 0.1456 0.1772 0.1182 0.0470 0.0049
n
p-values 0.8036 0.8886 0.8572 0.9044 0.9602 0.9940

Table 5. MPL estimators, observed Fisher information, asymptotic variances, test statistics
and p-values for synthetic MCMC images using third-order systems.

The obtained results show that the asymptotic variance is reduced in third-order systems,
increasing the p-values, suggesting that the use of higher-order systems improves Potts MRF
model MPL estimation. Considering the observed data, we conclude that there are no

significant differences between £ and ﬂAMPL . Therefore, based on statistical evidences, we

should accept the hypothesis H, assessing the accuracy of the MPL estimation method.
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4. Contextual Classification and Bayesian Inference

As presented in the previous sections of this chapter, multispectral image contextual
classification through MRF models is stated as a Bayesian inference problem, since we are
interested in the solution that maximizes the a posteriori distribution. Several combinatorial
optimization algorithms can be used to approximate the MAP estimator, although is has
been shown that the only optimal method is Simulated Annealing (SA). However, due to its
high computational cost, SA may not be the best choice for real applications. In this chapter
we discuss two suboptimal methods used in contextual classification: ICM and MPM. The
main difference between these methods is that while the first one is the optimum Bayesian
estimator in case of a uniform cost function, the later is optimum regarding a Hamming
distance cost function (Won & Gray, 2004).

4.1 Iterated Conditional Modes

The ICM algorithm was originately proposed by Besag as a computationally feasible
iterative and deterministic algorithm for approximating the MAP estimator in complex
problems. The basic idea consists in, for each pixel, update its current value with the label

that maximizes the a posteriori probability. By noting that P(x|y) = P(xij|xl-; ,y)P(xlﬂy),

where xi; denotes the entire random field without the current element x, the subsequent

ij”
maximization of P (xij|xl-; ,y) is always moving towards the a maximum of the a posteriori

probability. Thus, ICM rapidly converges to a local maximum since its results are strongly
dependent on the initialization. The ICM algorithm, as described in (Dubes & Jain, 1989) is
given in the following.

Algoritm 1. Iterated Conditinal Modes (ICM)
1. Chose a MRF model for the label field X .

2. Initialize x by choosing the label 5(1-]. that maximizes p (]/z’j |xij) , that is, the result of

maximum likelihood classification.

3. Fori=1,...,.M and j=1,...,N

a. Update the label x i with the value that maximizes

p (xijlxz-j ,y) o P(yij|xij)p(xif|77isj)

4. Repeat (3) N, times

iter

So, in our case, we always update the current label with the new value that maximizes the
product between the LCDF’s of GMRF and Potts models. Note, however, that step (2) is
being generalized, since instead of maximum likelihood classification, we can initialize ICM
using several pattern classifiers.
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4.2 Maximizer of the Posterior Marginals
As the name says, the MPM estimator is obtained by maximizing the posterior marginal

probabilitiesP(x,-ﬂy). Thus, the fundamental point here is the calculation of these

distributions. The MPM algorithm, as proposed in (Marroquin et al., 1987), uses MCMC
methods to approximate these distributions. Basically, the MPM algorithm simulate a
Markov chain over the states that represent all possible configurations of the random field.
The idea is that as each pixel is repeatedly visited, the resulting Markov chain generates a

sample of the posterior distribution P (x|y) , regardless of the initial conditions. As a result

of that, a sequence of configurations x(0) — x(1) = ---x(n) —--- , corresponding to a
Makov chain that reaches its equilibrium state, is generated. Once this state is reached, we
can regard all configurations from this point as a sample of P(xly). Besides, in the

equilibrium state the expected value of a function of a random variable can be estimated
through the ergodic principle. Using this result, the posterior marginal distribution for the
MPM algorihtm can be approximated by (Dubes & Jain, 1989):

n

p (xij=gly) ~ (nik) ,,Z%H 5(965}—3) (28)

where k is the number of steps needed to the sequence to stabilize and 7 is a sufficiently
large number of iterations so that the estimation is accurate at a certain reasonable
computational cost. One problem with this approach is exactly how to choose these values
(also known as magic numbers). Usually, they are both chosen empiracally. The pseudo-code
for MPM, as described in (Dubes & Jain, 1989), is shown in Algorithm 2.

5. Metrics for Performance Evaluation of Image Classification

In order to evaluate the performance of the contextual classification in an objective way, the
use of quantitative measures is required. Often, the most widely used criteria for evaluation
of classification tasks are the correct classification rate and/or the estimated classification
error (holdout, resubstitution). However, these measures do not allow robust statistical
analysis, neither inference about the obtained results. To surmount this problem,
statisticians usually adopt Cohen’s Kappa coefficient, a measure to assess the accuracy in
classification problems.

5.1 Cohen’s Kappa Coefficient

This coefficient was originally proposed by Cohen (Cohen, 1960), as a measure of agreement
between rankings and opinions of different specialists. In pattern recognition, this coefficient
determines a degree of agreement between the “ground truth” and the output of a given
classifier. The better the classification performance, the higher is the Kappa value. In case of
perfect agreement, Kappa is equal to one. The main motivation for the use of Kappa is that it
has good statistical properties, such as asymptotic normality, and also the fact that it is
easily computed from the confusion matrix.
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Algorithm 2. Maximizer of the Posterior Marginals (MPM)
1. Chose a MRF model for the label field X .

2. Initialize x by choosing the label J?ij that maximizes p (yij |xl-]-) , that is, the result of

maximum likelihood classification.

3. Fori=1,...,M and j=1,...,N

a. Choose a random label g and define 2= 8- Let z, =x, for all
(k1) = (i,f)

P(X=x|Y=y)
c. Replace x by z with probability p .
=D o M

4. Repeat (3) N times, saving the realizations from x o x
5. Calculate P (xij = gly) for all pixels according equation (28).
6. Fori=1,...,.M and j=1,...,N

a. Choose the label 5‘1‘]‘ that maximizes the posterior marginal among all

possible labels

P(xﬁzﬁﬂy)>’P(xﬁ=Qy)

The expression for the Kappa coefficient from the confusion matrix is given by (Congalton,
1991):

where c;; is an element of the confusion matrix, x_; is the sum of the elements of column i,

+1

x..  is the sum of the elements of the row i, ¢ is the number of classes and N is the number

i+
of training samples. The asymptotic variance of this estimator is given by:
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OA'K 2 3 ' ! (30)
Yy (oa)
where
1 ¢ 1 ¢
1 ¢ 1 r r 2
Oy = Figl Xii '(xi+ + x+i) 0y = Fi; ]El Yij '(xﬁ ! x+i) .

6. Experiments and Results in Nuclear Magnetic Resonance Images

In order to test and evaluate the contextual classification methods previously described in
this chapter, we show some experiments in NMR images of marmocets brains, a monkey
species often used in medical experiments. These images were acquired by the CInAPCe
project, an abbreviation for the Portuguese expression “Inter-Institutional Cooperation to
Support Brain Research”, a Brazilian research project that has as main purpose the
establishment of a scientific network seeking the development of neuroscience research
through multidisciplinary approaches. In this sense, pattern recognition can contribute to
the development of new methods and tools for processing and analyzing magnetic
resonance imaging and its integration with other methodologies in the investigation of
epilepsies. Figure 9 shows the bands PD, T1 and T2 of a marmocet NMR multispectral brain
image.

Fig. 9. PD, T1 and T2 NMR image bands of the multispectral marmocet brain image.

The contextual classification of the multispectral image was performed by applying both
ICM and MPM using second and third order neighbourhood systems on several
initializations provided by seven different pattern classifiers: Quadratic Bayesian Classifier
(QDC) and Linear Bayesian Classifier (LDC) under Gaussian hypothesis, Parzen-Windows
Classifier (PARZENC), K-Nearest Neighbour Classifier (KNNC), Logistic Classifier (LOGLC),
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Nearest Mean Classifier (NMC) and Decision Tree Classifier (TREEC). All the experiments
were implemented in MATLAB, using the pattern recognition toolbox PRTOOLS v.4.1%,
developed at Delft University, to provide the initializations through each one of the above
classifiers.
The experiments were conducted to clarify some hypotheses and conjectures regarding
contextual classification. We want to verify the following hypothesis:
A. Contextual classification is capable of significantly improving the performance of
ordinary classification techniques (punctual methods).
B. Different initializations can lead to statistically different contextual classification
results (for the same iterative algorithm).
C. The use of higher-order systems is capable of significantly improving the
performance of contextual classification.
D. Different contextual classification algorithms are capable of producing statistically
different results (for the same initialization).
We used 100 training samples for each class: white matter, gray matter and background. The
classification errors and confusion matrix are estimated by the 10-Fold cross-validation
method. Convergence was considered by achieving one of two conditions: less than 1% of
the pixels are updated in the current iteration, or the maximum of 5 iterations is reached.
Tables 6, 7, 8, 9 and 10 show the obtained results.

N 2

Classifiers k G appa
PARZENC 0.7816 0.00031061
KNNC 0.7550 0.00034100
LOGLC 0.7583 0.00033502
LDC 0.7716 0.00032177
QDC 0.7866 0.00030515
NMC 0.7850 0.00030629
TREEC 0.6500 0.00044737

Table 6. Kappa coefficients and variances for punctual classification results.

Classifiers k &fapp .
PARZENC 0.9783 3.5584e-005
KNNC 0.9733 4.3614e-005
LOGLC 0.9900 1.6553e-005
LDC 0.9916 1.3811e-005
QDC 0.9700 4.8952e-005
NMC 0.9966 5.5431e-006

TREEC 1.0000 0.0000

Table 7. Kappa coefficients and variances for MPM classification on second order systems.

Classifiers k 6,fapp .

PARZENC 0.9966 5.5431e-006

' Available online at http.://www.prtools.org
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KNNC
LOGLC
LDC
QDC
NMC
TREEC

1.0000
0.9950
0.9966
0.9966
0.9933
0.9966

0.0000
8.3055e-006
5.5431e-006
5.5431e-006
1.1062e-005
5.5431e-006

Table 8. Kappa coefficients and variances for MPM classification on third order systems.

Classifiers k 6',‘:' o
PARZENC 0.9700 4.8975e-005
KNNC 0.9550 7.2614e-005
LOGLC 0.9600 6.4864e-005
LDC 0.9616 6.2206e-005
QDC 0.9516 7.7788e-005
NMC 0.9583 6.7446e-005

TREEC 1.0000 0.0000

Table 9. Kappa coefficients and variances for ICM classification on second order systems.

A

2

Classifiers k o appa
PARZENC 0.9983 2.7747e-006
KNNC 0.9866 2.202e-005
LOGLC 0.9983 2.7747e-006
LDC 0.9950 8.3053e-006
QDC 0.9850 2.4743e-005
NMC 0.9950 8.3053e-006

TREEC 1.0000 0.0000

Table 10. Kappa coefficients and variances for ICM classification on third order systems.

6.1 Statistical Analysis
To test the hypothesis and validate the proposed methodology for contextual classification,

both local (confidence intervals) and global (T test) analysis are performed. Let El and Ez

be the mean Kappa coefficients before and after the application of a given technique.

Defining k = El X EZ , it is desirable to test the following hypothesis:

=

=0
#0

=

HO:
H1:

(33)

The test statistic T, defined as follows, has a t-student distribution with n-1 degrees of
freedom (n=7 in this case):
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where o denotes the standard deviation of the punctual differences. Thus, considering a
a testsize (e, a =0.05 or @ =0.01), H, must be rejected if T is less than a critical value

t. . This information, together with the p-values, allows a robust statistical analysis, as well as

inferences about the problem in study. Note that the decision based on the T statistic is quite
intuitive, since the greater the difference between the two means, more chance that we are
dealing with distinct groups (captured by the numerator of T). On the other hand, the
greater the variability of the results, more difficult is to detect differences on the means
(captured by the denominator of T).

To verify the hypothesis A, a T test was performed using the data presented in Tables 6 and
9 (punctual classification x ICM on second order systems). Considering a test size a = 0.05,

we have a critical value of t, =-1.943. The obtained results indicate strong evidences
against H,,, since k =-02098, T =-8.7741, leading to a p-value smaller than 0.0005.

Therefore, we should reject H,, assessing that combinatorial optimization algorithms can

significantly improve the classification performance. Figure 10 shows a comparison of the
visual results obtained by the LOGLC classifier and the LOGLC+ICM classification.

Fig. 10. Comparison between classification maps for the marmocet brain multispectral NMR
image obtained using LOGLC and LOGLC+ICM

The hypothesis B was tested by simply constructing 95% confidence intervals (CI) for the
respective Kappa coefficients. To illustrate the scenario, we compared the results of
KNNC+ICM and TREEC+ICM classification form Table 9. The confidence intervals show
that the results are statistically different, since for the KNNC+ICM we have [0.9387, 0.9713]
and the TREEC+ICM provides a Kappa coefficient equal to one and with zero variance.
Figure 11 compares the visual results. Actually, these results were expected since both
combinatorial optimization algorithms ICM and MPM are sub-optimal, that is, they
converge to different local maxima depending on the initialization.
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Fig. 11. Comparison between classification maps for the marmocet brain multispectral NMR
image obtained using KNNC+ICM and TREEC+ICM.

To test the third hypothesis (C), a T test was performed in data from Tables 9 and 10 to
compare the mean performances. The results show that the mean performances are

significantly different, since k = -0.0288, T =-5.8115, leading to a p-value smaller than
0.005 and once again, strong evidences against H,. Figures 12 and 13 shows a comparison
between LOGLC+ICM and NMC+ICM on second and third order systems.

Fig. 12. Classification maps for LOGLC+ICM and NMC+ICM on second order systems.
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Fig. 13. Classification maps for LOGLC+ICM and NMC+ICM on third order systems.

Finally, to test the last hypothesis, 95% confidence intervals were constructed using the
Kappa coefficient values together with the asymptotic variances. From Tables 7 and 9 it is
possible to observe that NMC+MPM produces the interval [0.9920, 1], while NMC+ICM
gives [0.9423, 0.9743], assessing that the performances are significantly different. This results
and the result obtained on testing the hypothesis B suggest that the use of classifier
combination rules can be explored in contextual classification problems, since there is
significant differences in the results, providing complementary information that can be used
to improve the performance even more. Figure 14 shows a comparison between the results
of MPM and ICM for the same initialization (NMC).

Fig. 14. Classification maps for NMC+MPM and NMC+ICM on second order systems.

7. Conclusions

In this chapter we discussed three important problems in pattern recognition. First, the
derivation of novel pseudo-likelihood equations for Potts MRF model parameter estimation
on higher-order neighbourhood systems. Then, the accuracy of MPL estimation was
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assessed through approximations for the asymptotic variance of these estimators. Finally,
multispectral image contextual classification was stated as a Bayesian inference problem.
The obtained results show that the approach discussed here is valid, and more, is capable of
significantly improving classification performance. Future works in this research area
include the study about the efficiency of the MPL estimation through the analysis of
necessary/sufficient conditions of information equality in MRF models, as well as the
combination of contextual classifiers aiming for a further improvement in classification
performance.
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