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1. Introduction

The ultimate information capacity of fiber is limited by the Kerr nonlinearity, wherein the
refractive index of the waveguide changes in proportion to the signal intensity. Nonlinearity
makes it impossible to achieve an arbitrarily high capacity by increasing the launched
power, as nonlinear distortion ultimately grows faster than the signal-to-noise ratio (SNR).
At low launched power, system performance is limited by additive white Gaussian noise
(AWGN), so the capacity increases with power. At high power, however, nonlinear effects
dominate. For a given channel, there exists an optimum launched power and ultimate
capacity that are dependent on the system design parameters. The capacity of fiber has been
studied in (Mitra & Stark, 2001) and (Essiambre et al., 2008).

Recently, coherent optical receivers have begun to approach technological maturity. In a
coherent receiver, the optical signal is downconverted to the electronic domain, preserving
all relevant information on the optical electric fields in the two polarizations. The baseband
equivalent electrical signals can be sampled and processed by a digital signal processor
(DSP), enabling software algorithms to compensate channel impairments (Ip, et al. 2008).
Various methods of compensating nonlinearity have been proposed. It was shown in (Ho &
Kahn, 2004) that in zero-dispersion fiber, interaction between nonlinearity and noise, known
as nonlinear phase noise (NLPN), causes the received constellation to be spiral-shaped. A
receiver can partially compensate NLPN by either de-rotating the received signal by a phase
proportional to the received power, or by wusing modified decision boundaries.
Improvement in system performance by 0.5 to 1 dB has been observed in submarine systems
with low local dispersion and near-perfect dispersion compensation per span (Charlet et al.,
2006).

Nonlinear phase rotation has also been used in orthogonal frequency-division multiplexing
(OFDM) systems, where it is called self-phase modulation compensation (SPMC). In
(Lowery, 2007a), transmitter-side SPMC was proposed, while (Lowery, 2007b) showed that
further performance improvement can be obtained by splitting the SPMC between the
transmitter and receiver. An investigation of the performance dependence on the dispersion
map was carried out in (Liu & Tkach, 2009).

Signal propagation is ultimately governed by a nonlinear Schrodinger equation (NLSE). We
shall see later that the efficacy of a nonlinear compensation algorithm depends on how
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accurately it estimates the optical signal amplitude at each point in the fiber. In the
aforementioned algorithms, the signal amplitude at the receiver and/or transmitter is
assumed to be an accurate estimator of the signal profile in the fiber, and nonlinear
compensation is applied using the received and/or transmitted signal(s). For zero-
dispersion fiber, in which signal amplitude changes are small, arising only from noise, this is
a good assumption, so performance improvement has been observed in submarine systems.
In systems where local dispersion exceeds a symbol period, however, nonlinear phase
rotation fails (Ip & Kahn, 2008), as interaction between intersymbol interference (ISI) and
nonlinearity gives rise to “intra-channel” nonlinear effects, which have been studied in
(Essiambre et al, 1999). As a first-order approximation, it has been assumed that the
nonlinear phase distortion at a given symbol depends not only on the instantaneous
amplitude, but on the amplitude profile of the received signal spanning a time interval
equal to the fiber’s impulse response duration. An intra-channel four-wave mixing (IFWM)
compensation scheme was studied in (Lau et al., 2008), and can lead to a small improvement
in performance.

The ultimate nonlinear compensation method is backpropagation, which inverts the NLSE.
In this framework, receiver-based optical dispersion compensation or electronic linear
equalization can be seen as special cases of backpropagation where the receiver inverts only
chromatic dispersion (CD). Similarly, mid-span phase conjugation is an example of
backpropagation where the second half of the transmission link inverts the impairments of
the first half (Chowdhury & Essiambre, 2004). Electronic backpropagation was first studied
in (Roberts et al., 2006) as a transmitter-side compensation method, since in the absence of
coherent detection, manipulation of the field is only possible at the modulator. With
coherent detection, however, recovery of the received electric field enables receiver-side
backpropagation, which was first studied in (Mateo et al, 2008). Receiver-side
backpropagation has the advantage that it can ultimately be adaptive without the need for a
feedback channel.

In this work, we review the principles of backpropagation and present recent results. Since
backpropagation requires solving the NLSE, we begin by reviewing techniques for finding
its numerical solutions. This is an area which has been well studied in simulation of optical
networks. We will review split-step methods, emphasizing the length scales of different
fiber effects, the computational costs of different algorithms, the step size requirements, and
their dependence on system parameters. Backpropagation will then be introduced, firstly for
single-polarization transmission for a single wavelength channel. In later sections, we will
generalize backpropagation for wavelength-division-multiplexed (WDM) systems and for
dual-polarization transmission. Simulation results will be presented.

2. Signal Propagation

2.1 Nonlinear Schrodinger Equation (NLSE)
Propagation in optical fiber is affected by a combination of linear and nonlinear phenomena.
At low symbol rates and short transmission distances, where pulse spreading due to
polarization-mode dispersion (PMD) is confined well within a symbol period, we can model
signal propagation by a scalar nonlinear Schrodinger equation (NLSE) (Agrawal, 2001):

OE (A

—= (D + N) E (1)
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where E is the signal electric field, D and N are the linear and nonlinear operators, and
a, B,, B, and y are the fiber’s attenuation, group velocity dispersion, dispersion slope,

and nonlinear coefficients, respectively. In (1)—(3), we have specified the electric field in a
moving co-ordinate system that propagates at the group velocity of the fiber, so the /ot

term has been neglected.

It has been shown that the NLSE is an accurate model for a wide variety of optical
phenomena, including single-wavelength and dense wavelength-division-multiplexed
(DWDM) systems, solitons, and ultra-short pulses down to a few optical cycles in duration.
Only in very special conditions (e.g., solitons) does the NLSE yield analytical solutions. In
general, the NLSE must be solved numerically. Various solution methods have been
developed, including finite-difference methods and split-step methods (SSMs). The latter are
generally preferred because of the computational advantage of the fast Fourier transform
and related transforms.

E(zt) —C)—_ Foeny  PED RN | oxp(iD) > E(z+hit)

(@) (b)

\ 4

\ 4

E(z,t)—> exp(hﬁ/2) exp(hN) exp(hﬁ/Z) — E(z+h,t)

©
Fig. 1. (a) Propagation through a fiber section of length i modeled using the (b) asymmetric
split-step method, and (c) symmetric split-step method.

In the split-step method, the fiber is divided into sections, where for each section we
perform the integration:

E(z+h,t) =exp((D+N))E(=1). ()

Although the linear and nonlinear operators can each be evaluated exactly when they
appear in isolation, this is not the case in (4). Two popular approximations to (4) are the
asymmetric split-step method (A-SSM) approximation (Fig. 1a):

E(z+h,t)ze”f’e”NE(z,t), (5)
and the symmetric split-step method (S-SSM) approximation (Fig. 1b), where the linear
operator is split into two parts to be evaluated on either side of the nonlinear operator:

E(z + h,t) ~ ehé/ze"ﬁel’é/zE(z,t) . (6)
The accuracy of the two approximations can be compared using the Baker-Hausdorff
formula (Weiss & Maradudin, 1962):

www.intechopen.com



470 Optical Fibre, New Developments

PO (U 17~ 272
exp( )exp(b) exp[a+b+5[a,b}+E[a—b,[a,bﬂ+---], (7)
where [&,I;} — ab—bi is the commutator. It can be shown that the A-SSM and S-SSM lead to:
D _hN _ A Y 1 2l N
ee —exp(h(D+N)+Eh [D,N}+ j (8)
e”f’/zeme”f’/zzexp h(f)+N)+lh3 N+B, N,B o )
6 2 2

In (8) and (9), all other terms inside the exponential apart from h(f) +N ) are error terms.

When high accuracy is required, the S-SSM has superior performance because the error is
third order in h, whereas the error in the A-SSM is only second order in h. Split-step
methods with accuracy higher than third order have been studied in (Muslu & Erbay, 2005),
but have higher complexity. In backpropagation, high accuracy is generally not required
because the signal is already corrupted by noise. Depending on the SNR and the power
penalty requirement, a global relative accuracy of ~10-3 is typically sufficient. Thus,
computational cost, and the ability to parallelize and pipeline the algorithm are more
pertinent considerations for real-time implementations. The S-SSM is considered here
because it is possible to combine the linear half-step operators between adjacent sections so
there is no difference between the complexities of S-SSM and the A-SSM (Fig. 3c).

To propagate a signal using (5) or (6), we can evaluate the linear operator as a multiplication
by an all-pass filter in the frequency domain:

T {exp(hf))E(z,t)} = exp(h. /—{f)}) /—{ E(z,t)}
10
:exp([ > +]&a) +]éa) jh]E(z,a)) i

where E (Z,a)) is the Fourier transform of the time-domain signal E(Z,t) . This is known as

the split-step Fourier method (SSFM).
The nonlinear operator, on the other hand, is most easily evaluated as a phase rotation in
time:

exp(hN)E(z,t)=exp(j7h|E(z,t)|2)E(z,t). (11)

In contrast with the linear operator, the nonlinear operator depends on signal amplitude.
One way to improve the accuracy of the SSM is to use the trapezoidal rule for the integral of

N . For the 5-SSM, we have (Agrawal, 2001):

E(z+ht) =exp(gf)jexp£m Jexp (2.1)
e [ T e
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Since N (z+h) = ]';/|E(z+h,t)|2 depends on the output, (12) is solved iteratively using the

numerical procedure in Fig. 2. We initially assume that N (z+h)zN (z). Using (12), we

compute an updated estimate of the output, E (Z + h,t) , which enables a new estimate for

N (z+h). We then apply (12) again, and so forth, until convergence or until a preset number

of iterations is reached. This method is known as the iterative, symmetric SSFM (IS-SSFM).
Since iteration is time-consuming, a faster, but less accurate non-iterative method can also be
used. These are:

E(z+h,t)=~ exp(hﬁ)exp(hN(z))E(z,t) , and (13)

E(z+h,t) zexp(gﬁjexp(m(z+h/z))exp(§15jg(z,t) (14)

for the A-SSM and S-SSM, respectively. Note that for non-iterative case (NA-SSM), the order
of the operators is based on the heuristic that nonlinear effects occur at high power, which is
typically found at the beginning of a fiber section unless backward Raman pumping is used,
so for large step sizes, the nonlinear operator should be applied first.!

The SSFM algorithm is thus summarized in Fig. 3. The linear and nonlinear operators are
successively evaluated in the frequency- and time-domains, with fast Fourier transforms
(FFT) and inverse fast Fourier transforms (IFFT) used to switch between the domains. The
complexity of the algorithm is dominated by the Fourier transforms, since the evaluation of

an N-point FFT or IFFT requires O(N log N ) operations, whereas the filtering and phase
rotation operations in (10) and (11) are only O(N ) .

1 In backpropagation, we would apply the linear operator first.
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Fig. 2. Iterative, symmetric split-step method evaluation.

In offline simulations, it is possible to take the FFT/IFFT of the entire signal. This approach
has high computational cost due to a large N, and cannot work in real-time systems. As (10)
is a linear filtering operation, well-known methods can be used to design a digital filter that

By

approximates H(®)= exp[(—%+ i %a)2 + ]awajhj over the frequency range of interest,

|a)| S27Z/T , where T is the sampling period. If a finite-impulse response (FIR) filter is

employed, the required filter length for a target accuracy will be proportional to the impulse
duration of ~ 27z| ,32| / T? samples. It is also possible to use an infinite-impulse response (IIR)

filter to reduce the tap requirement (Plura et al., 2001). However, IIR filters are not desirable
for real-time implementation because the delay of digital multipliers is typically much
longer than a symbol period. Hence, an IIR filter output can only respond to input samples
after this multiple-symbol delay has elapsed. Since FIR filters have no feedback, they are not
constrained by delay. Moreover, FIR filters can be parallelized and efficiently implemented
in the frequency-domain (Oppenheim & Schafer), and are therefore more suitable for real-
time implementation. Other methods of evaluating the linear operator, such as using
wavelets have studied in (Kremp & Freude, 2005; Goldfarb & Li, 2009), and may lead to
further computational savings compared to the standard SSFM.
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Fig. 3. (a) S-SSM with optional iterative procedure for solving each section. (b) S-SSFM with
optional iterative procedure for solving each section. (c) If non-iterative method is used,
adjacent linear operators can be combined so the total complexity is the same as the A-SSM.

2.2 Step Size Selection

The SSFM can be made increasingly accurate by reducing the step size h. For a given
numerical accuracy, the step size requirement was studied in (Sinkin et al., 2003) and
(Zhang & Hayee, 2008). Traditionally, the step size was selected based on the characteristic
lengths of the system, which are the distances over which each impairment induces one
radian of phase distortion. For CD and nonlinearity, these are:

lep ~ 2/ S, , and (15)
he ~1/¥P,, (16)
where ®,, is the highest frequency component of the signal and P, is the launched
power.2 We can bound the maximum distortion of each step by setting:
h= min(q)CDZCD’(DNLlNL) . (17)
The choice of ®,, and ®,;, depends on the accuracy required. Since CD is usually the
larger impairment, (Sinkin et al., 2003) found that setting h based on CD walkoff length

2 Strictly speaking, no signal is bounded in frequency. For single-carrier signals, we can
define @,, =27R, where R, is the symbol rate. For OFDM, we define o,,, = 27[(Nu + 1)Afs ,

where N, is the number of used subcarriers and Af, is the subcarrier frequency spacing.
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gives good numerical performance for both single- and multi-channel systems over the
accuracy range of interest.

Another approach is to bound the error of each step directly. (Sinkin et al., 2003) proposed a
“local error method” approach, where the step size is varied throughout a fiber to ensure

|Et - ESSM” / ||Et|| between the numerical SSM solution and the

that the relative local error 6 =

true NLSE solution is constant for every step. Relative local error is related to the closeness
with which the A-SSM and S-SSM in (5) and (6) approximate the integral in (4). According

to (8) and (9), the error in the exponential involves the commutator of D and N . (Rieznik et
al., 2005) used quantum mechanics to derive results, while (Zhang & Hayee, 2008) used a
related approach that considered the change in pulse width when the ordering of operators
is swapped. Both analyses produced the same result that to keep relative local error
constant, the step sizes of the A-SSM and S-SSM should be:

hz(z)zAg/[yp(z)|ﬂ2|a)iax]and (18)

1 (z)= Ag/ [7p(z)(|,az|w;ax )2} . (19)

In comparison with (17), the dispersion and nonlinear parameters have a multiplicative
contribution in h. This is intuitively satisfying, since the NLSE can be solved analytically in
the limit when either dispersion or nonlinearity is zero, allowing the use of an arbitrarily
large step size. Secondly, the step size requirement varies with z because power is
decreasing with distance.

Ultimately, signal propagation involves evaluating many steps of the SSM. The parameter of
interest is not the error of each step, but the global relative error between the numerical
solution and the true NLSE solution over the entire propagation path. In WDM transmission
over multiple spans of fiber, (Zhang & Hayee, 2008) showed that global error grows linearly
with the number of spans. To keep global error constant, Ag/h or A&/h should be kept

constant. For the A-SSM, h should therefore vary as 1/ | B, 1/a?,, and 1/ P(z) with respect
to the dispersion strength, signal bandwidth, and signal power; while for the S-SSM, h
should vary as 1/ | B, 1}, and 1/ JP (Z) . These rules provide useful guidelines on the

change in the complexity of backpropagation as system parameters are varied. For example,
a WDM signal with N, channels has roughly N, times the bandwidth and N, the power

of a single channel, so using the S-SSM, complexity increases as N2> . Whereas a typical step

ax

size for simulating a single wavelength channel is tens of kilometers, the requirement for a
16-channel WDM signal is reduced to less than 100 meters.

Finally, although local error methods may be computationally efficient, a variable step size
may not be desirable because it will require different filter coefficients and FFT sizes for each
linear operator of the different sections. Practical implementation may dictate using a
constant step size for each fiber type in the channel, in which case, (18) or (19) may still be
used, but a single /1 is computed for each fiber replacing P(z) with the maximum power P ,,.
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3. System Model

We use the generalized transmission model shown in Fig. 4. At the transmitter, a digital
signal processor (DSP) converts input symbols into four digital signals corresponding to the
I and Q components of the two transmitted polarizations. These are converted to analog by
arbitrary waveform generators represented by digital-to-analog converters (D/A), driving a
pair of Mach-Zehnder (MZ) modulators that perform upconversion onto an optical carrier.
The channel is comprised of a concatenation of single-mode fiber (SMF) spans, with inline
amplification and dispersion-compensation fiber (DCF) after each span. At the receiver, the
optical signal is mixed with a local oscillator (LO) laser through a network of optical hybrids
and photodetectors (PD), yielding electronic signals corresponding to the I and Q
components of the two received polarizations. These are synchronously sampled and

digitized by analog-to-digital (A/D) converters at a rate of 1/T =(M/K)(1/T,), where T, is

S

the symbol period and M/K is a rational oversampling rate, and then processed by a DSP.

" Electricalto-Optical |
| Upconversion E
| Digital
Data —i Signal R | Rt detloteiniala
In ' | Processing E CHANNEL E
E ! 1 :
E ! SMF :
. TRANSMITTER i i
\Vi
i Optical-to-Electrical i E ) ) i
! Downconversion i ! XNSpan:
; A, L
| Digital Ha7D) Hybridj :
Data ! ]‘:5)11511: 211 /D -@= |
Out i Processing[IA/D 90° i
! Hybrid |
! 1A /D) 1
: (Vg T M 00
' LO
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Fig. 4. Coherent system with digital signal processing at the receiver and/or transmitter.

A defining feature of the system shown is that baseband signals equivalent to the
transmitted (and received) optical fields are available at the transmitter (and receiver). This
enables an arbitrary waveform be transmitted over the channel, and enables arbitrary
manipulation of the received waveform for recovery of the transmitted symbols. For
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example, the transmitter DSP can implement any signal pre-distortion algorithms, including
CD pre-compensation, nonlinear phase noise pre-compensation or transmitter-side
backpropagation. Similarly, the receiver DSP can implement any algorithm to combat signal
distortion by the channel, including linear equalization, nonlinear phase noise post-
compensation, receiver-side backpropagation, carrier recovery and clock recovery. We note
that Fig. 4 is a canonical model for any modulation format. In OFDM, for example, the DSP
algorithm at the transmitter and receiver include FFT and IFFT operations to convert
between frequency-domain symbols and time-domain signals. For single-polarization
transmission, the unneeded MZ modulator and D/As can be removed; while for single-
carrier transmission, pulse shaping can be performed digitally by the DSP, or a pair of MZ
modulators for pulse carving can be inserted before or after the data modulators.

4. Backpropagation

The NLSE is an invertible equation. In the absence of noise, the transmitted signal can be
exactly recovered by “backpropagating” the received signal through the inverse NLSE given
by:

OE A

—= (—D—N)E : (20)
This operation is equivalent to passing the received signal through a fictitious fiber having
opposite-signed parameters (Fig. 5a). It is also possible to perform backpropagation at the
transmitter side by pre-distorting the signal to invert the channel, and then transmitting the

pre-distorted waveform (Fig. 5b). In the absence of noise, both schemes are equivalent. We
shall focus on receiver-side backpropagation.

Backpropagation operates directly on the complex-valued field E(Z,t) . Hence, the
technique is universal, as the transmitted signal can have any modulation format or pulse
shape, including multicarrier transmission using OFDM. Moreover, as backpropagation
simply involves finding a numerical solution to the NLSE, the methods and step size
settings developed in Section 2 are applicable.

Some differences between optical system simulation and impairment compensation should
be noted. In the former, knowing the input to a fiber enables the output be computed to
arbitrary precision; whereas in backpropagation, noise prevents exact recovery of the
transmitted signal. It has been demonstrated that in the presence of noise, a modified
backpropagation equation is effective in compensating nonlinearity:

EBP(Z,t)=exp(—h(f)+fN))EBP(z+h,t), (1)
where 0<£ <1 is the fraction of the nonlinearity compensated. For every set of system
parameters, there exists an optimum ¢ that minimizes the mean square error (MSE)
between the transmitted signal E(0,#) and the backpropagation solution Eg,(0,). In zero-

dispersion fiber, for example, where backpropagation is equivalent to nonlinear phase
rotation, it was shown that £ =0.5 is optimal (Ho & Kahn, 2004).

The existence of an optimum ¢ can be appreciated by considering that in a typical fiber, the
magnitude of the dispersion operator is much greater than the nonlinear operator. Thus,
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nonlinearity can be viewed as a perturbation to a mostly dispersive channel. The optimum
phase to de-rotate at each backpropagation step depends on the accuracy of Ejg, (Z,t) as an

estimate of E (Z,t) . The more accurately the receiver estimates E (Z,t) , the closer we can set
& to one, since we are confident that the nonlinear phase rotation will lead to an an output

closer to the original signal. Conversely, if E(zt) is not known accurately, error in

amplitude will be converted to random phase rotations by the nonlinear operator heN,
yielding an output that is even further away from the desired signal in Euclidean distance.
Hence, the optimum & depends on the received SNR as well as any uncompensated
distortions that are present during backpropagation. In particular, simulation results in
Section 4.1 will show that system performance depends on the dispersion map, owing to
interaction between signal and noise. Thus, the optimum¢ is also dependent on the
dispersion map and other system parameters, and needs to be individually optimized for
each application.

I Receiver-side |
I Backpropagation!

|
a’ﬂ2’ﬁ3’7 : _a/_ﬂzl_ﬂg,/_yl

. (21)
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| |
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Fig. 5. (a) Transmitter-side and (b) receiver-side backpropagation.

4.1 Single Channel Results

The performance improvement enabled by backpropagation can be seen in Fig. 6, where
214 Gb/s RZ-QPSK was transmitted over 25x80-km spans of SMF, with loss fully
compensated after each span, and 10% residual dispersion compensation per span (Fig. 6a).
The fiber and EDFA parameters are shown in Table 1, and the system dispersion map is
shown in Fig. 6c. At intermediate points along the fiber, the accumulated dispersion
(quantified in terms of group delay difference per unit wavelength) is much larger than a
symbol interval, so the amplitude profile of the propagated signal differs significantly from
that of either the transmitted or received signal. Interaction between dispersion and
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nonlinearity leads to strong IFWM, and the nonlinear phase de-rotation method (NLPN +
Lin. Eq.) offers no performance gain over linear equalization alone (Fig. 6d). Fig. 7 shows the
constellations obtained at the output of each method at a launched power of 0 dBm. Rather
than spiral-shaped, circular clusters are observed in Fig. 7a, so nonlinear phase de-rotation is
not effective. In contrast, even a crude backpropagation approximation: NA-SSFM with a
step size equal to the length of a span (Fig. 6b), improves performance at high power (Fig.
6d).

EDFA | EDFA
SMF DCF #1 4
Attenuation (& ) 0.2 dB/km 0.6 dB/km Gain G G
Dispersion ( 3,) 17 ps/nm =80 ps/nm Noise Figure 5dB 5dB
1(\;0 I)‘h“ear parameter | 6 0013 m w1 | 0.0053 mIw-
0% RDPS: 17 km
Length (L) 80 km 10% RDPS: 15.3 km
100% RDPS: 0 km
Table 1. Fiber and EDFA simulation parameters.
[ SMF DCF i
4--?‘_ Hsmf (0)) ‘@‘_ Hdcf (60)
= 17 s ong | &Y aerLegs et |- §
e
L xN, span - ¢ xN, span
(@) (b)
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A Lin. Eq. Only
45001 ] sl X NLPN+Lin. Eq.
4000} 1 + A-SSFM
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Fig. 6. (a) Long-haul transmission over multiple identical spans of fiber with amplification
and dispersion compensation, (b) backpropagation model using A-SSFM with step size
equal to a span length, (c) dispersion map, (d) system performance using different channel
compensation algorithms for 21.4 Gb/s RZ QPSK over 25x80-km SMF with 10% RDPS.
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Fig. 7. Constellation diagrams obtained using (a) linear equalization only, (b) nonlinear
phase noise compensation + linear equalization, and (c) backpropagation using A-SSFM
with step size equal to a span length.
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Fig. 8. System performance for 21.4 Gb/s RZ QPSK over 25x80-km SMF with values of
different residual dispersion per span (a) 0%, (b) 5%, (c) 10%, and (d) 100%.

System performance is strongly dependent on the dispersion map. In Fig. 8, RZ-QPSK at

21.4 Gb/s was again transmitted over 25x80-km spans of SMF with loss fully compensated
after each span, but the residual dispersion per span (RDPS) was varied. In addition,
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different sampling rates were used for each map. It is observed that performance improves
with (i) increased CD undercompensation, and (ii) increased oversampling. The first result
can be explained because DCF incurs loss and nonlinearity. In coherent systems, CD can be
compensated by a digital linear equalizer without undesired effects, so DCF is unnecessary
and should be removed. This reduces the amplification requirement and thus optical
amplifier noise. In addition, dispersion facilitates walkoff between the signal and out-of-
band noise, reducing their nonlinear interactions. Increasing oversampling also improves
performance because digital backpropagation becomes a better approximation to ideal
analog backpropagation. As the nonlinear term in the NLSE is third order in the electric
tield, there is a performance gain when backpropagation is performed at an oversampling
ratio of at least 3.

0.257 yaN NA-SSFM 0.25]
X IS-SSFM
0.2 O Lin. Eq. Only 02
}3 —————— AWGN Limit B
T 0.15 S 0.15
[} 2]
— —
2 £
0.1 w 0.1
(0] (0]
[2]) (2]
[4\] ©
& 0.05f & 0.050
0 ‘ ‘ ‘ ‘ ‘ ! : ! 0 ‘ : : ‘ ‘ : ‘ )
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
No.ofSpans No.ofSpans
(@) (b)

Fig. 9. System performance for 21.4 Gb/s RZ QPSK 100% RDPS versus number of 80-km
spans at (a) 2x and (b) 3x oversampling.

0.251

Phase Errors.d. (rad)
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Fig. 10. Performance versus number of taps used to emulate linear operator for 21.4 Gb/s
RZ QPSK over 25%80-km SMF with 100% RDPS.
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With DCF removed, Fig. 9 shows the increase in transmission distance enabled by
backpropagation. For a target bit-error ratio (BER) of 10-3, the phase error standard
deviation should be less than 0.23 radians. Whereas linear equalization achieves a system
reach of 2,000 km (25x80-km spans), backpropagation extends this to over 6,400 km (80x80-
km spans). At 2x oversampling, backpropagation using the IS-SSFM with 20 steps per span
gives the same performance as the crude NA-SSFM method with span-length step size. This
is because at a low oversampling rates, the backpropagated signal is not very accurate, and
numerical errors due to insufficient sampling rate are the dominant effect. At 3x
oversampling, IS-SSFM offers somewhat better performance, but has much higher
computational cost.

To estimate the complexity of backpropagation, Fig. 10 shows the filter length required to
emulate the linear operator in NA-SSFM for the system considered in Fig. 9, when & is equal
to one span at 3x oversampling. Approximately 70 taps are required. The most efficient
realization of an FIR filter this length is frequency-domain implementation (Oppenheim &

B:Njp+B-1=2"

Schafer), whose complexity is min (%(N ,+B- 1)(10g2 (N, +B-1)+ 1)] real

multiplications per sample, where B is the block size, and N, is the filter length. The

nonlinear operator further requires 7 real multiplications per sample.
Table 2 compares the complexity of backpropagation with linear equalization, where the

filter length requirement is 27|3,|N,,, L., R (M/K) = 47 taps at 3/2x oversampling. The

span"—span
complexities of direct implementation of both methods are also shown. It is observed that
backpropagation is two orders of magnitude more computationally expensive than linear
equalization. We also note that the length of the linear operator, at 70 taps, is much larger

L,.R: (M/K) (Ip, et al. 2008). This is due to amplitude ringing in
the frequency domain when an FIR filter is designed using the windowing method. Since

backpropagation requires multiple iterations of the linear filter, amplitude distortion due to
ringing accumulates (Goldfarb & Li, 2009).

than expected from 27|,

Linear Equalization Backpropagation
Direct Implementation 188 21515
Fl.“equency dorpam m 3992
implementation

Table 2. System complexity in real multiplications per symbol for linear equalization and
backpropagation for 21.4 Gb/s RZ QPSK over 25x80-km SMF with 100% RDPS

5. Multichannel Backpropagation

In DWDM transmission, the ability to overcome interchannel nonlinear impairments
depends on the system design. Consider the two systems shown in Fig. 11. In point-to-point
transmission, cross-phase modulation (XPM) and four-wave mixing (FWM) are
deterministic effects. Hence, they can be effectively compensated by backpropagation. In a
mesh network, however, signals of different wavelengths can be dynamically routed by
reconfigurable add/drop multiplexers (ROADMs). Signals received in adjacent channels
may not be the same signals that were transmitted in adjacent channels. Two sources of
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error can arise when backpropagation is performed. Firstly, the receiver has no knowledge
of the channels that were dropped, so nonlinear effects involving their fields cannot be
compensated. Secondly, nonlinear effects arising from channels added at a intermediate
nodes do not extend all the way back to the transmitter, hence when the received signal is
fully backpropagated, spurious nonlinear effects will result. In the worst case, channels are
either added or dropped just prior to the receiver®. Both uncompensated and spurious
nonlinear effects can severely degrade system performance, especially if the channels added
or dropped are near neighbors of the desired channel. Hence, backpropagation may not
always be effective in mitigating nonlinear effects in mesh networks. In such systems, cross-
channel nonlinearity may still be reduced using dispersion-unmanaged transmission,
exploiting walkoff to suppress interchannel nonlinearity. The receiver can then perform

single-channel backpropagation to mitigate SPM.

— QD QD QD
v

v v
Tx ((XD >= R
®) ~ N -
1 L

Fig. 11. Wavelength-division-multiplexed (WDM) transmission. (a) Point-to-point link,
backpropagation can effectively mitigate interchannel nonlinearity, (b) Mesh network,
backpropagation has limited benefit.

(@)

For point-to-point links, multichannel backpropagation can be used to mitigate interchannel
nonlinearity. This was studied in (Mateo et al., 2008). Since the bandwidth of a DWDM
signal is typically much greater than that of a single photoreceiver, we can need to use a
structure like that shown in Fig 12a, where a bank of local oscillator lasers are tuned to the
frequencies of the channels, translating the signal around each LO frequency to baseband.
Provided the frequencies and phases of the local oscillators are synchronized, possibly using
mode-locked lasers, the full electric field of the WDM signal can be reconstructed via the
coherent sum:

E(z,t):ZEm(z,t)exp(—ija)t), (22)

where Aw is the channel spacing. Recovery of E(Z,t) enables the receiver to perform a

“total-field” backpropagation using the procedure discussed in Section 2. The step size

3 Conversely, for transmit-side backpropagation, the worst-case scenario involves channels
added or dropped near the transmitter.
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equations derived previously can also be re-used by substituting @, to be the bandwidth

of the WDM signal, and P, to be the total transmitted power.

]
Coherent DSP
o, * | Receiver
2
O 4 . Total Field
(a) — 3 Phase- Back- >
< Lock Propagation
E, .|k
Cohe}‘ent Tl[ ]
o * Receiver
b ~jAGT(N/2-1)k
\
e I
:-Coupled NLSE | DSP
E |k
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U 2 | |
(b) — 3 ° | . Nonlinear 1|
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%‘1 | _ ] I _ |

\
Fig. 12. Multichannel backpropagation using (a) total-field NLSE, (b) coupled NLSE.

In most installed fibers, CD results in low FWM efficiency. If (22) is substituted into the
NLSE in (3), and the FWM terms are neglected, the total-field NLSE reduces to a set of
coupled equations each describing the evolution of an individual WDM channel through the
channel (Leibrich & Rosenkranz, 2003):

OE, (A o
g—(DﬁN,-)EH (23)

- 1 o B, 0 B 0

Df=—5a—ﬂ1,i——1i—+ . (24)

ot T 21orr BloP’

j#i

N, = jy(|Ei|2 +2Z|Ej|2] . (25)

We observe that different DWDM channels have different group velocities, dispersions, and
dispersion slopes, whose values are given by the Taylor Series expansion

B..= Z B (iAa))s / s!, where S, £ 3, denotes the values defined at the center wavelength.

In addition, the nonlinear operator for channel-i in (25) has contributions from the fields of

2
the other channels. But since this interaction only depends on the amplitude |E j| and is
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therefore phase-insensitive, synchronization of the local oscillators is not required. The
coupled NLSE may therefore be more practical to implement than the total-field NLSE. The
receiver structure for the coupled NLSE is shown in Fig. 12b.

6. Dual-polarization Systems

6.1 Signal Propagation

In real fibers, birefringence causes PMD. Since it is impractical - if not impossible - to
estimate the Jones matrix of each increment in the fiber, the performance of backpropagation
will be degraded. PMD may ultimately limit the signal bandwidth over which
backpropagation can be performed. Additionally, polarization-multiplexed transmission
enables the doubling of capacity keeping the same receiver sensitivity in SNR per bit. To
study signal propagation in two polarizations, we use the vector NLSE:

%:(f)HQ)E, (26)
A 1 o .1 o 1 0’
D=—Ea—ﬁ1§—]2—!ﬁz¥+593¥/ (27)
A, 1
N = ];/DEFI—E(E”%E)%] (28)

In these equations, E = [Ex E, ]T is the Jones vector of the electric field, and a, B,, B, and

B, are the loss, group velocity, CD and dispersion slope parameters. The 2x2 matrix
representation of the parameters allows the most general polarization dependence. For
example, setting a to have unequal eigenvalues enables polarization-dependent loss (PDL)
be modeled. In comparison with (3), the nonlinear operator has an extra term that arises as a
result of the cross-polarization nonlinearity. The matrix o, is a Pauli spin matrix expressed

in the standard notation of (Gordon & Kogelnik, 2000):

1 0 01 0 —j
o=y 11" %2=|1 o and0'3:j 0l (29)
Section 1 Section 2 Section Ngec
DGD: 7 2} TN

PSP: (91 7 ¢1 ) (92 ’ ¢2 ) (QNSCC 7 ¢NSCC )
E(0,t) —Q ) @ ) -+ @TC—D—E(Lt)
0 R1~)2 6 RZ%B I{(NSCC —1)—>NSQC¢

Fig. 13. Model of a fiber with polarization-mode dispersion.

In most fibers, the polarization dependence of a, B, and B, is negligible, so they may be

replaced by scalars. To model arbitrary PMD of all orders, a fiber is typically divided into
short sections, each possessing only first-order PMD, and the principal states of polarization
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(PSP) are randomly rotated between adjacent sections (Fig. 13). Thus, for the k-th fiber
section, P, can be expressed as:

[3](Z):R(ak/¢k)(%ol)RH(9k’¢k)’ (30)

where,

R(9k1¢k)=

cosd, cosg — jsing, sing, sing, cosd, + jcosd, sing, } G1)

siné, cosg, + jcosf, sing, cosb, cosg, + jsiné, sing,
is a generalized polarization rotation matrix whose columns are the Jones vectors of the

PSPs. The first column denotes the slow axis and is a unit vector on the Poincaré sphere with
azimuth and ellipticity angles of 26, and 2¢, , respectively. ¢, is the differential group

delay (DGD) of the section, and is a Maxwellian-distributed variable with mean 7, /I,

pmd

where 7, is the mean PMD of the fiber and / is the section length.

In order to model PMD accurately, the section length should be less than the PMD
characteristic length given by:

Lowp ~ (]—;/?PMD )2 . (32)

Typically, this number is large compared to the characteristic length of CD. Hence in
practical fibers, the step sizes derived in Section 2.2 are sufficiently fine for accurate
modeling of PMD.

The dual-polarization NLSE can be solved using the split-step methods introduced in
Section 2 with the linear and nonlinear operators applied successively in the frequency- and
time-domains. Note that for clarity, we have expressed (26) to (28) in Jones co-ordinates. For
implementation, the nonlinear operator of the vector NLSE has a slightly simpler form when
the electric field is specified in circular polarization co-ordinates.

6.2 Backpropagation

Like the scalar NLSE, the vector NLSE is invertible. In the absence of noise, knowledge of
the fiber parameters enables backpropagation to exactly invert the channel. We define the
backpropagation equation as:

E(z,t):exp(—h(ﬁ+§N))E(z+h,t), (33)

where D and N are given in (27) and (28), and 0<¢<1 is a parameter to be optimized.
We note that reversing the sign of the PMD term —B{" =R(6,,¢,)(-%0,)R"(6,,4,) has the

intuitive meaning of rotating the signal into the fiber PSPs and then undoing the section’s
DGD. The difference between the scalar and vector NLSE is that PMD makes the linear

operator hﬁ(z) dependent on z even if a constant step size is used. Fig. 14 shows dual-

polarization backpropagation. The order of the linear operators applied should be in reverse
order to forward propagation.
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Fig. 14. Dual-polarization backpropagation.
If the Jones vector for each fiber section not be known at the receiver, the best estimate of the
linear operator is:

a1 100 108

D™ Z—E“—]z—!ﬁzﬁJriﬁs?'
The receiver shown in Fig. 15 can be used, where a linear equalizer follows
backpropagation. In the absence of nonlinearity, backpropagation inverts the fiber CD, so
PMD is mitigated by the linear equalizer. At realistic transmission distances and symbol
rates, PMD has only short duration, so we expect the signal amplitude profile will not be
significantly distorted by PMD. Hence, backpropagation with the linear operator in (34) can
still compensate most of the interactions between CD and nonlinearity. The linear equalizer
compensates PMD and any residual linear effects not already compensated by
backpropagation. This receiver structure is general. If backpropagation includes PMD, the
linear equalizer is reduced to a fixed downsampler.

(34)
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Fig. 15. Backpropagation receiver with output linear equalizer to mitigate residual linear
distortion for (a) single-carrier, (b) OFDM.

6.3 Results

The performances of single-carrier and OFDM at 107 Gb/s over 25x80-km SMF are
compared for different dispersion maps in Fig. 16. The fiber and EDFA parameters are
shown in Table 3. Gain is fully compensated after each span, but unlike Section 4, the
individual gains of the two EDFAs G, and G, are optimized for best performance. For

single-carrier, we assume polarization-multiplexed QPSK (PM-QPSK) with 50% RZ pulse
shaping, corresponding to 4 bits encoded per symbol. For OFDM, the FFT-size (N, ),

number of used subcarriers (N, ) and prefix length (N ) are shown for different dispersion

pre
maps in Table 4, and PM-QPSK was transmitted on all the used subcarriers. The metric of
comparison is the phase error standard deviation, which in the absence of nonlinearity,

satisfies o, =,/1/2y, , where y,is the SNR per symbol. For OFDM, all the subcarriers were
found to have similar o, , so the average o, across all the subcarriers is shown. In each plot

shown in Fig. 16, linear equalization is compared to different backpropagation methods. IS-
SSFM denotes using the iterative, symmetric SSFM for solving the inverse NLSE, with the
same step size equal to that used in simulating forward propagation. NA-SSFM denotes
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using the crude non-iterative, asymmetric SSFM with a step size equal to one span. For each
method, comparison is made with the receiver including PMD (15 given by (27)) and
excluding PMD ([3 given by (34)) during backpropagation.

EDFA | EDFA
SMF DCF 41 49
Attenuation (@) 0.2 dB/km 0.5 dB/km Gain G, G,
Dispersion ( £3,) 17 ps/nm -85 ps/nm Noise Figure | 4dB 4 dB
Dispersion Slope
(B) 0.09 ps/nm?2/km -0.3 ps/nm?/km
3

Nonlinear parameter
(7) 0.0013 m'W-1 0.0053 m-1W-1
Mean PMD (7,,,,) 0.1ps/ \/; 0.1 ps/ Vkm

0% RDPS: 16 km
Length (L) 80 km 10% RDPS: 14.4 km

100% RDPS: 0 km

Table 3. Fiber and EDFA simulation parameters.

Nprc’ Nu Nc
0% RDPS 4 13 16
10% RDPS 43 213 256
100% RDPS 391 1706 2048

Table 4. OFDM parameters used for different dispersion maps.

The results show that at 0% RDPS using linear equalization only, single-carrier outperforms
OFDM, because the FWM between subcarriers makes OFDM susceptible to nonlinearity. At
100% RDPS using backpropagation, the performances of single-carrier and OFDM become
similar, because dispersion causes both signals to become approximately Gaussian-
distributed regardless of the signal profile at transmission. It is observed that using the more
accurate IS-SSFM to solve the inverse NLSE despite the receiver not knowing the channel
PMD gives better performance than the receiver knowing the PMD but using the less
accurate NA-SSFM. As expected, IS-SSFM (including PMD) delivers the best performance,
reducing phase error standard deviation by 1 to 3 dB compared to linear equalization only.
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Fig. 16. System performance for polarization-multiplexed 107-Gb/s transmission through
25x80-km SMF for (a) single-carrier at 0% RDPS, (b) OFDM at 0% RDPS, (c) single-carrier at
100% RDPS, and (d) OFDM at 100% RDPS.

7. Further Discussion

The ability of backpropagation to undo nonlinear effects depends on how accurately it can
estimate the signal amplitude profile at every point in the fiber. Noise, PMD, and other
distortions not estimated by the receiver, but which change the signal intensity profile, thus
degrading performance. Since these effects accumulate with distance, the further a signal is
backpropagated, the higher the relative error. In receiver-side backpropagation, the signal
intensity profile is known accurately at the receiver, but becomes progressively less accurate
as it is traced back to the transmitter. We may therefore expect a small improvement in
performance using the setup in Fig. 17, where backpropagation is split evenly between the
transmitter and receiver: transmit-side backpropagation inverts the first half of the channel,
while receive-side backpropagation inverts the second half. To account for the change in
relative error with distance, the parameter ¢ should also vary with distance; a larger & is

used for the spans closer to the transmitter (and receiver), while a smaller ¢ is used for
spans further away, where the estimated signal intensity is less reliable.
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Fig. 17. Backpropagation at transmitter and receiver.

Since backpropagation reduces the effects of nonlinearity, the nonlinear regime of the
channel is pushed towards higher launched power (Fig. 18). This has the impact of
increasing the optimum launched power and the ultimate achievable capacity. With
backpropagation, deterministic nonlinearities do not decrease capacity as they can be
mitigated. Furthermore, dispersion-unmanaged transmission causes walkoff between signal
and out-of-band noise, reducing their nonlinear interaction. The ultimate limit to capacity
therefore arises as a result of nonlinear interaction between signal and in-band noise.

Capacity Linear Regime

/ Nonlinear Regime

Backpropagation
Linear
Equalization

Power

Fig. 18. Effect of backpropagation on capacity.

8. Conclusion

Backpropagation is a universal method for jointly compensating linear and nonlinear
impairments in an arbitrary channel. The method works independently of the modulation
format, and requires finding a numerical solution to the inverse nonlinear Schrodinger
equation, which is obtained by reversing the order of the fibers in the link and the signs of
the parameters of each fiber. The performance of backpropagation depends on how
accurately it estimates the signal amplitude profile at every point in the fiber. Noise, PMD,
and other effects not taken into account by the receiver can degrade performance. The best
system performance is obtained using dispersion-unmanaged transmission because walkoff
reduces nonlinear interaction between signal and out-of-band noise. Interaction between
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signal and in-band noise ultimately limits capacity. Using backpropagation in conjunction
with dispersion-unmanaged transmission extends the linear regime of the fiber, enabling
higher usable launched power and higher capacity.
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