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1. Introduction

Heart diseases are the leading cause of death in the world. Many questions have not yet been
answered regarding the electrical waves propagation in cardiac tissue, and the mechanism
of ventricular fibrillation that is produced by one or many spiral propagation waves of the
excitation cardiac wall. Numerical modeling can play a crucial role and provides the necessary
tools to answer some of these questions. However, the mathematical models, which give the
best reflection of electrophysiological waves in cardiac tissue, are extremely complicated and
present a significant computational challenges.

The bidomain model is considered as the mathematical equations that have been used for
simulating cardiac electrophysiological waves for many years (see Sundnes (2002), and Pierre
(2006) and the reference therein). This model represents the cardiac tissue at a macroscopic
scale by relating the transmembrane potential, the extracellular potential, and the ionic cur-
rents. The biodomain model consists of a system of two nonlinear partial differential equa-
tions coupled to a system of ordinary differential equations. From the numerical point of view,
the model is computationally very expensive. The major difficulties are due to the computa-
tional grids size that must be very fine to get a realistic simulation of cardiac tissue. Indeed,
the action potential is a wave with sharp depolarization and repolarization fronts and this
wave travels across the whole computational domain calling for a very fine uniform mesh.

One popular way of reducing the computational challenges of the bidomain model is the use
of the monodomain model. This model considers a single nonlinear partial differential equa-
tion coupled with the same system of ordinary differential equations for the ionic currents.
Although, it has been reported that the CPU requirements are reduced when simplifying the
bidomain model to a monodomain model (see Sundnes et al. (2006)), both models still en-
counter computational difficulties because of the need for fine meshes and small time-steps.

Many methods have been introduced in the literature to overcome these difficulties. The op-
erator splitting is usually performed to separate the large non-linear system of ODEs and thus
introduces subproblems easier to solve. A first-order (Godunov method) and a second-order
(Strang method) accurate splitting technique can be employed. For more details the reader
is referred to Sundnes et al. (2005), Lines, Buist, Grottum, Pullan, Sundnes & Tveito (2003);
Lines, Grottum & Tveito (2003), and Weber Dos Santos et al. (2003)). To reduce the computa-
tional time at each time step, parallel computing techniques are used (see Colli Franzone &
Pavarino (2004), Karpoukhin et al. (1995) and Weber dos Santos et al. (2004)). Several time-
stepping strategies have also been used, fully implicit ( Bourgault et al. (2003), and Murillo &
Cai (2004)), and semi-implicit ( Franzone & Pavarino (2004), Ethier & Bourgault (2008))
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Recently, mesh adaptation methods have been introduced to reduce the size of the spatial
mesh as well as the computational time. This method consists in locating finer mesh cells near
the depolarisation-repolarization front position while a coarser mesh is used away from the
front. In the context of isotropic unstructured meshes, the reader is referred to Cherry et al.
(2003), Colli Franzone et al. (2006) and Trangenstein & Kim (2004) for more details. However,
for two and three dimensional anisotropic mesh adaptation, where mesh cells are elongated
along a specified direction, the reader is referred to Belhamadia (2008a;b); Belhamadia et al.
(2009).

The scope of this book chapter is to present the recent adaptive technique introduced in Bel-
hamadia (2008a;b) for simulating the two-dimensional cardiac electrical activity. The method
proposed reduces greatly the size of the spatial mesh as well as the computational time. Also,
an accurate prediction of the depolarization and repolarization fronts is obtained showing the
advantages of the proposed method.

This work is organized as follows. Section 2 presents a brief description of the bidomain and
monodomain models with Aliev-Panfilov ion kinetics. Also, the finite element discretization
for these models are presented. Section 3 is devoted to a description of the time-dependent
adaptive strategy while the last section presents two-dimensional numerical results represent-
ing the re-entrant waves.

2. Mathematical Models

The bidomain and modomain models will be now presented. The first model consists of
a nonlinear partial differential equation for the transmembrane potential Vm coupled with
an elliptic one for the extracellular potential φe, as well as an ordinary differential equation,
for at least one variable, representing the ionic currents. This system of equations takes the
following form:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂Vm

∂t
−∇ · (Gi∇Vm) =∇ · (Gi∇φe) + Iion(Vm,W)

∇ · ((Gi + Ge)∇φe) = −∇ · (Gi∇Vm)

∂W

∂t
= g(Vm,W),

(1)

where Gi and Ge are the symmetric intra- and extra-cellular conductivity tensors. The defi-
nition of the functions Iion(Vm,w) and g(Vm,w) depends on the ionic model. Modern cardiac
ionic models include generally a set of 10 to 60 ordinary differential equations. However, in
this work the Aliev-Panfilov model (see Aliev & Panfilov (1996)) is presented which consists
of the following equations:

Iion = kVm(Vm − a)(1 − Vm)− VmW,

g(Vm,W) =

(

ǫ +
µ1W

µ2 + Vm

)

(−W − kVm(Vm − a − 1)) .

If we assume equal anisotropy ratio of the intra- and extra-cellular media, it is well known
that the bidomain equations can be reduced to the monodomain model. The resulting sys-
tem consists of one nonlinear partial differential equation for the transmembrane potential
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Vm coupled with an ordinary differential equation for the ionic currents. The monodomain
equations using Aliev-Panfilov model take the following form:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂Vm

∂t
−∇ · (G∇Vm) = Iion(Vm,W)

∂W

∂t
= g(Vm,W),

(2)

Several time derivative discretization have been introduced for the bidomain model
(see Ethier & Bourgault (2008), and Keener & Bogar (1998)). Also, the reader is referred to Bel-
hamadia (2008b) for more discussion about different time schemes and their impact on two-
dimensional mesh adaptation. In this work, a fully implicit backward second order scheme
(Gear) is employed as time discretization. Starting from Vn−1

m and Wn−1 at time tn−1 and from
Vn

m and Wn at time tn, Gear scheme gives:

∂Vm

∂t
(t(n+1)) ≃

3V
(n+1)
m − 4V

(n)
m + V

(n−1)
m

2∆t
,

and
∂W

∂t
(t(n+1)) ≃

3W(n+1) − 4W(n) + W(n−1)

2∆t
.

The variational formulation of the system of nonlinear equation (1) is straightforward and
obtained by multiplying this system by test functions (ψv,ψφ,ψw) such that:
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Ω

3V
(n+1)
m − 4V

(n)
m + V

(n−1)
m

2∆t
ψv dΩ +

∫

Ω

Gi∇V
(n+1)
m · ∇ψv dΩ

+
∫

Ω

Gi∇φ
(n+1)
e · ∇ψv dΩ =

∫

Ω

Iion(V
(n+1)
m ,W(n+1))ψv dΩ

−

∫

Ω

(Gi + Ge)∇φ
(n+1)
e · ∇ψφ dΩ =

∫

Ω

Ge∇V
(n+1)
m · ∇ψφ dΩ

∫

Ω

3W(n+1) − 4W(n) + W(n−1)

2∆t
ψw dΩ =

∫

Ω

g(V
(n+1)
m ,W(n+1)) ψw dΩ.

(3)

Similarly, the variational formulation of the system of nonlinear equation (2) takes the follow-
ing form:
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3V
(n+1)
m − 4V
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(n−1)
m

2∆t
ψv dΩ +

∫

Ω

G∇V
(n+1)
m · ∇ψv dΩ

=
∫

Ω

Iion(V
(n+1)
m ,W(n+1))ψv dΩ

∫

Ω

3W(n+1) − 4W(n) + W(n−1)

2∆t
ψw dΩ =

∫

Ω

g(V
(n+1)
m ,W(n+1)) ψw dΩ.

(4)

In all numerical simulations, a quadratic (P2) for spatial discretization and Newton’s method
are employed to solve the non linear system above at each time step. Linear system resulting
from Newton’s method is solved by iterative methods, an incomplete LU decomposition (ILU)
GMRES solver Saad (1996) from the PETSc library Balay et al. (2003).
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3. Adaptive Method

As already mentioned, the accurate prediction of the depolarization-repolarization fronts in
cardiac tissue is crucial. It is well known that a typical simulation of time-dependent car-
diac electrophysiological waves using the whole heart may require about 107 grid points
(see Cherry et al. (2003) and Ying (2005)), which leads to numerical challenges beyond the
limit of the existing computational resources. To partially avoid these challenges, the mesh
has to be adapted at each time step near the depolarization-repolarization fronts while coarser
mesh are sufficient away from these fronts. This can be done with appropriate mesh adapta-
tion techniques. In the context of the electrical wave of the heart, two different methods for
estimating the error, depending on the dimension of the problem, have been introduced. A
hierarchical error estimator described in Belhamadia (2008b) was used for a two-dimensional
case, and an error estimator based on a definition of edge length using a solution dependent
metric described in Belhamadia et al. (2009) was used for a three-dimensional case.

A brief description of adaptive methods for time dependent problems will now be presented.
Only the case of the monodomain model will be presented and similar strategy can be pre-
sented for the bidomain model. The objective of this method is to build at each time step tn

a fine mesh in all regions where the variables Vm and W evolve (Vm, W and φe in case of the
bidomain model) and a coarse mesh in these other regions. Therefore, an accurate solution is
obtained and the total number of elements is greatly reduced at each time step. The overall

adaptive strategy is the following:

1. Start from the solutions V
(n−1)
m , V

(n)
m , W(n−1) and W(n) and a mesh M(n) at time t(n);

2. Solve the system (2) on mesh M(n) to obtain a first approximation of the solutions

(denoted Ṽm
(n+1)

and W̃(n+1)) at time t(n+1);

3. Adapt the mesh on the two expressions
Ṽm

(n+1)
+ V

(n)
m + V

(n−1)
m

3

and
W̃(n+1) + W(n) + W(n−1)

3
to obtain a new mesh M(n+1);

4. Reinterpolate V
(n−1)
m , V

(n)
m , W(n−1) and W(n) on mesh M(n+1);

5. Solve the system (2) on mesh M(n+1) for Vn+1
m and Wn+1.

6. Next time step: go to step 2.

4. Numerical results

The mechanism of ventricular fibrillation is believed to be produced by one or many spiral
propagation waves in the myocardium. The reader is referred to Biktashev et al. (1999), Jal-
ife (2000), and Panfilov & Kerkhof (2004) and the reference therein for a complete discussion.
From the numerical point of view, there are many strategies to initiate a spiral wave (see Bour-
gault et al. (2003), and Ethier & Bourgault (2008)). In this section, the performance of the adap-
tive method will be presented. A two-dimensional problem representing the re-entrant waves
will be presented using the monodomain and bidomain model.
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4.1 Monodomain model

This section is devoted to a test case using the monodomain model. The computational do-
main is the square [0, 100]× [0, 100]. Homogeneous Neumann conditions are imposed on all
sides, and the following parameters values have been used:

k = 8 a = 0.15
ǫ = 0.002 µ1 = 0.2
µ2 = 0.3 G = 1
∆t = 0.5

Figure 1 presents the transmembrane potential Vm and the recovery variable W at the center of
the computational domain as a function of time. The numerical solutions are obtained using
adapted meshes with only an average of 5900 triangular elements leading to 23000 dof since
we use quadratic (P2) for spatial discretization. The total number of elements is reduced due
to the use of the anisotropic adapted meshes. The reader is referred to Belhamadia (2008b)
for more details about quantitative results and comparisons between structured and adapted
meshes.

Figure 2 a) b) shows the solutions Vm and W at time t = 8 t.u. while the adapted mesh at the
same time is presented in figure 2 c). A close up view of the mesh on the interface is presented
in figure 2 d). It is clearly shown that the mesh is refined only in the vicinity of the front
position while keeping sufficient resolution in other regions. The gain in computational time
is obvious using the adaptive method since the total number of elements is greatly reduced.

4.2 Bidomain model

A test case using the bidomain model is now presented. The computational domain, the
boundary conditions, and the physical parameters are the same as the previous section. How-
ever, the intra- and extra-cellular conductivity tensors are

Gi =

(

3 0
0 0.32

)

and Ge =

(

2 0
0 1.37

)

As the previous section, the advantage of the adaptive method can be also illustrated in the
case of unequal anisotropy ratios. The transmembrane potentials, and the recovery variable
at the center of the computational domain as a function of time are similar to figure 1 and are
not presented in this work to avoid a repetition. The numerical solutions are obtained using
adapted meshes with only an average of 7100 triangular elements (29000 dof).

Figure 3 illustrates the evolution of the adapted mesh. The front position is well captured and
the solution seems uniformly accurate over time steps. Finally, the numerical solutions of the
transmembrane potential, the extracellular potential and the recovery variable are shown in
figure 4. As could be seen, the depolarization and repolarization fronts are smooth and well
captured on the adapted anisotropic meshes.

5. Conclusions

A recent numerical method for the transmembrane potential was presented. The accuracy of
the method was obtained by using an anisotropic time-dependent adaptive method. A two-
dimensional problem representing the re-entrant waves was shown using the monodomain
and bidomain model. Although only a two dimensional case was presented, this method is
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general and can be extended to three dimensional case. Results using realist heart geometry
and with the monodomain model are recently presented in Belhamadia et al. (2009). The
method proposed in this work uses two-variable ionic model. It will be interesting to see how
the method performs with more complex ionic models.
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a) Vm vs time

b) W vs time

Fig. 1. Transmembrane potential and recovery variable at the point (50,50,50) as a function of
time using adapted meshes
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a) Transmembrane potential Vm b) Recovery variable W

c) Adapted mesh d) Close up of the mesh

Fig. 2. Numerical Solutions using adapted meshes: monodomain model case
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a) Adapted mesh at t = 5 t.u. b) Adapted mesh at t = 10 t.u.

c) Adapted mesh at t = 15t.u. d) Adapted mesh at t = 25 t.u.

e) Adapted mesh at t = 35 t.u. f) Adapted mesh at t = 40 t.u.

Fig. 3. Mesh evolution using the bidomain model
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a) Transmembrane potential Vm b) Recovery variable W

c) Extracellular potential Vm d) Adapted mesh at t = 13 t.u.

Fig. 4. Numerical Solutions using adapted meshes: bidomain model case
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