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1. Introduction

First-pass gadolinium enhanced, myocardial perfusion magnetic resonance imaging (MRI) can
be used to observe and quantify blood flow to the different regions of the myocardium. Ulti-
mately such observation can lead to diagnosis of coronary artery disease that causes narrow-
ing of these arteries leading to reduced blood flow to the heart muscle.
A typical imaging sequence includes a pre-contrast baseline image, the full cycle of contrast
agent first entering the right heart ventricle (RV), then the left ventricle (LV), and finally, the
agent perfusing into the LV myocardium (Fig. 1). Images are acquired to cover the full first
pass (typically 60 heartbeats) which is too long for the patient to hold their breath. Therefore,
a non-rigid respiratory motion is introduced into the image sequence which results in a mis-
alignment of the sequence of images through the whole acquisition. For the automatic analysis
of the sequence, a proper alignment of the heart structures over the whole sequence is desired.

1.1 State of the art

The mayor challenge in the motion compensation of the contrast enhanced perfusion imaging
is that the contrast and intensity of the images change locally over time, especially in the re-
gion of interest, the left ventricular myocardium. In addition, although the triggered imaging
of the heart results in a more-or-less rigid representation of the heart, the breathing move-
ment occurs locally with respect to the imaged area, yielding non-rigid deformations within
the image series. Various registration methods have been proposed to achieve an alignment
of the myocardium. For example, Delzescaux et al. (Delzescaux et al., 2003) proposed a semi-
automated approach to eliminate the motion and avoid the problems of intensity change and
non-rigid motion: An operator selects manually the image with the highest gradient magni-
tude, from which several models of heart structures were created as a reference. By using po-
tential maps and gradients they eliminated the influence of the intensity change and restricted
the processing to the heart region. Registration was then achieved through translation only.

��

www.intechopen.com



)�*�+�,������	�����-���������.������������/

(a) pre-contrast baseline (b) peak RV enhancement

(c) peak LV enhancement (d) peak myocardial enhancement

Fig. 1. Images from a first-pass gadolinium enhanced, myocardial perfusion MRI of a patient
with chronic myocardial infarction (MI).

In (Dornier et al., 2003) two methods where described that would either use simple rectangu-
lar masks around the myocardium or an optimal masks, where the area with the high inten-
sity change where eliminated as well. Rigid registration was then achieved by employing a
spline-based multi-resolution scheme and optimizing the sum of squared differences. They re-
ported, that using an optimal mask yields results that are comparable to gold standard data set
measurements, whereas using the rectangular mask did not show improvements over values
obtained from the raw images. A two step registration approach was introduced by (Gupta
et al., 2003), the first step comprising the creation of a binary mask of the target area in all
images obtaining an initial registration by aligning their centers of mass. Then, in the sec-
ond step, they restricted the evaluation of the registration criterion to a region around the
center of mass, and thereby, to the rigidly represented LV myocardium. By optimizing the
cross-correlation of the intensities, complications due to the intensity change were avoided
and rigid registration achieved.
Others measures that are robust regarding differences in the intensity distribution can be
drawn from Information Theory. One such measure is, e.g. Normalized Mutual Informa-
tion(NMI) (Studholme et al., 1999). Wong et al. (Wong et al., 2008) reported its successful
use to achieve rigid motion compensation if the evaluation of the registration criterion was
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restricted to the LV by a rectangular mask. One more sophisticated approach to overcome the
problems with the local intensity change was presented by Milles et al. (Milles et al., 2007).
They proposed to identify three images (base-line, peak RV enhancement, peak LV enhance-
ment) by using Independent Component Analysis (ICA) of the intensity curve within the left
and the right ventricle. These three images then form a vector base that is used to create a
reference image for each time step by a weighted linear combination, hopefully exhibiting a
similar intensity distribution like the according original image to be registered. Image reg-
istration of the original image to the composed reference image is then achieved by a rigid
transformation minimizing the Sum of Squared Differences (SSD). Since the motion may also
affect the ICA base images, this approach was later extended to run the registration in two
passes (Milles et al., 2008).
Since rigid registration requires the use of some kind of mask or feature extraction to restrict
the alignment process to the near-rigid part of the movement, and, since non-rigid defor-
mations are not taken into account by these movements other authors target for non-rigid
registration. One such example was presented in (Ólafsdóttir, 2005): All images were regis-
tered to the last image in the series were the intensities have settled after the contrast agent
passed through the ventricles and the myocardium, and non-rigid registration was done by
using a B-spline based transformation model and optimizing NMI. However, the evaluation
of NMI is quite expensive in computational terms, and, as NMI is a global measure, it might
not properly account for the local intensity changes.
Some other methods for motion compensation in cardiac imaging have been reported in the
reviews in (Makela et al., 2002) and (Milles et al., 2008).

1.2 Our contribution

In order to compensate for the breathing movements, we use non-rigid registration, and to
avoid the difficulties in registration induced by the local contrast change, we follow Haber and
Modersitzki (Haber & Modersitzki, 2005) using a modified version of their proposed image
similarity measure that is based on Normalized Gradient Fields (NGF). Since this cost function
does not induce any forces in homogeneous regions of the chosen reference image, we com-
bine the NGF based measure with SSD. In addition, we use a serial registration procedure,
where only images are registered that follow in temporal succession, reducing the influence
of the local contrast change further. The remainder of this chapter first discusses non-rigid
registration, then, we focus on the NGF based cost measure and our modifications to it as well
as combining the new measure with the well known SSD measure. We give some pointers
about the validation of the registration, and finally, we present and discuss the results and
their validation.

2. Methods

2.1 Image registration

Image registration can be defined as follows: consider an image domain Ω ⊂ Rd in the d-
dimensional Euclidean space and an intensity range V ⊂ R , a moving image M : Ω → V,
a reference image R : Ω → V, a domain of transformations Θ := {T : Ω → Ω}, and the
notation MT(x) := M(T(x)), or short MT := M(T). Then, the registration of M to R aims at
finding a transformation Treg ∈ Θ according to

Treg := min
T∈Θ

(F(MT , R) + κE(T)) . (1)
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F measures the similarity between the (transformed) moving image MT and the reference, E
ensures a steady and smooth transformation T, and κ is a weighting factor between smooth-
ness and similarity. With non-rigid registration, the domain of possible transformations Θ is
only restricted to be neighborhood-preserving. In our application, the F is derived from a so
called voxel-similarity measure that takes into account the intensities of the whole image do-
main. In consequence, the driving force of the registration will be calculated directly from the
given image data.

2.1.1 Image similarity measures

Due to the contrast agent, the images of a perfusion study exhibit a strong local change of
intensity. A similarity measure used to register these images should, therefore, be of a local
nature. One example of such measure are Normalized Gradient Fields (NGF) as proposed in
(Haber & Modersitzki, 2005).
Given an image I(x) : Ω → V and its noise level η, a measure ǫ for boundary “jumps”
(locations with a high gradient) can be defined as

ǫ := η

∫

Ω
|∇I(x)|dx
∫

Ω
dx

, (2)

and with

‖∇I(x)‖ǫ :=

√

√

√

√

d

∑
i=1

(∇I(x))2
i + ǫ2, (3)

the NGF of an image I is defined as follows:

nǫ(I, x) :=
∇I(x)

‖∇I(x)‖ǫ
. (4)

In (Haber & Modersitzki, 2005), two NGF based similarity measures where defined,

F
(·)
NGF(M, R) :=−

1
2

∫

Ω
‖nǫ(R, x) · nǫ(M, x)‖2dx (5)

F
(×)
NGF(M, R) :=

1
2

∫

Ω
‖nǫ(R, x)× nǫ(M, x)‖2dx (6)

and successfully used for rigid registration. However, as discussed in (Wollny et al., 2008) for
non-rigid registration, these measures resulted in poor registration: (5) proved to be numer-
ically unstable resulting in a non-zero gradient even in the optimal case M = R, and (6) is
also minimized, when the gradients in both images do not overlap at all. Therefore, we define
another NGF based similarity measure:

FNGF(M, R) :=
1
2

∫

Ω
‖(nǫ(M)− nǫ(R)) · nǫ(R)‖2dx. (7)

This cost function needs to be minimized, is always differentiable and its evaluation as well as
the evaluation of its derivatives are straightforward, making it easy to use it for non-rigid reg-
istration. In the optimal case, M = R the cost function and its first order derivatives are zero
and the evaluation is numerically stable. FNGF(x) is minimized when nǫ(R, x)andnǫ(M, x)
are parallel and point in the same direction and even zero when nǫ(R, x)(x) and nǫ(M, x)(x)
have the same norm. However, the measure is also zero when nǫ(R, x) has zero norm, i.e.
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in homogeneous areas of the reference image. This requires some additional thoughts when
good non-rigid registration is to be achieved. For that reason we also considered to use a
combination of this NGF based measure (7) with the Sum of Squared Differences (SSD)

FSSD(M, R) :=
1
2

∫

Ω
(M(x)− R(x)2 dx (8)

as registration criterion. This combined cost function will be defined as

FSum := αFNGF + βFSSD (9)

with α and β weighting between the two parts of the cost functions.

2.1.2 Regularization, transformation space and optimization

Two measures are taken to ensure a smooth transformation: On one hand, the transformation
is formulated in terms of uniform B-splines (Kybic & Unser, 2003),

T(x) :=
(m−D)

∑
i=0

Piβi,D(x − xi) (10)

with the control points Pi, the spline basis functions βi,D of dimension D, knots xi , and a
uniform knots spacing h := xi − xi−1∀i. The smoothness of the transformation can be adjusted
by the knot spacing h.
On the other hand, our registration method uses a Laplacian regularization (Sánchez Sorzano
et al., 2005),

EL(T) :=
∫

Ω

d

∑
i

d

∑
j

∥

∥

∥

∥

∥

∂2

∂xi∂xj
T(x)

∥

∥

∥

∥

∥

2

dx. (11)

As given in eq. (1) the latter constraint will be weighted against the similarity measure by a
factor κ. To solve the registration problem by optimizing (1), generally every gradient based
optimizer could be used. We employed a variant of the Levenberg-Marquardt optimizer (Mar-
quardt, 1963) that will optimize a predefined number of parameters during each iteration
which are selected based on the magnitude of the cost function gradient.

2.2 Serial registration

As the result of the myocardic perfusion imaging over N time steps S := {1, 2, ..., N}, a series
of N images J := {Ii : Ω → V|i ∈ S} is obtained. In order to reduce the influence of the
changing intensities, a registration of all frames to one reference frame has been rules out and
replaced by a serial registration. In order to be able to choose a reference frame easily, the
following procedure is applied: For each pair of subsequent images (Ii, Ii+1) registration is
done twice, one selecting the earlier image of the series as a reference (backward registration),
and the second by using the later image as the reference (forward registration). Therefore, for
each pair of subsequent images Ii and Ii+1, a forward transformation Ti,i+1 and a backward
transformation Ti+1,i is obtained. Now, consider the concatenation of two transformations

Ta(Tb(x)) := (Tb ⊕ Ta)(x); (12)
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in order to align all image of the series, a reference frame iref is chosen, and all other images Ii

are deformed to obtain the corresponding aligned image I
(align)
i by applying the subsequent

forward or backward transformations

I
(align)
i :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ii

(

⊕i+1
k=iref

Tk,k−1(x)
)

if i < iref,

Ii

(

⊕i−1
k=iref

Tk,k+1(x)
)

if i > iref,

Iiref
otherwise.

(13)

In order to minimize the accumulation of errors for a series of n images one would usually
choose iref = ⌊ n

2 ⌋ as the reference frame. Nevertheless, with the full set of forward and back-
ward transformations at hand, any reference frame can be chosen.

2.3 Towards validation

In our validation, we focus on comparing perfusion profiles obtained from the registered im-
age series to manually obtained perfusion profiles, because these profiles are the final result
of the perfusion analysis and their accuracy is of most interest. To do so, in all images the my-
ocardium of the left ventricle was segmented manually into six segments S = {S1, S2, ..., S6}
(Fig. 2).

Fig. 2. Segmentation of the LV myocardium into six regions and horizontal as well as vertical
profiles of the original image series.

The hand segmented reference intensity profiles P
(s)
hand of the sections s ∈ S over the image

series were obtained by evaluating the average intensities in these regions and plotting those
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over the time of the sequence (e.g. Fig. 4). By using only the segmentation of the reference
image Iref as a mask to evaluate the intensities in all registered images, the registered intensity

profiles P
(s)
reg were obtained. Likewise, the intensity profiles P

(s)
org for the unregistered, original

series were evaluated based on the unregistered images.
In order to make it possible to average the sequences of different image series for a statisti-
cal analysis, the intensity curves K were normalized based on the reference intensity range

[vmin, vmax], with vmin := mins∈S,t∈S P
(s)
hand(t) and vmax := maxs∈S,t∈S P

(s)
hand(t) by using

P̂ :=
{

v − vmin

vmax − vmin

∣

∣

∣

∣

v ∈ P

}

. (14)

To quantify the effect of the motion compensation, the quotient of the sum of the distance
between registered and reference curve as well as the sum of the distance between unregis-
tered and reference curve are evaluated, resulting in the value Qs as quality measure for the
registration of section s:

QS :=
∑t∈S |P̂

(s)
reg(t)− P̂

(s)
hand(t)|

∑t∈S |P̂
(s)
org(t)− P̂

(s)
hand(t)|

(15)

As a result Qs > 0 and smaller values of Qs will express better registration.
As a second measure, we also evaluated the squared Pearson correlation coefficient R2 of
the manually estimated profiles and the unregistered respective the registration profiles. The
range of this coefficient is R2 ∈ [0, 1] with higher values indicating a better correlation between
the data sets. Since the correlation describes the quality of linear dependencies, it doesn’t
account for an error in scaling or an intensity shift. Finally, we consider the standard deviation
of the intensity in the six sections Si of the myocardium σsi ,t for each time step t ∈ S. Since the
intensity in these regions is relatively homogeneous, only noise and the intensity differences
due to disease should influence this value. Especially, in the first part of the perfusion image
series, when the contrast agent passes through the right and left ventricle, this approach makes
it possible to assess the registration quality without comparing it to a manual segmentation:
Any mis-alignment between the section mask of the reference image and the corresponding
section of the analyzed series frame will add pixels of the interior of the ventricles to one or
more of the sections, increasing the intensity range, and hence its standard deviation. With
proper alignment, on the other hand, this value will decrease.

3. Experiments and results

3.1 Experiments

First pass contrast enhanced myocardial perfusion imaging data was acquired during free-
breathing using 2 distinct pulse sequences: a hybrid GRE-EPI sequence and a trueFISP se-
quence. Both sequences were ECG triggered and used 90 degree saturation recovery imaging
of several slices per R-R interval acquired for 60 heartbeats. The pulse sequence parame-
ters for the true-FISP sequence were 50 degree readout flip angle, 975 Hz/pixel bandwidth,
TE/TR/TI= 1.3/2.8/90 ms, 128x88 matrix, 6mm slice thickness; the GRE-EPI sequence pa-
rameters were: 25 degree readout flip angle, echo train length = 4, 1500 Hz/pixel bandwidth,
TE/TR/TI=1.1/6.5/70 ms, 128x96 matrix, 8 mm slice thickness. The spatial resolution was
approximately 2.8mm x 3.5mm. Parallel imaging using the TSENSE method with accelera-
tion factor = 2 was used to improve temporal resolution and spatial coverage. A single dose
of contrast agent (Gd-DTPA, 0.1 mmol/kg) was administered at 5 ml/s, followed by saline
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flush. Motion compensation was performed for seven distinct slices of two patient data sets
covering different levels of the LV-myocardium. All in all we analyzed 17 slices from six differ-
ent patients, three breathing freely, one holding his breath during the first half of the sequence,
and breathing with two deep gasps in the second half, and two breathing shallow.
The registration software was implemented in C++, the registration procedure used B-Splines
of degree 2 and varying parameters for the number l ∈ {1, 2, 3} of multi-resolution lev-
els, the knot spacing h ∈ {14, 16, 20} pixels for the B-Spline coefficients, and the weight
κ ∈ {0.8, 1.0, 2.0, 3.0} of the Laplacian regularization term. Estimating the noise level of im-
ages is a difficult problem, we approximated η by σ(∇I) standard deviation of the intensity
gradient.

(a) Original image series

(b) Registration using NGF only, κ = 1.0, note the bad alignment and the
drift in the second (lower) half of the series

(c) Registration using NGF + 0.1 SSD, κ = 2.0, the drift vanished and align-
ment is in general better then with NGF only

Fig. 3. Registration result by using l = 3 multi-resolution levels, and a knot spacing h =
16mm. Left: vertical cut, right: horizontal cut.

To ensure registration driving forces exist over the whole image domain, we also run exper-
iments with the combined cost function (9), setting α = 1.0 and β ∈ 0.1, 0.5, 1.0. Since all
images are of the same modality, we expect that combining the two measures will yield the
same or better results. Tests showed that applying FSSD as only registration criterion doesn’t
yield usable results.
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3.2 Registration results

Fully automatic alignment of a series of 60 images, including 118 image-to-image registra-
tions at the full resolution of size 196x256 pixels and the transformation of the images to the
reference frame 30, was achieved in approximately 5 minutes running the software on a Linux
workstation (Intel(R) Core(TM)2 CPU 6600). This time could be further reduced if a bounding
box were to be applied and by exploiting the multi-core architecture of the processing and
running the registrations in parallel.
First, the quality of the registration was assessed visually observing videos as well as horizon-
tal and vertical profiles through the time-series stack. An example of the profiles location is
given in Fig. 2.
In terms of the validation measure, we obtained the best results using l = 3 multi-resolution
levels and a knot-spacing of h = 16 pixels in each spacial direction. For the registration using
NGF, a regularizer weight κ = 1.0 yielded best results, whereas for the combination of NGF
and SSD κ = 2.0 was best. The registration by using FNGF yields good results for the first
half of the sequence, where the intensity contrast is higher, and the gradients are, therefore,
stronger. In the second half, the sequential registration resulted in a bad alignment and a
certain drift of the left ventricle (Fig. 3 (b)).
Combining FNGF and FSSD results in a significant improvement of the alignment for the second
part of the sequence (Fig. 3 (c)) and provided similar results for the first half. Best results
where obtained for β = 0.5. Following this scheme, a good reduction of the breathing motion
was achieved in all of the analyzed slices.
The registration procedure performed equally well for all types of patient data - freely breath-
ing, shallow breathing, and partial breath holding. It has to be noted though, that for some
slices the registration didn’t perform very well, resulting in errors that are then propagated
through the far part of the series as seen from the reference point.
For the validation, the intensity curves before and after registration were obtained and com-
pared to manually segmented ones (Fig. 4). In most cases, the intensity curves after registra-
tion resemble manual obtained ones very well, correlation between the two curves increased
considerably 1.

Mean SD Median Min Max
Qs smaller is better 0.68 0.42 0.55 0.16 2.72

R2
larger is better

unregistered 0.87 0.16 0.93 0.02 1.00
registered 0.97 0.05 0.99 0.61 1.00

σ∗,∗ smaller is better

unregistered 0.63 0.54 0.51 0.05 8.99
registered 0.50 0.33 0.44 0.03 4.01
segmented 0.46 0.22 0.41 0.04 1.30

Table 1. The registration quality Qs, correlation R2, and section intensity variation σ for the
optimal parameters as given in the text.

The average and median of the quality measure Qs support the findings of a generally good
motion compensation, as do the improved correlation R2 between the intensity profiles and
the reduced intensity variations in the myocardium sections σ∗,∗.
However, the maxima of Qs above 1.0 indicate that in some cases motion compensation is not,
or only partially achieved. For our experiments, which included 17 distinct slices and, hence,
102 myocardium sections, registration failed partially for 16 sections. This is mostly due to
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(d) Section 6

Fig. 4. Intensity curves before and after registration compared to the manually obtained ones.
The alignment was evaluated by using frame 30 as reference. Note the periodic intensity
change in the unregistered series that results from the breathing movement, and how well the
registered series resembles the manually obtained intensity curve.

the serial registration procedure, where one failed registration of an image pair will propa-
gate and small registration errors might accumulate when the final deformation is evaluated
according to (13) and with respect to a certain reference image Iiref

. In Fig. 5, these problems
are illustrated: The registration of two frames, namely 13 and 14 in one of the analyzed series
failed, resulting in partial misalignment of all images on the far side of this image pair with
respect to the reference frame. For one section of the myocardium, this resulted in large errors
for most of the first 13 frames in its intensity profile (Fig. 5(a)) which is also reflected by an in-
crease of the standard deviation (Fig. 5(b)). In the second half of the series, registration errors
accumulate, resulting in an ever increasing deviation of the intensity profile obtained by hand
segmentation.
Note however, if only a part of the intensity profile is of interest, it is possible to minimize
this accumulation of errors by selecting a proper reference frame and reducing the analysis to
the part of the intensity profile. In the above example (Fig. 5), by restricting evaluation to the
frames 15-35, and thereby, focusing on the upslope, it is shown that the registration quality
is sufficient to analyze this part of the perfusion process, although a complete registration
could not be achieved. This can be expressed in terms of the registration quality Qs, which is
greater than 1.0 in section 3 for two distinct reference frames when analyzing the full series,
but smaller in the sub-range (Table 2).
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(a) Profiles (b) Intensity deviation

Fig. 5. In this intensity profile (a) the accumulation of registration errors is apparent which
are in part reflected by the increased standard deviation (b).

Qs Sections of the myocardium
(smaller is better) 1 2 3 4 5 6

full series, reference 30 0.88 0.42 1.52 0.31 0.17 0.29
full series, reference 25 0.77 0.35 1.07 0.38 0.18 0.36

frames 15-35, reference 30 0.80 0.31 0.56 0.22 0.12 0.23
frames 15-35, reference 25 0.48 0.24 0.29 0.26 0.12 0.34

Table 2. The registration quality Q, of a whole example series versus a part of it. Note, the
dependence of the quality from the reference frame and the significantly better registration
quality of the subset compared to the whole series.

4. Conclusion

In this work, we proposed a new scheme for breathing motion compensation in MRI perfusion
studies based on non-rigid registration. In order to reduce the influence of the change of
intensity, which is induced by the contrast agent as it passes through the both heart ventricles
and the myocardium, we used a serial registration scheme where only subsequent images of
the series are registered. In addition, we have introduced a new image similarity measure
that is based on normalized gradient fields and was improved over the previous proposal
in (Haber & Modersitzki, 2005). This measure is of a very local nature, and therefore, well
suited to obtain non-rigid registration for images with local contrast change, as it is the case in
myocardial perfusion MRI. Our experiments show that using this measure alone yields a good
registration only for the images of the series that exhibit a high contrast and, hence, strong
gradients in the regions of interest. When the intensity contrast is low, small registration errors
may occur and, because of the serial registration scheme, these errors accumulate resulting an
increasing misalignment over the series time course.
We were able to improve these results by combining the normalized gradient field based cost
function with the sum of squared differences, so that the first would take precedence in regions
with high contrast and, hence, strong gradients, while the latter ensures a steady registration
in areas with low contrast and, therefore, small gradients.
The serial registration approach results in a high dependency on a good registration of all
neighboring image pairs, if one is to obtain a good registration of the whole image series.
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In addition, all over registration quality may vary depending on the reference frame chosen.
However, for an analysis of only a part of the series, it is possible to reduce the influence of
accumulating errors by selecting a reference close or within the time frame of interest resulting
in sufficiently good registration.
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