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1. Introduction

Diabetic retinopathy is the leading cause of blindness in the Western world. The World Health
Organisation estimates that 135 million people have diabetes mellitus worldwide and that the
number of people with diabetes will increase to 300 million by the year 2025 (Amos et al.,
1997). Timely detection and treatment for DR prevents severe visual loss in more than 50%
of the patients (ETDRS, 1991). Through computer simulations is possible to demonstrate that
prevention and treatment are relatively inexpensive if compared to the health care and reha-
bilitation costs incurred by visual loss or blindness (Javitt et al., 1994).
The shortage of ophthalmologists and the continuous increase of the diabetic population lim-
its the screening capability for effective timing of sight-saving treatment of typical manual
methods. Therefore, an automatic or semi-automatic system able to detect various type of
retinopathy is a vital necessity to save many sight-years in the population. According to Luzio
et al. (2004) the preferred way to detect diseases such as diabetic retinopathy is digital fundus
camera imaging. This allows the image to be enhanced, stored and retrieved more easily than
film. In addition, images may be transferred electronically to other sites where a retinal spe-
cialist or an automated system can detect or diagnose disease while the patient remains at a
remote location.
Various systems for automatic or semi-automatic detection of retinopathy with fundus images
have been developed. The results obtained are promising but the initial image quality is a
limiting factor (Patton et al., 2006); this is especially true if the machine operator is not a
trained photographer. Algorithms to correct the illumination or increase the vessel contrast
exist (Chen & Tian, 2008; Foracchia et al., 2005; Grisan et al., 2006; Wang et al., 2001), however
they cannot restore an image beyond a certain level of quality degradation. On the other hand,
an accurate quality assessment algorithm can allow operators to avoid poor images by simply
re-taking the fundus image, eliminating the need for correction algorithms. In addition, a
quality metric would permit the automatic submission of only the best images if many are
available.
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Fig. 1. Examples of Poor Quality Fundus Images (images extracted from datasets used in this
study, see Section 4.1 ).

The measurement of a precise image quality index is not a straightforward task, mainly be-
cause quality is a subjective concept which varies even between experts, especially for images
that are in the middle of the quality scale. In addition, image quality is dependent upon the
type of diagnosis being made. For example, an image with dark regions might be considered
of good quality for detecting glaucoma but of bad quality for detecting diabetic retinopathy.
For this reason, we decided to define quality as the “characteristics of an image that allow the
retinopathy diagnosis by a human or software expert”.
Fig. 1 shows some examples of macula centred fundus images whose quality is very likely to
be judged as poor by many ophthalmologists. The reasons for this vary. They can be related
to the camera settings like exposure or focal plane error ( Fig. 1.(a,e,f) ), the camera condition
like a dirty or shuttered lens ( Fig. 1.(d,h) ), the movements of the patient which might blur
the image ( Fig. 1.(c) ) or if the patient is not in the field of view of the camera ( Fig. 1.(g) ).
We define an outlier as any image that is not a retina image which could be submitted to the
screening system by mistake.
Existing algorithms to estimate the image quality are based on the length of visible vessels in
the macula region (Fleming et al., 2006), or edges and luminosity with respect to a reference
image (Lalonde et al., 2001; Lee & Wang, 1999). Another method uses an unsupervised classi-
fier that employs multi-scale filterbanks responses (Niemeijer et al., 2006). The shortcomings
of these methods are either the fact that they do not take into account the natural variance
encountered in retinal images or that they require a considerable time to produce a result.
Additionally, none of the algorithms in the literature that we surveyed generate a “quality
measure”. Authors tend to split the quality levels into distinct classes and to classify images
in particular ones. This approach is not really flexible and is error prone. In fact human experts
are likely to disagree if many categories of image quality are used. Therefore, we think that
a normalised “quality measure” from 0 to 1 is the ideal way to approach the classification
problem.
Processing speed is another aspect to be taken into consideration. While algorithms to assess
the disease state of the retina do not need to be particularly fast (within reason), the time
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Fig. 2. Comparison of fundus images of an healthy and an unhealthy patient (images extracted
from our datasets, see Section 4.1 ).

response of the quality evaluation method is key towards the development of an automatic
retinopathy screening system.
This chapter is structured as follows. The rest of the introduction gives an brief overview of
the anatomy of the retina and about diabetic retinopathy, which is useful to fully comprehend
the algorithms that will be presented. Section 2 is a survey of existing techniques to evaluate
the quality of retina fundus images. In Section 3 we introduce a quality assessment technique
based on a new set of features called ELVD. Section 4 describes the tests and results obtained.
Section 5 concludes the chapter.

1.1 Anatomy of the Retina

The retina is a multi-layered sensory tissue that lies on the back of the eye. It contains millions
of photoreceptors that capture light rays and convert them into electrical impulses. These
impulses travel along the optic nerve to the brain where they are converted into images. Many
retinal blood vessels supply oxygen and nutrients to the inner and outer layers of the retina.
The former are visible, the latter are not since they are situated in the choroid (the back layer
of the retina) (Cassin & Solomon, 1990).
There are two types of photoreceptors in the retina: rods and cones, named after their shape.
Rod cells are very sensitive to changes in contrast even at low light levels, hence able to detect
movement, but they are imprecise and insensitive to colour. They are generally located in the
periphery of the retina and used for scotopic vision (night vision). Cones, on the other hand,
are high precision cells capable of detecting colours. They are mainly concentrated in the
macula, the area responsible for photopic vision (day vision). The very central portion of the
macula is called the fovea, which is where the human eye is able to distinguish visual details
at its best. While loss of peripheral vision may go unnoticed for some time, damage to the
macula will result in loss of central vision, which has serious effects on the visual perception
of the external world (Wyszecki & Stiles, 2000).
All the photoreceptors are connected to the brain through a dense network of roughly 1.2
million of nerves (Jonas et al., 1992). These leave the eye in a unique bundle, the optic nerve.
Fig. 2.(a) shows where the macula and fovea areas are located.

1.2 Diabetic Retinopathy

Diabetes mellitus (DM) is a chronic, systemic, life-threatening disease characterised by dis-
ordered metabolism and abnormally high blood sugar (hyperglycaemia) resulting from low
levels of the hormone insulin with or without abnormal resistance to insulin’s effects (Tierney
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et al., 2002). DM has many complications that can affect the eyes and nervous system, as well
as the heart, kidneys and other organs. Diabetic retinopathy (DR) is a vascular complication
of DM which causes damages to the retina which leads to serious vision loss if not treated
promptly. People with diabetes are 25 times more likely to develop blindness than individu-
als without diabetes. For any type of diabetes, the prevalence of diabetic retinopathy in people
more than 40 years of age was reported to be 40.3% (Baker et al., 2008).
The National Eye Institute divides diabetic retinopathy in four subsequent stages:

• Mild Nonproliferative Retinopathy: At this earliest stage, microaneurysms occur. They are
small areas of balloon-like swelling in the retina’s tiny blood vessels.

• Moderate Nonproliferative Retinopathy: As the disease progresses, some blood vessels that
nourish the retina are blocked. Lesions like exudates (fat deposits) and haemorrhages
start to appear.

• Severe Nonproliferative Retinopathy: Many more blood vessels are blocked, depriving sev-
eral areas of the retina with their blood supply. These areas of the retina send signals to
the body to grow new blood vessels for nourishment.

• Proliferative Retinopathy (PDR): At this advanced stage, the signals sent by the retina
for nourishment trigger the growth of new blood vessels. These new blood vessels are
abnormal and fragile. They grow along the retina and along the surface of the clear,
vitreous gel that fills the inside of the eye. By themselves, these blood vessels do not
cause symptoms or vision loss. However, they have thin, fragile walls. If they leak
blood, vision loss and even blindness can result.

2. State of the Art of Fundus Images Quality Assessment

Computerised evaluation of image quality is a problem not only in the field of medical imag-
ing but in many other image processing systems, such as image acquisition, compression,
restoration and enhancement. Over the years, a number of researchers have developed gen-
eral purpose algorithms to objectively assess the image quality with a good consistency with
human judgements, regardless the type, scale or distortion of the image (Sheikh et al., 2006).
In this section we present only techniques that are designed specifically for retinal fundus im-
ages. These methods attempt to simulate the judgement of an expert ophthalmologist rather
than a generic human vision system. The methods are grouped in three different categories
depending on the technique used: Histogram Based Methods, Retina Morphology Methods
and “Bag-of-Words” Methods.

2.1 Histogram Based Methods

Besides some reference to Quality Assessment (QA) in research reports in the OPHTEL EU
project (Mann, 1997), the first authors that have explicitly addressed the problem of automatic
detection of fundus image quality are Lee and Wang (Lee & Wang, 1999). Their approach starts
from a pure signal processing perspective with the aim of providing a quantitative measure to
compare and evaluate retinal images enhancement methods in further studies. They used 20
images with excellent quality extracted from a set of 360. These reference images are used to
compute an ideal template intensity histogram discarding any information about the colour.
The template histogram is adjusted in order to approximate a Gaussian distribution as follows:

f (i) = A· exp

(

−(i − M)2

2σ2

)

(1)
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Fig. 3. Comparison of edges between a good and poor quality image

where i (from 0 to 255) is the pixel intensity, A is the peak value of the Gaussian curve, M
and σ are respectively the mean and standard deviation of all the training histograms. In their
tests, the authors estimated that σ = R/6 where R is the histogram spread. The quality of
a target image is assessed by convolving its histogram with the template histogram and by
computing a quality index Q. The index Q is normalised between 0 and 1 by employing the
self correlation of the template histogram as the maximum value possible.
The key discriminating features in this method are the image contrast (i.e. the histogram
spread), brightness and signal-to-noise ratio (SNR). New subsequent publications challenged
the idea that pure histogram similarity is correlated with image quality. For example, Lalonde
et al. (2001) found poor quality images whose histogram resembled the template histogram
and also good quality images with markedly different histograms. Therefore, they tried to
extend the approach of Lee and Wang maintaining the idea that a model of a good image is
defined using a set of images of excellent quality but using two different sets of features: the
distribution of the edge magnitudes in the image and the local distribution of the pixel in-
tensity, as opposed to the global histogram of Lee and Wang. Their notion of quality differs
from the one of Lee and Wang. Rather than viewing it from a pure signal processing perspec-
tive where quality is correlated with noise, they are closer to the medical field needs, whose
concept of quality depends on the experts’ ability to diagnose retinopathy.
Lalonde et al. notice that the edge magnitude histogram in a ophthalmic image has a shape
that is similar to a Rayleigh distribution. In Fig. 3 the edge distributions are compared. The
authors found that the edge distribution of poor images fall more rapidly than good images
(notice that in the figure the histogram is plotted on a logarithmic scale). They evaluate the
difference between two edges magnitude histogram using an equation similar to the χ2 statis-
tic:

dedge(T, R) = ∑
i

(Ri − Ti)
2

Ri + Ti
, ∀i|Ri + Ti �= 0 (2)

where R is the reference histogram and T is the edge histogram of the target image.
The second set of features used is a localised version of the global histogram of Lee and
Wang. They retrieve the global histogram and segment it into uniform region by the standard
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histogram-splitting algorithm from Ohlander et al. (1978). Regions below a certain thresh-
old are discarded. The dissimilarity W between reference and target image is calculated as
follows:

W(h1, h2) =

[

μh1
− μh2

min(μh1
μh2

)

]

(3)

It should be noticed that only the mean of the histogram is used in the equation; all the other
information is discarded.
Finally, they classified the target images into three classes by using on the similarity measures
given from Eq. 2 and 3. Using a dataset of 40 images they obtained 77% images classified
correctly.

2.2 Retina Morphology Methods

Usher et al. (2003) were the first authors to consider features unique to retina images for QA.
They noticed a correlation between image blurring and visibility of the vessels. By running
a vessel segmentation algorithm and measuring the area of detected vessels over the entire
image, the authors estimated if the quality of the image was sufficient for screening since
images that are out of focus or blurred will not have visible smaller vessels. The classification
between good and poor is performed by means of a threshold value. The authors employed a
dataset of 1746 images taken from a retinopathy screening program obtaining a sensitivity of
84.3% and a specificity of 95.0%.
Fleming et al. (2006) found a problem in the previous approach: even if some vessels are
undetectable in cases of image distortions, large vessels can remain visible, especially in the
main arcades coming out from the optic nerve. These vessels have a substantial area which
can easily be greater than the classifier threshold.
Consequently, they developed a method based on the image grading system used in the
Grampian Diabetes Retinal Screening Programme in Aberdeen, Scotland. The QA score is
divided into two aspects: image clarity and field definition. Image clarity is graded as fol-
lows:

• Excellent: Small vessels are clearly visible and sharp within one optic disc diameter
around the macula. The nerve fibre layer is visible.

• Good: Either small vessels are clearly visible but not sharp within one optic disc diame-
ter around the macula or the nerve fibre layer is not visible.

• Fair: Small vessels are not clearly visible within one optic disc diameter around the
macula but are of sufficient clarity to identify third-generation branches within one op-
tic disc diameter around the macula.

• Inadequate: Third-generation branches within one optic disc diameter around the mac-
ula cannot be identified.

Field definition is graded as follows:

• Excellent: The entire macula and optic disc are visible. The macula is centred horizon-
tally and vertically in the image.

• Good: The entire macula and optic disc are visible. The macula is not centred horizon-
tally and vertically in the image, but both main temporal arcades are completely visible
and the macula is complete.

• Inadequate: Either a small-pupil artefact is present, or at least one of the macula, optic
disc, superior temporal arcade, or inferior temporal arcade is incomplete.
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Fig. 4. Detected vessels (white) with the semiellipse fitted to the temporal arcades and the
search regions for fovea and optic disk with the method described by Fleming et al. (2006).

First, a search is made for the arcade vessels. The generalised Hough transform (Ballard, 1981)
is used to identify large-scale vessels between 10 and 30 pixels by employing semielliptical
templates with different sizes, orientations and eccentricities. The process is quite computa-
tionally expensive. Hence, the image is subsampled by a factor of 32.
The authors estimate the average optic nerve diameter (OND) to be 246 pixels, based on a
manual estimation of its the mean size in the dataset. The rightmost (or leftmost depending
on the arcade template detected) point of the semiellipse fitted to the temporal arcades is used
as a search centre for the optic disk. The search space is restricted to a region with height 2.4 x
2.0 times OND. Within this region a Hough transform is applied to detect the optic disk with
a circular template.
The search area for the fovea is restricted to a circular region with diameter 1.6 OND centred
on a point that is 2.4 OND from the optic disk and on a line between the detected optic disk
and the centre of the temporal arcades. The fovea is actually found by identifying the maxi-
mum cross-correlation between the image and a predefined foveal model in the search area.
Figure 4 shows the search region for the optic disk and fovea.
The image clarity was assessed taking into consideration the vessel area. However, instead of
measuring it globally like Usher et al. (2003), only the area in the foveal region is used. The size
of measured area is again relative to OND: a square of 3.5 OND if the foveal cross-correlation
coefficient is large enough, otherwise a square sized 4.5 OND. The rationale for the choice of
such area is the fact that in the foveal region there are the thinnest vessels, the ones that are
more likely to disappear when the image is degraded.
The second aspect considered is the field definition. A fundus image with an adequate field
definition has to satisfy the following constraints1:

• Distance between optic disk and the edge of the image < 0.5 OND

• Distance from the fovea to the edge of the image > 2 OND

• Angle between the fovea and the optic disk between 24.7◦ and -5.7◦

• Length of the vessel arcades > 2.1 OND

The final classification of the overall quality is obtained by combining the two measures of im-
age clarity and field definition. The authors reported a sensitivity and specificity respectively
of 99.1% and 89.4% on a dataset of 1039 images. In this context, the sensitivity represents the
“good quality” images correctly classified, while the specificity represents the correct classifi-
cation on “poor quality” images.

1 The measurement of all these constraints are possible thanks to the initial segmentation step.
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2.3 “Bag of Words” Methods

Niemeijer et al. (2006) found various deficiencies in previous QA methods. They highlight
that it is not possible to consider the natural variance encountered in retinal images by taking
into account only a mean histogram of a limited set of features like Lalonde et al. (2001); Lee
& Wang (1999). Niemeijer et al. acknowledge the good results of Fleming et al. (2006) but
having to segment many retinal structures is seen as a shortcoming. In fact, detecting the
segmentation failure in case of low quality is not trivial. Finally, they proposed a method that
is comparable to the well known “Bag-of-Words” classification technique, used extensively
in pattern recognition tasks in fields like image processing or text analysis (Fei-Fei & Perona,
2005; Sivic et al., 2005).
“Bag-of-Words” methods work as follows. First, a feature detector of some sort is employed
to extract all the features from the complete training set. Because the raw features are too
numerous to be used directly in the classification process, a clustering algorithm is run to ex-
press the features in a compact way. Each cluster is analogue to a “word” in a dictionary. In
the dictionary, words do not have any relative information about the class they belong to or
their relative location respect others. Instead, they are simply image characteristics that are of-
ten repeated throughout the classes, therefore they are likely to be good representatives in the
classification process. Once the dictionary is built, the features of each sample are mapped to
words and a histogram of word frequencies for each image is created. Then, these histograms
are used to build a classifier and the learning phase ends. When a new image is presented to
this type of system, its raw features are extracted and their word representation is searched
in the dictionary. Then, the word frequency histogram is built and presented to the trained
classifier which makes a decision on the nature of the image.
Niemeijer et al. employ two sets of feature to represent image quality: colour and second order
image structure invariants (ISI). Colour is measured through the normalised histograms of the
RGB planes, with 5 bins per plane. ISI are proposed by Romeny (ter Haar Romeny, 2003) who
employed filterbanks to generate features invariant to rotation, position or scale. These filters
are based on the gauge coordinate system, which is defined in each point of the image L by its
derivative. Each pixel has a local coordinate system (�v, �w) where �w points in the direction of

the gradient vector
(

δL
δx , δL

δy

)

, and�v is perpendicular to it. Because the gradient is independent

of rotation, any derivative expressed in gauge coordinates is rotation independent too. Table
1 shows the equations to derive the gauge coordinates from the (x,y) coordinate system up to
the second order. Notice that L is the luminosity of the image, Lx is the first derivative in the
x direction, Lxx is the second derivative on the x direction, etc.
The ISI are made scale invariant by calculating the derivatives using Gaussian filters at 5
different scales, i.e. Gaussian with standard deviation σ = 1, 2, 4, 8, 16. Therefore the total
number of filters employed is 5 x 5 = 25.
In Niemeijer et al. (2006), the authors derived the “visual words” from the feature by randomly
sampling 150 response vector from the ISI features of 500 images. All vectors are scaled to
zero mean and unit variance, and k-means clustering is applied. The frequency of the words
is used to compute a histogram of the ISI “visual words” which, in conjunction with the RGB
histogram is presented to the classifier.
Niemeijer et al. tested various classifiers on a dataset of 1000 images: Support Vector Machine
with radial basis kernel (SVM), a Quadratic Discriminant Classifier (QDC), a Linear Discrimi-
nant Classifier (LDC) and a k-Nearest Neighbour Classifier (kNNC). The best accuracy is 0.974
obtained through SVM classifier.
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Feature Expression

L L

Lw

√

L2
x + L2

y

Lvv
−2Lx Lxy Ly+LxxL2

y+L2
x Lyy

L2
x+L2

y

Lvw
−L2

x Lxy+L2
y Lxy+Lx Ly(Lxx−Lyy)

L2
x+L2

y

Lww
L2

x Lxx+2Lx Lxy Ly+L2
y Lyy

L2
x+L2

y

Table 1. Derivation of the irreducible set of second order image structure invariants (Niemeijer
et al., 2006).

Fig. 5. Comparison of the vessel segmentation by our implementation of Zana & Klein (2001)
in a good and a poor quality fundus image.

The whole QA process is called “image structure clustering” (ISC). They estimated a time of
around 30 seconds to QA a new image2.

3. Methodology

The QA proposed aims to be: accurate in its QA of patients of different ethnicities, robust
enough to be able to deal with the vast majority of the images that a fundus camera can
produce (outliers included), independent of the camera used, computationally inexpensive so that
it can produce a QA in a reasonable time and, finally it should produce a quality index from 0
to 1 which can be used as input for further processing.
Our approach is based on the hypothesis that a vessel segmentation algorithm’s ability to
detect the eye vasculature correctly is partly related to the overall quality of an image. Fig.
5 shows the output of the vessel segmentation algorithm in images with different quality. It
is immediately evident that the low vessel density in the bottom part of the right image is
due to an uneven illumination and possibly to some blurring. However, a global measure
of the vessel area (or vessel density) is not enough to discriminate good from bad quality
images. One reason is that a considerable quantity of vessels area is taken by the two arcades
which are likely to be detected even in a poor quality image as in Usher et al. (2003). Another
problem is that the illumination or blurring might be uneven, making only part of the vessels
undetectable. The visible vessels area can be enough to trick the QA into a wrong decision.
Finally, this type of measure does not take into account outliers, artefacts caused by smudges
on the lens or different Field of View (FOV) of the camera.

2 Niemeijer et al. did not reported the hardware configuration for their tests, however in our implemen-
tation we obtained similar results (see Section 4.4)
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The algorithm presented is divided in three stages: Preprocessing, Features Extraction and
Classification. An in depth illustration of the full technique follows in the next sections.

3.1 Preprocessing

Mask Segmentation

The mask is defined as “a binary image of the same resolution of the fundus image whose
positive pixels correspond to the foreground area”. Depending on the settings, each fundus
camera has a mask of different shape and size. Knowing which pixels belongs to the retina is
a step that helps subsequent analysis as it gives various information about the effective size
and shape of the image analysed.
Some fundus cameras (like the Zeiss Visucam PRO NMTM) already provide the mask infor-
mation. However, having the ability to automatically detect the mask has some benefits. It
improves the compatibility across fundus cameras because it does not need to be interfaced
with any sort of proprietary format to access the mask information. Also, if the QA is per-
formed remotely, it reduces the quantity of information to be transmitted over the network.
Finally, some image archives use a variety of fundus cameras and the mask is not known for
each image.
The mask segmentation is based on region growing (Gonzales & Woods, 2002). It starts by
extracting the green channel of the RGB fundus image, which contains the most contrast
between the physiological features in the retina (Teng et al., 2002), hence this channel best
describes the boundary between background and foreground. It is also the channel that is
typically used for vessel segmentation. Then, the image is scaled down to 160x120, an empir-
ically derived resolution which keeps the computational complexity as low as possible. Four
seeds are placed on the four corners of the image with an offset equals to 4% of the width or
height:

o f f setw ← round(imageWidth · 0.04)
o f f seth ← round(imageHeight · 0.04)
seedtl = [o f f setw; o f f seth]
seedtr = [imageWidth − o f f setw; o f f seth]
seedbl = [o f f setw; imageHeight − o f f seth]
seedbr = [imageWidth − o f f setw; imageHeight − o f f seth]

where seedxy is the location of a seed. The reason for the offsets is to avoid regions getting
“trapped” by watermarks, ids, dates or other labels that generally appear on one of the corners
of the image.
The region growing algorithm is started from the 4 seeds with the following criteria:

1. The absolute grey-level difference between any pixel to be connected and the mean
value of the entire region must be lower than 10. This number is based on the results of
various experiments.

2. To be included in one of the regions, the pixel must be 4-connected to at least one pixel
in that region.

3. When no pixel satisfies the second criterion, the region growing process is stopped.

When four regions are segmented, the mask is filled with negative pixels when it belongs to a
region and positive otherwise. The process is completed scaling back the image to its original
size by using bilinear interpolation. Even if this final step leads to a slight quality loss, the
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advantages in terms of computational time are worth the small imperfections at the edges of
the mask.

“Virtual” FOV Identification

During the acquisition of a macula centred image, the patient is asked to look at fixed point
visible at the back of the camera lens. In this way the macula is roughly located at the centre of
the image Field of View (FOV). Even if the area viewed by different cameras is standardised,
various vendors crop some part of the fundus images that do not contain useful information
for diagnosis purposes.
In order to develop an algorithm that runs independently from the lost information, the “Vir-
tual” FOV (VFOV) is extracted. The VFOV consists of an ellipse that represents the contour
of the fundus image as if it was not cropped. This measure allows a simplification of the al-
gorithm at further stages and it is the key component that makes the method independent of
the camera FOV and resolution.
The classical technique to fit a geometric primitive such as an ellipse to a set of points is the use
of iterative methods like the Hough transform (Leavers, 1992) or RANSAC (Rosin, 1993). Iter-
ative methods, however, require an unpredictable amount of computational time because the
size of the image mask could vary. Instead, we employ the non-iterative least squares based
algorithm presented by Halir & Flusser (2000) which is extremely computationally efficient
and predictable.
The points to be fitted by the ellipse are calculated using simple morphological operations on
the mask. The complete procedure follows:

α ← erode( maskImage )
γ ← maskImage − α
fitEllipse(γ)

The erosion is computed with a square structuring element of 5 pixels. The binary nature of
the image in this step (Fig. 6.b) makes the erosion very computationally efficient.

Vessel Segmentation

The ability to discern vessels from other structure is a preprocessing step of great importance
in many medical imaging applications. For this reason many vessel segmentation algorithms

Fig. 6. (a) Original image with the 4 seeds (in red) placed. (b) Mask segmentation results. (c)
Points used for VFOV detection. (d) VFOV detected.
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have been presented in the literature (such as Lam & Hong, 2008; Patton et al., 2006; Ricci &
Perfetti, 2007).
The technique chosen to segment veins and arteries visible in fundus images is based on the
mathematical morphology method introduced by Zana and Klein (Zana & Klein, 2001). This
algorithm proved to be effective in the telemedicine automatic retinopathy screening system
currently developed in the Oak Ridge National Laboratory and the University of Tennessee at
Memphis (Tobin et al., 2006). Having multiple modules that share the same vessel segmenta-
tion algorithm is a benefit for the system as a whole to prevent redundant processing.
Although there are more recently developed algorithms with somewhat improved perfor-
mance relative to human observers, the Zana & Klein algorithm is useful because it does not
require any training and its sensitivity to the quality of the image actually benefits the global
QA.
This algorithm makes extensive use of morphological operations; for simplicity’s sake the
following abbreviations are used:
erosion: ǫB(S)
dilation: δB(S)
opening: γB(S) = δB(ǫB(S))
closing: φB(S) = ǫB(δB(S))
geodesic reconstruction (or opening): γrec

Smarker
(Smask)

geodesic closing: φrec
Smarker

(Smask) = Nmax − γrec
Nmax−Smarker

(Nmax − Smask)
where B is the structuring element and S is the image to which it is applied, Smarker is the
marker, Smask is the mask and Smax is the maximum possible value of the pixel. A presentation
of these morphological operators can be found in Vincent (1993).
The vessel segmentation starts using the inverted green channel image already extracted by
the mask segmentation. In fact, the blue channel appears to be very weak without many
information about vessels. On the other hand, the red band is usually too saturated since
vessels and other retinal features emit most of their signal in the red wavelength.
The initial noise is removed while preserving most of the capillaries on the original image S0

as follows:
Sop = γrec

S0
(Maxi=1...12{γLi

(S0)}) (4)

where Li is a linear structuring element 13 pixels long and 1 wide for a fundus image. For
each i, the element is rotated of 15◦. The authors specify that the original method is not robust
for changes of scale. However, since we have an estimation of the VFOV, we are in a position

Fig. 7. Vessel segmentation summary. (a) Initial image (green channel). (b) Image after Eq.
5. (c) Image after Gaussian and Laplacian filter. (d) Image after Eq. 8. (e) Final segmentation
after binarisation and removal of small connected components. All images, apart from the
first one, have been inverted to improve the visualisation.
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Fig. 8. Elliptical local vessel density examples. Even and odd columns respectively contain
left and right retina images. In top row good quality images are shown, in the bottom row
bad quality ones. The 4 images on the left use ELVD with θ = 8 and r = 3; the 4 images on
the right are the same ones but the parameters for ELVD are θ = 12 and r = 1.

to improve it by dynamically changing the size elements depending on the length of the axes
in the VFOV.
Vessels can be considered as linear bright shapes identifiable as follows:

Ssum =
1

∑
i=1

2(Sop − γLi
(S0)) (5)

The previous operation (a sum of top hats) improves the contrast of the vessels but at the same
time various unwanted structures will be highlighted as well. The authors evaluate the vessel
curvature with a Gaussian filter (width=7px; σ = 7/4) and a Laplacian (size=3x3) obtaining
the image Slap. Then alternating the following operation the final result is obtained and the
remaining noise patterns eliminated:

S1 = γrec
Sl ap(Maxi=1...12{γLi

(Sl ap)}) (6)

S2 = φrec
S1

(Mini=1...12{φLi
(S1)}) (7)

Sres = (Maxi=1...12{γ2
Li
(S2)} ≥ 1) (8)

As the last step of our implementation, we binarise the image and remove all the connected
components that have an area smaller than 250 pixels. Once again this value is scaled depend-
ing on the VFOV detected. Fig. 7 shows a visual summary of the whole algorithm.

3.2 Feature Extraction

Elliptical Local Vessel Density (ELVD)

By employing all information gathered in the preprocessing phase, we are able to extract a
local measure of the vessel density which is camera independent and scale invariant. Other
authors either measure a similar feature globally like Usher et al. (2003), or they use a com-
putationally expensive method like Fleming et al. (2006) whose approach requires a vessel
segmentation, a template cross correlation and two different Hough transforms. Instead, we
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Fig. 9. Pigmentation difference between Caucasian (on the left) and African American (on the
right) retinas. Images extracted from the datasets used in our tests (see section 4.1).

employ an “adaptable” polar coordinate system (θ, r) with the origin coincident with the ori-
gin of the VFOV. It is adaptable in the sense that its radius is not constant but it changes ac-
cording to the shape of the ellipse. This allows to deal with changes of scale not proportional
between height and width.
The Elliptical Local Vessel Density (ELVD) is calculated by measuring the vessel area under
each local window, then normalised with zero mean and unit variance3. The local windows
are obtained sampling r and θ. Different values of r and θ will tolerate or emphasize different
problems with the image quality. In Fig. 8 for example, the 4 images on the left (θ = 8
and r = 3) have 8 windows each on the centre of VFOV where the macula is located. In this
fashion, ELVD features can detected a misaligned fundus image. On the other hand, the ELVD
in the 4 images on the right (θ = 12 and r = 1) will be more robust to macula misalignment,
but more sensitive to vessel detection on both vascular arcades.
The idea behind ELVD is to create local windows that are roughly placed in consistent posi-
tions throughout different images. In the even or odd columns of Fig. 8, note that vessels close
to the ON are in the same or nearby local windows, even if images have different FOVs. The
power of this new style of windowing is its capability of capturing morphological informa-
tion about fundus images without directly computing the position of ON, macula or arcade
vessels, since these operations are computational expensive and prone to errors if the image
has a very poor quality.

Luminosity/Colour Information

The analysis of the global colour information of the fundus image can contain useful informa-
tion for the quality of the image. The method of Lee & Wang (1999) employed the histogram of
the grey-level obtained from the RGB image as the only means to describe the image quality.
The much more refined method of Niemeijer et al. (2006) uses 5 bins of each channel of the
RGB histogram as additional features as input to the classifier. The authors presented results
demonstrating that this piece of RGB information improved their classification respect to pure
ISI features, even if ISI is representative of most of the retinal structures.
Inspired by Niemejer et al. we use colour information to represent aspects of quality that
cannot be entirely measured with ELVD such as over/underexposed images in which the
vasculature is visible or outliers with many features that are recognised as vessels.
All RGB channels are evaluated by computing the histogram for each plane. The histogram is
normalised by the size of the mask in order to make this measure scale independent. It is no-
ticed that people from different ethnic origin have a different pigmentation on the retina; this
aspect is particularly noticeable in the blue and red channel. For example while Caucasians

3 The zero mean and unit variance is calculated for each feature across all the training images.
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have a fundus with a very strong red component people of African descent have a darker
pigmentation with a much stronger blue component (see figure 9). In our case this is not an
issue because we ensure we have adequate examples of different ethnic groups in our training
library.
Also, the HSV colour space is employed as a feature. Only the saturation channel is used
which seems to play an important role in the detection of the over/under exposition of the
images. The reason is the channel relative independence from pigment and luminosity. Once
again, the global histogram is extracted and normalised with the image mask.

Other Features

In addition to ELVD and colour information two other sets of features are considered as can-
didates to represent quality:

• Vessel Luminosity: Wang et al. (2001) noted that the grey level values of corresponding
to the vessels can be used as a good approximation of the background luminosity. They
proposed an algorithm that exploits this information to normalise the luminosity of the
fundus images. If the vessel luminosity with the same elliptical windows used for the
ELVD, we can measure the luminosity spread in the image. This can be particularly
useful because poor quality images have often an uneven illumination.

• Local Binary Patterns (LBP): Texture descriptors are numerical measures of texture pat-
terns in an image. LBP are capable of describing a texture in a compact manner inde-
pendently from rotation and luminosity (Ojala & Pietikainen, 1996). The LBP processing
creates binary codes depending on the relation between grey levels in a local neighbour-
hood. In the QA context this type of descriptor can be useful to check if the particular
patterns found in a good quality retina are present in the image. This is accomplished
by generating an histogram of the LBP structures found.

3.3 Classification

The majority of the authors who developed a QA metric for retinal images approached the
classification in a similar way (Lalonde et al., 2001; Lee & Wang, 1999; Usher et al., 2003).
The training phase consists of creating models of good and poor quality images (in some
cases more intermediate models are employed) by calculating the mean of the features of the
training sets. When a new retinal image is retrieved, its features are computed and the it is
classified based on the shortest distance4to one of the models. This type of approach works
reasonably well if the image to be classified is similar enough to one of the models. Also, it
simplifies the calculation of a QA metric between 0 and 1 because distances can be easily nor-
malised. However, this approach has a major drawback: the lack of generalisation on images
with a large distance from the both models. This problem limits the method applicability in a
real world environment.
Niemejer et al. (Niemeijer et al., 2006) are the only authors to our knowledge that approach
the QA as a classic pattern classification problem. During the training phase they do not try
to build a model or to make any assumption about the distribution of the data. Instead, they
label each samples in one of the two classes and train one of the following classifiers: Support
Vector Machines (SVM), Quadratic Discriminant Classifier (QDC), Linear Discriminant Clas-
sifier (LDC) and k-Nearest Neighbour Classifier (KNNC). Finally, they selected the classifier

4 Distances calculations vary; some use Euclidean distance, others are based on correlation measures.
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with the best performance (in their case a SVM with radial basis kernel) by testing it with a
separate dataset.
Our classification technique is similar to the one of Niemeijer et al., but with two major differ-
ences. The first one is that the feature vector is created directly from the raw features without
any need of pre-clustering, which can be computationally expensive, especially if a large num-
ber of features are used in a high dimensional space. The second difference is the fact that the
classifier needs to output a posterior probability rather than a clear cut classification of a par-
ticular class. This probability will allow the correct classification of fair quality images even if
the training is performed on two classes only.

4. Tests and Results

In this section, a summary of the most significant experiments performed during the develop-
ment of the ELVD quality estimator are presented. The first section contains an overview of
the datasets used. We then show the tests used for an initial evaluation of the QA proposed,
the comparison with existing techniques and the choice of the classifier. Then, an analysis on
possible optimisations of the feature set is performed. Finally the final QA system is tested on
all the datasets and its computational performance is evaluated.

4.1 Data Sets

Various datasets are employed in the following tests. Each of them has peculiar characteristics
that make it useful to test particular aspects of the QA classifier. The list follows:

• “Abramoff”: dataset composed of 10862 retinal images compiled by M. Abramoff as
part of a study in the Netherlands. They were obtained using with different settings
(FOV, exposure, etc.) on healthy and ill patients (Niemeijer et al., 2007). Three differ-
ent cameras were used: Topcon NW 100, Topcon NW 200 and the Canon CR5-45NM.
Unfortunately their quality was not labelled by the physicians.

• “Aspen”: dataset composed of 98 images that targets mainly patients with retinopathy
conditions. This images were captured as part of a non-research teleophtalmology pro-
gram to identify diabetic retinopathy in people leaving in the Aspen Health Region of
Alberta, Canada (Rudnisky et al., 2007). Once again the quality was not labelled by the
physicians.

• “Chaum”: this set is composed of 42 images extracted from the Abramoff dataset la-
belled as good and poor quality. They are good representatives of various aspects of the
quality aspects of fundus images. These images were labelled by an expert in the field
(Dr. E. Chaum) in order to facilitate the development of the QA system.

• “ORNL”: it is composed of 75 images extracted from the Abramoff dataset and labelled
as good, fair and poor quality. These images were compiled at the Oak Ridge National
Laboratory for the analysis of various aspects of the automatic diagnosis of diabetic
retinopathy.

• “African American”: it contains 18 retina images of African American patients. All these
images were labelled as good quality by Dr. E. Chaum. This dataset is of particular
importance because it is very likely that most of the patients in Netherlands are Cau-
casian5, but our system deployment is targeted toward the deep-to-mid South region of
the United States of America where there is a large population of African Americans.
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• “Outliers”: it is composed of 24 images containing various types of image outliers, all
captured with a fundus camera.

4.2 Classifier Selection

In order to select the most appropriate classifier, a series of comparative tests is run on the
“ORNL” and “Outliers” dataset. The results are compared with our implementation of the
QA by Niemeijer et al. (2006), the most recent method found in the literature. The feature
vector used by our classifiers is composed of ELVD with 3 slices and 8 wedges (ELVD 3x8)
and the RGB colour histogram with 5 bins per channel. These tests were presented in the
EMBC conference of 2008 and led to encouraging results (Giancardo et al., 2008).
The testing method used a randomised 2-fold validation, which works as follows. The sam-
ples are split in two sets A and B. In the first phase A is used for training and B for testing, then
roles are inverted and B is used for training and A for testing. The performance of a classifier

are evaluated using the Area Under the ROC curve (AUR) for TruePositiveRate
FalsePositiveRate (TPR/FPR) and

TrueNegativeRate
FalseNegativeRate (TNR/FNR). See (Fawcett, 2004) for more details.

ORNL set ORNL + Outliers dataset

Classifier TPR/FPR TNR/FNR TPR/FPR TNR/FNR

Nearest Neighbour 1 1 1 1
KNN (K=5) 1 1 0.99 0.98
SVM (Linear) 1 1 0.92 0.79
SVM (Radial) 1 1 1 1
ISC by Niemeijer et al. 1 0.88 1 0.88

Table 2. Good/Poor classifier test on “ORNL” and “Outliers” dataset. For the first four classi-
fiers the feature vector used is ELVD 3x8 + RGB histogram with 5 bins.

In the two columns on left, table 2 shows the Good/Poor classification results for the “ORNL”
dataset. All the classifiers using our feature vector have perfect or near-perfect performance
in the selection between good and poor class, which is not the case for the Niemeijer et al.
method (note that only the good and poor classes are used).
In the two columns on the right, all the Outliers dataset were added as test samples. An
outlier image can have an enormous variability, therefore we feel that the training on this type
of images might bias the classifier. Ideally, a classifier should be able to classify them as poor
even if they are not fundus images as such. In this test, the classifiers performed differently,
the best results are given by Nearest Neighbour classifier and SVM with a radial kernel.
Recall that the aim of this system is to generate a quality score from 0 to 1 to judge the image
quality. In order to analyse this aspect, means and standard deviations of the scores obtained
are displayed in Fig. 10. The classifiers are again trained on Good and Poor class (with 2-fold
validation) but the Fair class is added to the testing samples without any explicit training on
it. This allows to test the generalisation of the system. The most striking result of this test is
the fact that the classifier with the poorest average AUR (SVM with a linear kernel) is also the
one that achieves the best class separation, with an average score separation between Good
and Poor classes of more than 0.8. The Fair class in this test has a mean score located at the
middle of the scale.

5 For privacy reasons the ethnicity of the subjects in the Abramoff dataset was not known.
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Fig. 10. Classifier scores test on “ORNL” dataset. For the first four classifiers the feature vector
used is ELVD 3x8 + RGB histogram with 5 bins.

This apparent contradiction makes the selection of the classifier difficult. Therefore another
series of tests was run on the more challenging “Chaum” dataset. In this case a leave-one-out
strategy is used, i.e. the classifier is trained multiple times removing a different sample from
the training set and using it as test target each time. This technique allows us to run complete
tests using a relative small dataset.
Table 3 shows the results obtained employing the same classifiers and feature vector as before.
While no classifier obtained ideal performance, the SVM with a linear kernel seems to have a
good compromise between AUR and score separation. The small AUR advantages of KNN
and Nearest Neighbour do not justify the computational performance issues that these type of
classifiers have when many training samples in a high dimensional space are used, and also
these classifiers have relatively low score difference between Good and Poor class.

AUR AUR Average Good/Poor
Classifier TPR/FPR TNR/FNR score difference

Nearest Neighbour 0.97 0.97 0.51
KNN (K=5) 0.97 0.97 0.51
SVM (Linear) 0.97 0.94 0.76
SVM (Radial) 0.94 0.91 0.54

Table 3. Good/Poor classifier test on “Chaum” dataset. The feature vector used is ELVD 3x8
+ RGB histogram with 5 bins (the error bars show the average standard deviation).

The main problem of SVM with a linear kernel is its poor performance on the outliers, espe-
cially when compared with the results obtained by the other classifiers tested. For a better
understanding of this behaviour part of the sample vectors are projected on a hyperplane
which allows their representation in 2 dimensions. The hyperplane is calculated using the
Linear Discriminant Analysis (Duda et al., 2001) on the Good and Poor samples, allowing a
visualization of the space from the “point of view of the classifier”.
Fig. 11 shows the result of the LDA calculation. While the distribution of Good and Poor class
are well defined, the Outliers are spread throughout the LDA space. Nonlinear classifiers like
Nearest Neighbour, KNN or SVM (Radial) can easily isolate the cluster of Good samples from
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the rest, but this is not a problem solvable by a linear function like the one employed by SVM
(Linear).

Fig. 11. 2D LDA Space Projection for ELVD features (Outliers not included in the LDA calcu-
lation).

4.3 Features Selection

It would be desirable to use the SVM (Linear) given its good score separation properties. One
solution to this problem is the selection of new feature capable of linearising the space. How-
ever, the selection of adequate features allowing the SVM hyperplane to split the good quality
samples from all the rest is not a straightforward task. Testing all the possible combination
of the feature sets mentioned is impractical. Each feature set has many parameters: ELVD 36
(3 sets of radial section and 12 sets of wedges), Vessel Luminosity 36 (same as previously),
RGB histogram 80 (all the channel combinations which can be normalised or not and 5 sets of
histogram bins), HSV histogram 80 (same as previously) and LBP 4 (2 sets of radii length and
2 sets of LBP codes), for a total of 33 177 600 possible combinations.
Therefore an empirical approach was adopted. Firstly, it is assumed that all feature sets rep-
resent independent aspects of the fundus image quality. While this assumption is rather far-
fetched, it does allow us to run only 324 tests to check all the possible permutation in each
feature set, and also gives a feeling for what features are worth testing. Table 4 shows which
are the parameters that achieved the best results for each feature set on the “Chaum” dataset.
This dataset was chosen because is the most authoritative representation of good and poor
quality image in most of the different aspects.
If feature sets were actually independent, the ideal feature vector would be composed by all
of them with the parameters shown in Table 4. However, because there is almost certainly
some degree of correlation, various parameters of the feature sets are selected based on their
relative AUR and Good/Poor score difference and they are combined together for a total of
16 800 tests.
Surprisingly optimal results (Avg AUR of 1) and excellent good/poor score separability (0.91)
are obtained with a relatively simple feature vector composed of:

• ELVD with 6 wedges and a single radial section

• The mask normalised histogram of the saturation with 2 bins
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Average Good/Poor
Feature Set Parameters Avg AUR score difference

ELVD 16 rad. sec. & 6 wedges 0.98 0.74
RGB Hist 4 bins per ch. & mask norm. 0.81 0.51
HSV Hist 5 bins of Sat. & mask norm. 0.85 0.59
Vessel Luminosity 16 rad. sec. & 6 wedges 0.98 0.74
LBP 8 px radius & 8 codes 0.85 0.59

Table 4. Best results of each independent feature set on the “Chaum” dataset. The test is a
leave-one-out with a SVM Linear classifier.

As it was suspected, the parameters that lead to the best results in this test are not the combi-
nation of the parameters found in each independent feature set test (table 4). However, they
allowed to reduce the parameters search space and obtain excellent results with a relative
simple combination.

4.4 Computational Performance

The performance of the C++ implementation of the ELVD QA is evaluated with a standard
benchmarking technique. The complete ELVD QA system is run on 25 images randomly cho-
sen from the “Chaum” dataset, during each iteration the time required to run the total system
and each separate algorithm is recorded and averaged. All the images are scaled to the com-
mon resolution of 756x576 in order to have fairly consistent measurements. All the test were
run on a 3.4 GHz Intel Pentium 4 machine with 2 GB of RAM.

Stage Time (in milliseconds)

Mask Detection 116
VFOV 16
Vessel Segmentation 1920
ELVD 15
Saturation Histogram 25
Classification +
Memory Allocation 38

Total 2130

Table 5. Relative performance of the different components in the ELVD QA C++ implementa-
tion.

The total time required to obtain a quality score for a single image is 2130 milliseconds. Table 5
shows how each system component contributes to the global computational time. The vessels
segmentation is by far the main contributor having more the 10 times the computational cost
of all the other algorithms summed together. The mask detection and the classification, two
possibly expensive operations, are actually quite efficient considering the needs of this system.
For comparison, a global benchmark was run on our implementation of the Niemeijer et al.
QA classification (Niemeijer et al., 2006). The result obtained is well over 30 seconds, a time
one order of magnitude greater than our approach. This is due to the many filterbanks that
must be executed to calculate the raw features and the nearest neighbour operations to obtain
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the “words”. However, the comparison between the two techniques should be taken with a
bit of perspective because of the different implementation platforms. In fact the Niemeijer et
al. algorithm is implemented in Matlab, a slower language than C++ because of its interpreted
language nature. Nevertheless, we should point out that in our tests Matlab uses fast native
code thanks to the Intel IPP libraries (Intel, 2007) for all the filtering operations, and these are
very computationally efficient regardless of programming language choice.

5. Conclusion

At the beginning of the chapter, the quality assessment for fundus images was defined as
“the characteristics of an image that allow the retinopathy diagnosis by a human or software
expert”. The literature was surveyed to find techniques which could help to achieve this goal.
General image QA does not seem well suited for our purposes, as they are mainly dedicated to
the detection of artefacts due to compression and they often require the original non-degraded
image, something that does not make much sense in the context of QA for retinal images.
Our survey found five publications which tackled a problem comparable to the one of this
project. They were divided into 3 categories: “Histogram Based”, “Retina Morphology” and
“Bag-of-Words”. The authors of the first category approached the problem by computing
relatively simple features and comparing them to a model of a good quality image. Although
this approach might have advantages like speed and ease of training, it does not generalise
well on the natural variability of fundus images as highlighted by Niemeijer et al. (2006) and
Fleming et al. (2006). “Retina Morphology” methods started to take into account features
unique to the retina, such as vessels, optic nerve or temporal arcades. This type approach
considerably increased the QA accuracy. Remarkably, Fleming et al. developed a very precise
way to judge the quality of image clarity and field definition which closely resembled what
an ophthalmologist would do. The main drawbacks are time required to locate the various
structures and the fact that if the image quality is too poor, some of the processing steps might
fail, giving unpredictable results. This is unlikely to happen in the problem domain of Fleming
et al. because they worked with images taken by trained ophthalmologists, but this is not the
case with systems that can be used by personnel with basic training. The only method of the
“Bag-of-Words” category is the one developed by Niemeijer et al. Their technique is based on
pattern recognition algorithms which gave high accuracy and specificity. The main drawback
is again speed of execution.
The new approach described in this chapter was partially inspired by all these techniques:
colour was used as features as in the “Histogram Based” technique, the vessels were seg-
mented as a preprocessing step like in the “Retina Morphology” techniques and the QA was
computed by a classifier similar to the one used in the “Bag-of-Words” techniques. New fea-
tures were developed and used such as ELVD, VFOV and the use of the HSV colour space,
which was not evaluated by any of the previous authors for QA of fundus images. This made
possible the creation of a method capable of classifying the quality of an image with a score
from 0 to 1 in a period of time much shorter than “Retina Morphology” and “Bag-of-Words”
techniques.
Features, classifier types and other parameters were selected based on the results of empirical
tests. Four different types of datasets were used. Although none are very large (none con-
tained more than 100 images) they were fairly good representative of the variation of fundus
images in terms of quality, camera used and patient’s ethnicity. In the literature, the method
which seemed to perform best and which had the best generalisation was the one of Niemeijer
et al. It was implemented and compared to our algorithm. Our results are in favour of the
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method presented in this chapter in terms of classification performance and speed. However,
while our method has a clear advantage in terms of speed (it runs one order of magnitude
faster because of the lower computational complexity), the comparison in terms of classifica-
tion should be taken with care. In fact, Niemeijer et al. employed a dataset larger than ours to
train the system.
The final algorithm was implemented in C++. Tests showed that it was able to produce a QA
score in 2 seconds, also considering the vessel segmentation which can later be used by other
modules of the global diabetic retinopathy diagnosis system.
In February 2009, the first clinic in a telemedicine network performing teleophthalmology
went on-line in Memphis, Tennessee under the direction of Dr. E. Chaum. This network
addresses an under served population and represents a valuable asset to broad-based screen-
ing of diabetic retinopathy and other diseases of the retina. A secure web-based protocol for
submission of images and a database archiving system has been developed with a physician
reviewing tool. All images are acquired from non-dilated retinal images obtained in primary
care clinics and are manually reviewed by an ophthalmologist. As part of the submission pro-
cess, all images undergo an automatic quality estimation using our C++ implementation of
the ELVD QA.
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