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1. Introduction

Most end-to-end Computer Aided Diagnosis (CAD) systems follow a three step approach -
(1) Image enhancement and segmentation, (2) Feature extraction, and, (3) Classification.
Although the current state-of-the-art in image enhancement and segmentation can now very
accurately identify regions of interest for feature extraction, these methods typically result in
very high dimensional feature spaces. Although high dimensional feature spaces can
potentially provide more discrimination information for a more robust classification of
images, they are typically a double-edge sword. They can adversely affect the performance
of classification systems because a large feature space dimensionality necessitates a large
training database to accurately model the statistics of class features (e.g. benign versus
malignant classes). Further, high dimensional feature spaces affect the generalization
capacity of the classification system - that is, when feature spaces are high dimensional, it is
possible that the classifier can learn decision boundaries from the training data very
accurately, but it’s tolerance to slight variations in the statistics of test data will be poor. In
other words, the system will potentially over-fit the decision boundaries to the training data.
Although the extent of this reduction in generalization capacity of the classifier depends on
the classification algorithm being employed, practically all classification algorithms are
prone to this problem, also known as the Hughe’s phenomenon in the pattern classification
community.

Current state-of-the-art in mammography based CAD systems extract a wide-variety of
features (for example, texture based features, shape features etc.) from the mammograms.
The resulting feature spaces generated for classification are hence typically very high
dimensional. To mitigate the ill-effects of high dimensionality and limited training data,
most classification systems employ dimensionality reduction techniques. Algorithms such
as Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA) are used
in the pattern classification community for dimensionality reduction. They have their own
limitations - PCA is not optimal for classification tasks [Prasad et al, October 2008], since it is
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only designed to reduce features, not optimize them for classification, and LDA requires
sufficient training data to be available for learning the projections. Stepwise Linear
Discriminant Analysis (S-LDA) is a more popular technique that reduces the dimensionality
of the feature space by selecting a smaller subset of features from the original feature space,
and then further reduces the dimensionality of this subset by an optimizing linear
transformation based on the LDA algorithm. One key limitation of this approach is that it is
by design sub-optimal at best, because it does not utilize all available features for estimating
the final “optimizing” transformation.

In this chapter, we present a robust multi-classifier decision fusion framework that employs
a divide-and-conquer approach for alleviating the affects of high dimensionality of feature
vectors extracted from digital mammograms. After appropriate pre-processing of the digital
mammograms (including contrast enhancement), the core region of interest is segmented,
and various features are extracted from the segmented images (including morphological
features, statistical features, texture features, etc.). The resulting high dimensional feature
space is partitioned into multiple smaller sized subspaces, and a bank of classifiers (a multi-
classifier system) is employed to perform feature optimization and classification in each
partition separately. Finally, a decision fusion system merges decisions from each classifier
in the bank into a single decision. Unlike previous approaches which discard potentially
useful features for alleviating the over-dimensionality problem, the proposed method
employs all available features for classification. The performance of the resulting CAD
system is reported using overall classification accuracy, specificity and sensitivity. Results
show that the proposed system results in significantly better classification performance as
compared to previously employed techniques.

The outline of this chapter is as follows. In section 2, we provide an overview of
mammography based CAD systems, and on common image processing methods employed
in such systems. We also provide a description of the feature extraction and optimization
method employed in this work, as well as conventional classification approaches and the
proposed classification framework. In section 3, we present experimental results
demonstrating the benefits of the proposed system, and conclude this chapter with a
summary of results and future directions.

2. Computer Aided Diagnosis using Digital Mammography

Digital mammography uses x-rays to project structures in the 3D female breast onto a 2D
image [Egan, 1988]. The primary use for digital mammography is for screening for breast
cancer. According to the American Cancer Society (ACS), breast cancer is the leading type of
cancer in women and the second most fatal type of cancer in women [ACS, 2005].

2.1 Importance of Mammography
Mammography is important for many reasons. First, early detection can increase survival
rates [Rangayan, 2005] and decrease the probability that cancer cells are able to infiltrate

Based on "A multi-classifier and decision fusion framework for robust classification of
mammographic masses," by Saurabh Prasad, Lori M. Bruce, John E. Ball which appeared
in the 30th Annual International Conference of the ,Engineering in Medicine and Biology
Society, 2008. © 20081EEE
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other parts of the body [Voegeli, 1989]. The survival rate of breast-cancer patients is
inversely related to the tumor size and to the number of auxiliary lymph nodes that are
found with malignant cells [Lille, 1992]. Mammography can detect cancer years before
physical symptoms occur [Tabar et al, 2001]. Often, early detection finds a minimal cancer,
and the cure rate approaches 95 percent [Egan, 1991].

2.2 Challenges in Digital-Mammography Image Analysis

Digital-mammographic analysis is a very difficult problem because of the complexity of
digital mammograms, poor contrast, and in many cases, a lack of a clearly defined mass
border [Hughes, 1968]. First, a digital mammogram is a 2D image of a 3D and highly
complex structure. Due to the complex 3D nature of breasts and the view used when taking
the mammogram, some tumors may be partially obscured. Second, it is well-known that
digital mammograms often have poor contrast, especially in dense breasts [Egan, 1988].
Many specialized methods have been developed to denoise and enhance digital
mammographic images. Third, according to Egan, there is a wide variability in the
appearance of mammograms of different patients [Egan, 1988]. Adipose tissue has a higher
concentration of low-atomic-number elements, such as hydrogen and carbon, and therefore
low-energy x-rays are attenuated less in adipose tissue than other tissues. The amount of
adipose tissue present in the breast is important, because it provides good contrast with
other structures in the breast [Egan, 1988]. Furthermore, the size of malignant lesions that
can be detected depends on the adipose content of the breasts, and breasts with more fat
provide the ability to detect smaller tumors than breasts with a paucity of fat [Egan, 1988].
Fourth, cancerous masses often have a similar appearance to some benign masses, or even
normal fibroglandular breast tissue [Peters et al, 1989], and many masses have irregular or
obscured borders [Egan, 1988], [Tabar et al, 1985]. Furthermore, most masses do not fit a
distinct border type, but have mixtures of border types [Egan, 1988], [Peters et al, 1989].
Mass borders are a primary method radiologists use to identify benign versus malignant
masses [Ball, May 2007].

2.3 Conventional Computer-Aided-Diagnosis (CAD) Systems

Many digital mammography CAD systems have been previously developed, both as
experimental models in academia, and marketed and FDA-approved products for breast-
cancer detection. CAD systems serve a variety of purposes, including: (1) providing a
prompting system for radiologists to help them locate suspicious areas in the mammogram,
(2) providing a second opinion, by analyzing the mammogram and deciding if a mass is
malignant or benign, and (3) providing mammographic image enhancement, where digital
mammograms can be enhanced for noise removal or to provide better contrast with the
overall goal to allow better radiologist interpretation.

Qian et al [Qian et al, October 1995] and Huo et al [Huo et al, 2002] show that radiologists can
benefit from the aid of CAD systems. Sahiner et al demonstrated that a good CAD system is
comparable to expert radiologists [Sahiner et al, December 2001]. Burhenne et al show that
CAD can potentially reduce radiologists’ false negative rate, which is the rate at which a
radiologist falsely detects a malignant mass as benign [Burhenne et al, 2000].
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2.4 Database Description

For this study, a subset of the DDSM database consisting of 60 test cases is selected. This
data subset contains 30 benign and 30 malignant cases, where 17 of the 30 malignant cases
are spiculated, and none of the benign cases are spiculated. Table lists the benign and
malignant cases in the study dataset.

Benign Cases Malignant Cases

1112, 1132, 1134, 1144, 1147, 1149, 1155,
1156, 1157, 1163, 1168, 1171, 1182, 1215,
1237, 1252, 1262, 1263, 1404, 1468, 1533,
1534, 1537, 1558, 1574, 1622, 1665, 1726,
1827,1999

1305, 1370, 1371, 1372, 1379, 1387, 1389,
1394, 1397, 1408, 1432, 1442, 1443, 1445,
1447, 1453, 1459, 1498, 1512, 1518, 1519,
1554, 1556, 1560, 1566, 1607, 1615, 1679,
1682, 1691

Table 1. Listing of case numbers for the DDSM database

Examination of figures 1 - 4 shows that the DDSM-database cases chosen comprise a
relatively difficult database in terms of preprocessing, segmentation, and classification. Fig.
1 shows the ACR density-rating distribution for the test dataset. The ratings are assigned by
radiologists who worked on the DDSM database [Heath et al, 1998]. The density rating is an
integer from one to four, where a density rating of one is the least dense, and a density
rating of four is the densest. In general, the higher the density rating, the more difficult
segmentation may be because of increased paucity of adipose tissue, which provides
mammographic contrast. Fig. 1 shows that most of the malignant tumors have density
values two and three, while the benign tumors have density three and four. Also, there are
mammograms for each density category, from one to four. Therefore, density is probably
not a good feature for distinguishing malignant from benign cases. Fig. 2 shows the ACR Bi-
RADS assessment distribution. This figure indicates that this dataset is a difficult one, since
a large number of the benign cases appear in category 3. Figure 3 shows the subtlety-ratings
distribution [Heath et al, 1998]. A subtlety rating of one indicates least subtle, while a rating
of five is the most subtle. Please note that this subtlety-rating system is unique to the DDSM
database, and is different from other subtlety-rating systems used in digital mammography.
A case with a DDSM subtlety rating of N is N times more subtle than a case with a subtlety
rating of one. There are 4 benign and 15 malignant mammograms whose subtlety is 5 (the
most subtle). There are 24 out of 30 benign cases and 27 out of 30 malignant cases which
have a subtlety rating from 3 to 5, as shown in Figure 3. This figure shows the database is
difficult.
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Fig. 1. Case study breast density distributions. The least dense is 1 and the most is dense is 5.

BI-RADS ASSESSMENT DISTRIBUTION

40
35 | [@BENIGN

30 {|mMALIGNANT

26
25 -
20 - 15 15
15 -
U1 o0 2o oI 00
> -
3 4

1 2 5

Fig. 2. Case study Bi-RADS assessment category distribution

SUBTLETY RATING DISTRIBUTION
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Fig. 3. Case study DDSM subtlety rating distribution. Ratings range from 1 (least subtle) to 5
(most subtle).

It is well-known that mass shape plays a very important factor in mammographic analysis.
Fig. 4 shows the shape distribution. The shape keywords are defined in Table . The shapes
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are assessed by experienced radiologists. As expected, almost all irregularly shaped masses
are malignant, while oval and round shapes are benign.

Keyword | Meaning Keyword Meaning
Oval Shaped like an oval. Lobulated Shaped like ~ breast
lobes.
Irregular | Irregular shape. Round Circularly shaped.
Table 2. Shape keywords and their meanings
SHAPE DISTRIBUTION
40
35 1 30 EBENIGN
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%g 1 12 13
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Fig. 4. Case study shape distribution. Legend: OV= Oval, IR = Irregular, LO = Lobulated,
RO = Round.

2.5 Image Processing — Enhancement and Segmentation

The Catarious segmentation method (CSM) is implemented as described in [Catarious, June
2004], [Catarious, August 2004]. The original mammogram is passed through an unsharp-
masking filter. The algorithm uses the DDSM supplied Region of Interest (ROI) containing a
suspicious region and creates a new, square ROI sized approximately 112.6 mm?2 (2452
pixels) centered around the seed point. The interior pixels of the square ROI are then
extracted from the unsharp masked image. A circular region of radius 16 mm is selected as
the initial segmentation, where interior pixels are segmented, and pixels outside of the circle
are considered outside of the segmentation. Fisher's LDA (FLDA) is used to select a
graylevel threshold for selection of the new boundary, which is the connected region
containing the ROI centroid. Boundary constraints are applied according to the Catarious
algorithm, such as interior pixels on each ray emanating from the center must not have gaps
of more than d pixels, and border pixels must be within a specified city-block distance n of
their immediate neighbors. This analysis is performed in the polar transform. If the stopping
criterion (the boundary does not change from the previous iteration) is met, then the
segmentation stops; otherwise, a new iteration is performed. It is discovered that the CSM
could get in a loop wherein there will not be a state during which the segmentation does not
change, and no proof of convergence is given in [Catarious, June 2004], [Catarious, August
2004]. Thus, a 40-iteration limit is added to the segmentation method. For the segmentation
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stage, n=2, d=3, and the unsharp-masking weighting is 0.9, which are the original
parameters proposed in [Catarious, June 2004], [Catarious, August 2004]. The CSM system
performed very well on Catarious’” database, which is why this method was chosen as a
comparison method. It provided a “successful” segmentation method against which to
compare the proposed method, and also had a straightforward implementation. More
details about this segmentation technique can be found in [Catarious, June 2004], [Catarious,
August 2004].

2.6 Feature Extraction

This section discusses the various types of features which are typically used in
mammography analysis [Ball, May 2007]. The type of features include patient information,
statistical features from the pixel graylevel values, textural features, normalized radial-
length (NRL) feature, based on the segmentation boundary, and morphological features
based on the size and shape of the segmentation.

Patient-Information Features
It is well-known that age is the most important feature in mammographic analysis [Laws,
January 1980 a], [Laws, January 1980 b]. Therefore, in this study, age will be included as a
feature. The other patient information described in the previous sections will not be used in
this dissertation’s study.

Statistical Features
Statistical features are derived from the segmentation boundary or an extension of the
segmentation boundary. The statistical features are graylevel mean value, graylevel
standard deviation, and graylevel standard-deviation ratio. The standard-deviation ratio is
the ratio of the graylevel standard deviation in a region from one to 200 pixels outside of the
segmentation boundary to the standard deviation of pixels inside the segmentation
boundary.

Textural Features

Textural features can capture important characteristics of a small area, and thus may be
beneficial in image segmentation. The textural features include graylevel co-occurrence-
matrix (GLCM) features derived from the RBST image, GLCM features extracted from the
segmentation boundary, and Laws texture features [Ball, May 2007]. The GLCM textural
features include energy, variance, correlation, inertia, inverse difference moment, and
entropy [Laws, January 1980 a], [Laws, January 1980 b]. The Laws texture features include
features derived from 2D Laws texture kernels. Each of these is explained in detail below.

GLCM Textural Features
In order to calculate the GLCM texture features efficiently, the image is first quantized using

N bins, resulting in a quantized image whose pixel values elements are in {O, o, N — l}. In

this dissertation, the value for the number of quantized bins is set to N=20. Distances, d, and
direction angles, @, are selected and the associated relative-frequency matrix p =[P ] s

calculated, where i and j are the pixel intensities. Following [Laws, January 1980 a], [Laws,
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January 1980 b], the following equations are used to calculate the P matrix values for the
distance d and the angles 4 {00’ 45°,90°, 1350}:

((k,7),(m,n))e 1
P, j,d,0°) =1V [k—m|=0, [ -n|=d 1)
I(k,l)=i,1(m,n) = j

((k,l),(m,n))e]
P(i, j,dA5%) = V(k—-m=d,l -n=~d)or (k—-m=—-d,] —n=d) )
I(k,l)=i,1(m,n)=j

((k,2).(m,n)) e 1
P(i, j,d90°) =1V [k —m|=d, || —n|=0 3)
I(k,1) =i, I(m,n) = j

((k,l),(m,n))e]
P(i, j,d,135°) = V(k—m:d,l—nzd)or (k—m=-d,l-n=-d) (4)
I(k,l)=i,I(m,n)=j

where {} denotes the number of elements that satisfy the conditions in {}, and the pixel
coordinates of image [ are (k,/) and (m,n).
The GLCM matrices are created from these matrices by normalizing the matrices. The

matrices are normalized by dividing by R, for a given angle 0 . That is,

Bj _ Pi; ‘
’ RH

®)

The values used for Rg are given in Table 3, where 7 and ny are the number of columns

and the number of rows, respectively, in the image, and d is the user specified distance.
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0 in degrees Rg
0° 2(n,—d)n,
45°,135° 2(n, —d)(n, —d)
90° 2n.(n, —d)

Table 3. Normalizing values

Several of the GLCM features require marginal probability mass functions (PMF). The
marginal PMF’s, p, and p,, are defined by the following formulas:

and

p,= ZP(i,J)/R, @)

where N is the number of graylevels in the quantized image, and R is the appropriate R,

value.
The GLCM texture features are calculated as follows. The GLCM energy feature is a
measure of the image uniformity. A region with little graylevel change will have a low-

energy value,

2

Seneray = ZZ[p(laj)] : (8)
i J

The GLCM variance is a measure of the spread of the elements in the matrix. The feature is
calculated from
2
Tvariance = E E (l—,u) p,J), ©)
i J

where [/ is the mean value of the elements in p. The GLCM correlation measure quantifies

the quantized graylevel linear dependence. The GLCM correlation is calculated from

ZZ@p(w)—my

f CORRELATION — , (10)

0.0,
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where U , ,uy , O, and O ,are the mean values and the standard deviations of the

marginal probability matrices, p, and p, , respectively. The entropy feature is defined as

Sentropy = _Zzp(i’ J) log{p(z’, ])}, (11)

with the convention that log(0) = 0. Entropy defines a measure of randomness, and a very
uniform area will have very low entropy.

Laws Textural Features
Laws [Laws, January 1980 a], [Laws, January 1980 b] developed a set of one-dimensional
(1D) and 2D kernels which are designed to extract small-scale textural information from
images. The 1D Laws kernels are given by

I5=[14641]
S5=1[-1 02 0-1]
RS=[1-46-4 1]

ES=[-1-2021]
W5=[-120-=21]

, (12)

where the first letter stands for Level, Edge, Spot, Wave, and Ripple, respectively [Laws,
January 1980 a], [Laws, January 1980 b]. The 2D Laws textures are sized [5 X 5] , and are

created by multiplying the 1D Laws kernel as a row vector by the second kernel as a column
vector. Since there are five 1D Laws kernels, there will be 25 2D kernels. As an example, the
L5L5 kernel is given by

1 4 6 4 1
4 16 24 16 4
L5L5=|6 24 36 24 6
4 16 24 16 4
I 4 6 4 1

- = (13)

To create the Laws texture features, an image is convolved with each of the Laws 2D
kernels. Each image is then normalized by dividing pixel-by-pixel with the L5L5 image, and

is termed I, for each Laws texture kernel m € {1,2,-- -,25} . For each Laws texture and

each pixel in the convolved image, the following equation is used to calculate the texture for
that pixel for the m-th texture:

D D
L) =D D 1, (x+ .y +k), 0

j=—Dk=-D
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where the texture mask size is (2D+1) by (2D+1). As suggested by Laws [Laws, January 1980
a), the variable D is selected as 7, thus equation Error! Reference source not found. uses a

[15 % 15], region centered at each pixel for analysis. Note that some applications take the

absolute value before summing in this formula.

Morphological Features

Morphological features are derived from the shape characteristics of the segmented region.
These features include the area, axis ratio, box ratio, circularity, convex-hull area,
eccentricity, equivalent diameter, extent, extent ratio, major-axis length, minor-axis length,
perimeter length, solidity, and width-to-height ratio.

The area is the number of pixels in the segmented region. The axis ratio is the ratio of the
major-axis length to the minor-axis length. The box ratio is the ratio of the area to the
product of the height times the width, where the height and width are defined by the

bounding box of the region. Circularity is defined as the product of 47 times the region
area divided by the square of the perimeter length in pixels. The convex-hull area is the size
of the convex hull of the region, where the convex hull H of an arbitrary set S is the smallest
convex set containing S. The equivalent diameter is defined as the diameter of a circle which
has the same area as the segmented region. The extent feature is calculated as the area
divided by the bounding-box area. The extent ratio is defined as max(height, width) /
min(height, width). The major- and minor-axis lengths are defined as the length in pixels of
the major and minor axes of the ellipse that has the same normalized second central
moments as the region, respectively. The perimeter length is the number of pixels on the
region perimeter. The solidity feature is defined as the region area divided by the convex-
hull area. The width-to-height ratio is defined as width / height.

Normalized Radial-Length (NRL) Features
The normalized radial-length (NRL) features are derived from a normalized version of the
radial-length measure [Agatheeswaran, December 2004]. First, the border pixels of the

segmentation are extracted and the centroid of the segmentation region, (cx,cy), is

calculated. Assume there are N, border pixels and that the coordinate of the k-th border

pixel is (x,,y,). For each border pixel, the Euclidean distance between the pixel and the

MAX’ is

centroid is calculated as Dk = \/(xk Xic, )2 +(yk —cy)z . The largest distance, D

calculated, and the normalized distance is calculated by dividing the pixel Euclidean
distance by the maximum distance: NRL, =D,/ D,,, - Table 4 summarizes the NRL

features, and was adapted from [Agatheeswaran, December 2004].
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Feature Description
A measure of the randomness of the NRL vector values.
N B
fNRL_ENTROPY == E P logZ(pj)’
Entropy "
j=1
where log, (0) =0 and P; is the PMF of NRL values. This PDF is estimated with a
256 bin histogram.
The length of the NRL distance vector.
Length
f NRL LENGTH — Ng
The mean value of the NRL distances.
Mean 1 Ny
v van =~ E NRL,
— NB
k=1
A measure of border roughness.
(Ng/L]
/i NRL MEAN — R j
_ NB ‘
Jj=l1
Roughness
where the roughness parameter R ; is given by
L+j
R, = E ‘NRLI. — NRL 1‘ with j € {1,---,[NB/L]}.
i=j
The standard deviation of the NRL vector.
1 ZNB
Standard /. STD _NRL — N. -1 [N RL, - J NRL _ MEAN ]z
deviation B~ =
Note: Some of the literature uses a biased definition for this feature, i.e. they divide
by Nyand notby N, —1. This analysis uses the unbiased estimator.
Zero
crossing The number of times the NRL distance crosses over the NRL mean.
count

Table 4. NRL feature descriptions

Source: Adapted from [Agatheeswaran, December 2004].

www.intechopen.com



Information Fusion in a High Dimensional Feature Space

for Robust Computer Aided Diagnosis using Digital Mammograms 175
Feature Type Num.
and sourzlg Features FeaturestS References
Fggesr&) 8¢ | patient Age 1 [Heath ef al, 1998]
Area, Axis ratio, Box ratio, Circularity,
Convex hull area, Eccentricity, C . 2004
Morphological | Equivalent diameter, Extent, Extent 14 [ atar}ous, June ]'
. . . ; ¢ [Catarious, August
(SB) ratio?, Major axis length, Minor axis 2004]
length, Perimeter length, Solidity,
Width to height ratio
L Graylevel mean, Graylevel std. dev, [Cheng et al, August
Statistical (SB) Grazlevel std. dev. ratiyo3 3 2004] i i
NRL (SB) gntropy, Lengt}}, Mean, Roughness, Std. 6 [Cheng et al, August
ev., Zero crossing count 2004]
[Haralick et al, 1973],
(Note 4) Energy, Variance, Correlation, [Agatheeswaran,
GLCM (SB) Inertia, Inverse Difference Moment, 144 December 2004],
Entropy [Cheng et al, August
2004]
[Sahiner et al, April
1998], [Haralick et al,
(Note 5) Energy, Variance, Correlation, 1973],
GLCM (RBST) | Inertia, Inverse Difference Moment, 864 [Agatheeswaran,
Entropy December 2004],
[Cheng et al, August
2004]

Table 5. Feature list

Notes:

1 This denotes the region from which the features were extracted. DDSM=DDSM database
(there is no region, as the patient age is part of the database). SB=segmentation boundary.
NRL stands for Normalized Radial Length. RBST=Rubber Band Straightening Transform.
GLCM stands for gray level co-occurrence matrix. GLCM is also known as spatial gray level
dependence (SGLD). 2 The extent ratio is max(length, height) / min(length, height). 3 the
Gray level std. dev. ratio is the ratio of the std. dev. of the gray levels inside the
segmentation to the std. dev. of gray levels outside the segmentation boundary and within
200 pixels of the segmentation boundary. ¢ The GLCM SB features are calculated at
distances d={1,2,4,6,8,10} and directions 6={0°,45°,90°,135°}. There will be a total of 6 GLCM
features x 6 distances x 4 angles for 144 GLCM features. > The RBST features are the same
features as the GLCM SB features. The RBST uses a parameter k to choose how many pixels
before and after are used to create the normal vector to the spiculation boundary. The RBST
features are calculated for distances k={2,4,6,8,10,12} For each value of k, there will be 144
features generated, thus there are 864 = 144 x 6 RBST features.

2.7 Feature Optimization and Statistical Pattern Classification

Conventional mammography based CAD systems employ a single classifier system to
classify and label mammograms as either malignant or benign. This is typically preceeded
by a feature reduction and optimization step, in an attempt to reduce the size of training
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data required to model the feature spaces, and to improve classification performance and
generalization ability (ability to account for variability in statistics of training and testing
data) of the classifier. Some common feature optimization techniques include PCA, LDA
and S-LDA. These optimization techniques are at best sub-optimal. Recently, a mathematical
argument was presented [Prasad et al, October 2008] showing that in many situations, a
PCA projection can reduce the class separation in the projected space, thereby deteriorating
the classification performance.

Stepwise Linear Discriminant Analysis (S-LDA)
LDA and it's variants are preferred linear feature optimization strategies, but when
operating in high dimensional feature spaces, LDA can potentially fail if the amount of
available training data is insufficient to estimate the within and between class scatter
matrices. S-LDA employs a forward selection, backward rejection procedure to select a very
small subset of features, upon which LDA is performed for feature optimization. Hence, by
definition, it is sub-optimal, since it does not include a majority of the features for feature
optimization. Since S-LDA will be used as a baseline feature optimization strategy, a brief
description of S-LDA follows.
Stepwise linear discriminant analysis is a version of LDA which is a compromise for a full
search of the feature space. In systems with a large feature vector size, an exhaustive search
for the optimal solution is generally not feasible. Stepwise LDA (SLDA) with forward
selection and backward rejection can be used for feature optimization. SLDA requires a
discrimination metric to decide which features are better-suited to the given task, such as
separating two different tumor types in medical imagery. Commonly used methods include
receiver operating characteristics (ROC) area under the curve [Ball, May 2007], which is
known as Az, Bhattacharyya Distance (BD), and Jeffries-Matusita distance (JMD).
In this work, Az is used as the discrimination metric, but theoretically, any appropriate
metric could be used. The forward-selection procedure starts by calculating Az values for
each feature separately, using one class as the target and all others as the non-target. The Az
values are sorted in descending order. The feature with the highest Az value gets placed into
a feature vector, and the ROC area, Az pest, is set to Azi. The second-best feature is then
appended to the feature vector and Az, is computed. The second-best feature is only
retained if Az, > Az pest. In this case, Az pest is set to Azy. The third-best feature is then
appended to the feature vector and Azz is computed. The third best feature is only retained
if Az3 > Az pest. This process is continued until all the individual features are examined, or
until the maximum number of features allowed is reached. The maximum number of the
resulting features is determined by the minimum number of training signatures for a class.
As a rule of thumb, for every five to ten training signatures, one feature can be added.
Therefore, to keep five to ten features, there needs to be at least 25 to 50 training signatures
for each class.
Next, backwards rejection is performed. Assume at this stage that there are b best features
selected in the feature vector, and the best ROC area is Az_pest. If b = 1, then no features may
be removed, and the process halts. If b > 1, then the first feature is removed, and the ROC
area Az7 is calculated. If Azy” > Az pest, then the first feature is removed, and Az pest is set to
Az1’. This process continues until all features have been removed and the ROC area has been
recalculated. At the end of the procedure, there is a feature vector which contains the set of
best features, the best Az value found, and the weighting coefficients.
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The advantage of using SLDA is that it can produce very good results, even when
individual features may not have very high Az values. Disadvantages of SLDA are (1) an
exhaustive search is not performed, (2) a large percentage of (potentially useful) features are
discarded and not considered for the classification task, and, (3) features near the end of the
feature vector with tie scores to features earlier in the vector may not be chosen.

The Multi-Classifier Decision Fusion (MCDF) Framework

In recent work, Prasad et al [Prasad et al, May 2008] proposed a new divide-and-conquer
paradigm for classification in high-dimensional feature spaces as pertaining to
hyperspectral classification in remote sensing tasks. In this chapter, we show that this
framework can be extended to other high dimensional feature spaces (features extracted
from mammograms in this case), for robust classification, even when the amount of training
data available is insufficient to model statistics of the classes in the high-dimensional feature
space.

Figure 5 illustrates the proposed divide-and-conquer framework for mammogram
classification. The algorithm is as follows. Find a suitable partition of the feature space, i.e.,
identify appropriate subspaces (each of a much smaller dimension). Perform “local”
classification in each subspace. Finally, employ a suitable decision fusion scheme to merge
the local decisions into a final malignant/benign decision per mammogram image. In our
work with hyperspectral imagery, we found that the correlation structure of the feature
space was approximately block-diagonal. This permitted the use of a correlation or mutual

Fig. 5. The proposed MCDF framework. Training data is employed to learn an appropriate
feature grouping, feature pre-processing (optimization) and class-conditional statistics. To
classify mammograms as malignant/benign, the feature extraction, feature grouping and
pre-processing is followed by independent classification. Each class label/posterior
proabability is then combined using a decision fusion mechanism.
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information based metric in the partitioning of the corresponding feature space into
multiple contiguous subspaces [Prasad et al, May 2008]. However, unlike hyperspectral
data, where the feature space comprises of reflectance values over a continuum of
wavelengths, features extracted from mammogram images typically do not possess a
standard correlation structure to them. This is primarily because these features are created
by concatenating various different kinds of quantities, such as morphological characteristics,
texture information, patient history etc. Hence, in an attempt to define a suitable partition of
the feature space derived from mammogram images, we break up the feature space into
small groups, each comprised of m adjacent features, where m is a small integer valued
number, determined experimentally. In previous work, Ball [Ball, May 2007] found that
when doing a forward selection and backward rejection of mammography features, patient
age was always selected as an important feature in the final feature selection. Hence, in this
work, patient age was injected into each partition/subspace generated above to strengthen
each local classifier.

Since each subspace is of a much smaller dimensionality than the dimension of the original
feature space, a suitable preprocessing (such as LDA) may prove beneficial before making
the local classification decisions. After creating multiple subspaces as described above, an
LDA based pre-processing is performed in each subspace. The benefits of LDA based pre-
processing are well known and documented in the pattern classification literature
[Fukunaga, 1990]. Employing LDA in the proposed setup indeed further strengthens each
classifier by improving class separation in the LDA projected space. Since the dimension of
each subspace is small as compared to that of the original feature space, LDA based
dimensionality reduction at the local subspace level is going to be well conditioned, even
when a single LDA projection over the original feature space is ill conditioned. After LDA
based pre-processing, a classifier is allocated to each subspace. The multi-classifier system is
hence essentially a bank of classifiers that make “local” decisions in the partitioned
subspaces. These can be parametric classifiers such as maximum likelihood classifiers, or
non parametric classifiers such as k nearest neighbors classifiers, neural network based
classifiers etc. In this work, we use quadratic maximum likelihood classifiers [Fukunaga,
1990]. These classifiers assume Gaussian class distributions for the i’th class, p(x /w;)~N(ui,
Z;). Assuming equal priors, the class membership function for such a classifier is given by

1 _ 1
p(wi|x>=—5(x—ui)Tzi‘(x—m)—;lnlzil. (15)

Here, w; is the class label, x is the feature vector in the subspace, pi and Z; are the mean
vector and covariance matrix of the i’th class respectively. Local classification decisions from
each subspace are finally merged (fused) into a single class label (malignant or benign) per
mammogram using an appropriate decision fusion rule. Decision fusion can occur either at
the class label level (hard fusion), or at the posterior probability level (soft fusion). We test
our system with decision fusion at both of these levels.

In hard decision fusion, we arrive at a final classification decision based on a vote over
individual class labels (hard decisions) from each subspace. Unlike soft fusion based
techniques, the overall classification of majority voting (MV) based fusion is not very
sensitive to inaccurate estimates of posterior probabilities. However, in situations where
posterior probabilities can be accurately estimated, soft fusion methods are likely to provide
stable and accurate classification. A form of majority voting that incorporates a non uniform
weight assignment [Prasad et al, May 2008] is given by:
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w =argmax N (i)
ie{l,2..C}

where, N(i) = Z a l(w; =i)
J=1 , (16)
where ¢ is the confidence score / weight (e.g., training accuracies) for the j'th classifier, I is

the indicator function, w is the class label from one of the C possible classes for the test pixel,
j is the classifier index, n is the number of subspaces / classifiers, and N(i) is the number of
times class i was detected in the bank of classifiers. A popular soft decision fusion strategy -
the Linear Opinion Pool (LOP) uses the individual posterior probabilities of each classifier (j
=1, 2,... n), pj(wy/x) to estimate a global class membership function:

COw, [¥)=D a;p,(w,|x)

w=argmax C(w, | x)

i€{1,2..C} (17)
This is essentially a weighted average of posteriors across the classifier bank. In this work,
uniform weights are assigned to decisions from the bank of classifiers, although,
theoretically, non-uniform weight assignments can be made using “training accuracy
assessment” [Prasad et al, May 2008].
In addition to resolving the over-dimensionality and small-sample-size problems, the MCDF
framework provides another advantage - Irrespective of whether we use hard or soft
decision fusion, it provides a natural framework to fuse information from different
modalities (in this case, different types of physical features extracted from mammograms),
and hence allows simultaneous exploitation of a diverse variety of information.

3. Experimental Setup and Classification Performance

Classification experiments were conducted in the proposed framework using the database
described in section 2.4, using a leave-one-out (i.e. N-fold cross validation) testing
methodology [Fukunaga, 1990] for unbiased accuracy estimates. Under this scheme, a
mammogram is sequestered for testing, while the system (all sub-components, i.e., Multi-
classifier system, LDA etc.)) is trained on the features extracted from the remaining
mammograms. This is repeated in a round-robin fashion until all mammograms have been
employed for testing. After segmenting the region of interest, features were extracted for
each mammogram. After this stage, the multi-classifier decision fusion framework takes
over. This was repeated per iteration of the leave-one-out scheme.

Table 6 depicts the results from the experimental setup described above. Results from a
conventional stepwise LDA, single classifier system are also included as baseline (for
comparison). Performance of a binary classification in CAD applications is typically
quantified by: (1) Overall accuracy - proportion of correctly identified malignant and benign
cases, (2) Sensitivity -proportion of true positives (true malignant cases) identified correctly,
and, (3) Specificity - proportion of true negatives (true benign cases) identified correctly.
These numbers, expressed in percentage are provided in Table 6. The 95% Confidence
interval in estimation of the overall accuracy is also reported, in order to account for the
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Table 6. Classification performance of the proposed system with the DDSM dataset. OA:
Overall Accuracy; CI: 95% Confidence Interval; SE: Sensitivity; SP: Specificity (all expressed
in percentage); m: partition size

Stepwise LDA (Baseline) MV based fusion LOP based Fusion
(Proposed) (Proposed)

OA CI | SE | SP | (m) OA CI | SE | SP OA ClI | SE | SP

85 38 | 87 83 85 38 | 87 83
90 32 | 90 90 88 34 | 90 87
85 3.8 | 83 87 85 38 | 83 87
80 42 | 77 83 82 4.1 80 83
85 3.8 | 83 87 83 39 | 83 83
82 4.1 80 83 82 4.1 80 83
82 4.1 80 83 82 4.1 80 83
15 78 44 73 83 78 44 | 73 83

82 4 80 83

DPIJ (N |UT|=[W|N

finite sample size. Classification performance is studied over a range of values of m, the size
of each partition in the multi-classifier framework.

For the baseline Stepwise LDA, single-classifier system, the overall accuracy, sensitivity, and
specificity were 82%, 80%, and 83%, respectively. These values are all higher for the
proposed multi-classifier, decision fusion system for small window sizes (e.g., feature
subsets have dimensionality of 2,3,4), regardless of whether MV and LOP based decision
fusion is utilized. This improvement is highest for m = 3, where the overall accuracy,
sensitivity, and specificity were each 90% when MV based fusion is used. If m is increased,
these performance metrics start to drop for the proposed system, and as m is increased to 15,
the classification accuracy and sensitivity of the system eventually fall below that of the
baseline system.

4. Conclusion

To conclude, the proposed multi-classifier, decision fusion system significantly outperforms
the baseline single-classifier based system for small partition sizes (m). By employing the
proposed system, the overall accuracy, sensitivity and specificity of the binary classification
task improve by as much as 10%. Hence, the multi-classifier, decision fusion framework
promises robust classification of mammographic masses even though the dimensionality of
feature vectors extracted from these mammograms is very high. In this study, the multi-
classifier decision fusion approach proves to be very promising and certainly warrants
future study. The proposed information fusion based approach also provides a natural
framework for integrating different physical characteristics derived from the mammogram
images (e.g.,, combining morphological, textural and statistical information). Additional
patient information, if available, can also be added to the feature stream without over-
burdening the classification system. In future work, we will explore the benefits of a
nonlinear pre-processing of the feature space and an adaptive weight assignment based
decision fusion system within the proposed framework.
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