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1. Introduction

The exploration of brain responses following environmental inputs or in the context of dy-
namic cognitive changes is crucial for better understanding the central nervous system (CNS).
However, the limited signal-to-noise ratio of non-invasive brain signals, such as evoked po-
tentials (EPs), makes the detection of single-trial events a difficult estimation task. In this
chapter, focus is given on the state-space approach for modeling brain responses following
stimulation of the CNS.

Many problems of fundamental and practical importance in science and engineering require
the estimation of the state of a system that changes over time using a series of noisy observa-
tions. The state-space approach provides a convenient way for performing time series model-
ing and multivariate non stationary analysis. Focus is given on the determination of optimal
estimates for the state vector of the system. The state vectors provide a description for the
dynamics of the system under investigation. For example, in tracking problems the states
could be related to the kinematic characteristics of the moving object. In EP analysis, they
could be related to trend-like changes of some component of the potentials caused by sequen-
tial stimuli presentation. The observation vectors represent noisy measurements that provide
information about the state vectors.

In order to analyze a dynamical system, at least two models are required. The first model
describes the time evolution of the states, and the second connects observations and states.
In the Bayesian state-space formulation those are given in a probabilistic form. For example,
the state is assumed to be influenced by unknown disturbances modeled as random noise.
This provides a general framework for dynamic state estimation problems. Often, an estimate
of the state of the system is required every time that a new measurement is available. A
recursive filtering approach is then needed for estimation. Such a filter consists of essentially
two stages: prediction and update. In the prediction stage, the state evolution model is used to
predict the state forward from one measurement time to the next. The update stage uses the
latest measurement to modify the prediction. This is achieved by using the Bayes theorem,
which can be seen as a mechanism for updating knowledge about the current state in the
light of extra information provided from new observations. When all the measurements are
available, that is, in the case of batch processing, then a smoothing strategy is preferable. The
smoothing problem can also be treated within the same framework. For example, a forward-
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backward approach can be adopted, which gives the smoother estimates as corrections of the
filter estimates with the use of an additional backward recursion.

A mathematical way to describe trial-to-trial variations in evoked potentials (EPs) is given by
state-space modeling. Linear estimators optimal in the mean square sense can be obtained
with the use of Kalman filter and smoother algorithms. Of importance is the parametrization
of the problem and the selection of an observation model for estimation. Aim in this chapter is
the presentation of a general methodology for dynamical estimation of EPs based on Bayesian
estimation theory.

The rest of the chapter is organized as follows: In Section 2, a brief overview of single-trial
analysis of EPs is given focusing on dynamical estimation methods. In Section 3, state-space
mathematical modeling is presented in a generalized probabilistic framework. In Sections 4
and 5, the linear state-space model for dynamical EP estimation is considered, and Kalman
filter and smoother algorithms are presented. In Section 6, a generic way for designing an
observation model for dynamical EP estimation is presented. The observation model is con-
structed based on the impulse response of an FIR filter and can be used for different kind
of EPs. This form enables the selection of observation model based on shape characteristics
of the EPs, for instance, smoothness, and can be used in parallel with Kalman filtering and
smoothing. In Section 7, two illustrative examples based on real EP measurements are pre-
sented. It is also demonstrated that for batch processing the use of the smoother algorithm is
preferable. Fixed-interval smoothing improves the tracking performance and reduces greater
the noise. Finally, Section 8 contains some conclusions and future research directions related
to the presented methodology.

2. Single-trial estimation of evoked potentials

Electroencephalogram (EEG) provides information about neuronal dynamics on a millisec-
ond scale. EEG’s ability to characterize certain cognitive states and to reveal pathological
conditions is well documented (Niedermeyer & da Silva, 1999). EEG is usually recorded with
Ag/AgCl electrodes. In order to reduce the contact impedance between the electrode-skin
interface, the skin under the electrode is abraded and a conducting electrode past is used. The
electrode placement commonly conforms the international 10-20 system shown in Figure 1,
or some extensions of it for additional EEG channels. For the names of the EEG channels the
following letters are usually used: A = ear lobe, C = central, Pg = nasopharyngeal, P = parietal,
F = frontal, Fp = frontal polar, and O = occipital.

Evoked potentials obtained by scalp EEG provide means for studying brain function (Nieder-
meyer & da Silva, 1999). The measured potentials are often considered as voltage changes
resulted by multiple brain generators active in association with the eliciting event, combined
with noise, which is background brain activity not related to the event. Additionally, there
are contributions from non-neural sources, such as muscle noise and ocular artifacts. In rela-
tion to the ongoing EEG, EPs exhibit very small amplitudes, and thus, it is difficult to be de-
tected straight from the EEG recording. Therefore, traditional research and analysis requires
an improvement of the signal-to-noise ratio by repeating stimulation, considering unchanged
experimental conditions, and finally averaging time locked EEG epochs. It is well known that
this signal enhancement leads to loss of information related to trial-to-trial variability (Fell,
2007; Holm et al., 2006).

The term event-related potentials (ERPs) is also used for potentials that are elicited by cogni-
tive activities, thus differentiate them from purely sensory potentials (Niedermeyer & da Silva,
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Fig. 1. The international 10-20 electrode system, redrawn from (Malmivuo & Plonsey, 1995).

1999). A generally accepted EP terminology denotes the polarity of a detected peak with the
letter “N” for negative and “P” for positive, followed by a number indicating the typical la-
tency. For example, the P300 wave is an ERP seen as a positive deflection in voltage at a
latency of roughly 300 ms in the EEG. In practice, the P300 waveform can be evoked using
a stimulus delivered by one of the sensory modalities. One typical procedure is the oddball
paradigm, whereby a deviant (target) stimulus is presented amongst more frequent standard
background stimuli. Elicitation of P300 type of responses usually requires a cognitive action
to the target stimuli by the test subject. An example of traditional EP analysis, that is averag-
ing epochs sampled relative to the two types of stimuli, here involving auditory stimulation,
is presented in Figure 2. In Figure 2 (a) it is shown the extraction of time-locked EEG epochs
from continuous measurements from an EEG channel. In this plot, markers (+) indicate stim-
uli presentation time. In Figure 2 (b), the average responses for standard and deviant stimuli
are presented, and zero at the x-axis indicates stimuli presentation time. Notice, that often the
potentials are plotted in reverse polarity.

Evoked potentials are assumed to be generated either separately of ongoing brain activity, or
through stimulus-induced reorganization of ongoing activity. For example, it might be possi-
ble that during the performance of an auditory oddball discrimination task, the brain activity
is being restructured as attention is focused on the target stimulus (Intriligator & Polich, 1994).
Phase synchronization of ongoing brain activity is one possible mechanism for the generation
of EPs. That is, following the onset of a sensory stimulus the phase distribution of ongoing
activity changes from uniform to one which is centered around a specific phase (Makeig et al.,
2004). Moreover, several studies have concluded that averaged EPs are not separate from
ongoing cortical processes, but rather, are generated by phase synchronization and partial
phase-resetting of ongoing activity (Jansen et al., 2003; Makeig et al., 2002). Though, phase
coherence over trials observed with common signal decomposition methods (e.g. wavelets)
can result both from a phase-coherent state of ongoing rhythms and from the presence of
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a phase-coherent EP which is additive to ongoing EEG (Makeig et al., 2004; Mäkinen et al.,
2005). Furthermore, stochastic changes in amplitude and latency of different components of
the EPs are able to explain the inter trial variability of the measurements (Knuth et al., 2006;
Mäkinen et al., 2005; Truccolo et al., 2002). Perhaps both type of variability may be present in
EP signals (Fell, 2007).

Several methods have been proposed for EP estimation and denoising, e.g. (Cerutti et al.,
1987; Delorme & Makeig, 2004; Karjalainen et al., 1999; Li et al., 2009; Quiroga & Garcia, 2003;
Ranta-aho et al., 2003). The performance and applicability of every single-trial estimation
method depends on the prior information used and the statistical properties of the EP signals.
In general, the exploration of single-trial variability in event related experiments is critical
for the study of the central nervous system (Debener et al., 2006; Fell, 2007; Makeig et al.,
2002). For example, single-trial EPs could be used to study perceptual changes or to reveal
complicated cognitive processes, such as memory formation. Here, we focus on the case that
some parameters of the EPs change dynamically from stimulus-to-stimulus. This situation
could be a trend-like change of the amplitude or latency of some EP component.

The most obvious way to handle time variations between single-trial measurements is sub-
averaging of the measurements in groups. Sub-averaging could give optimal estimators if
the EPs are assumed to be invariant within the sub-averaged groups. A better approach is
to use moving window or exponentially weighted average filters, see for example (Delorme
& Makeig, 2004; Doncarli et al., 1992; Thakor et al., 1991). A few adaptive filtering methods
have also been proposed for EP estimation, especially for brain stem potential tracking, e.g.
(Qiu et al., 2006). The statistical properties of some moving average filters and different recur-
sive estimation methods for EP estimation have been discussed in (Georgiadis et al., 2005b).
Some smoothing methods have also been proposed for modeling trial-to-trial variability in
EPs (Turetsky et al., 1989). Kalman smoother algorithm for single-trial EP estimation was in-
troduced in (Georgiadis et al., 2005a), see also (Georgiadis, 2007; Georgiadis et al., 2007; 2008).

State-space modeling for single-trial dynamical estimation considers the EP as a vector val-
ued random process with stochastic fluctuations from stimulus-to-stimulus (Georgiadis et al.,
2005b). Then past and future realizations contain information of relevance to be used in the
estimation procedure. Estimates for the states, that are optimal in the mean square sense, are
given by Kalman filter and smoother algorithms. Of importance is the parametrization of
the problem and the selection of an observation model for the measurements. For example,
in (Georgiadis et al., 2005b; Qiu et al., 2006) generic observation models were used based on
time-shifted Gaussian smooth functions. Furthermore, data based observation models can
also be used (Georgiadis, 2007).

3. Bayesian formulation of the problem

In this chapter, sequential observations are considered to be available at discrete time instances
t. The observation vector zt is assumed to be related to some unobserved parameter vector
(state vector) through some model of the form

zt = ht(θt, υt), (1)

for every t = 1, 2, . . .. The simplest non stationary process that can serve as a model for the
time evolution of the states is the first order Markov process. This can be expressed with the
following state equation:

θt = ft(θt−1, ωt). (2)
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(a) Extracting EEG epochs.

(b) Comparing the average responses.

Fig. 2. Traditional EP analysis for a stimuli discrimination task.

The last two equations form a state-space model for estimation. Other common assumptions
made for the model are summarized bellow:

• ft, ht are well defined vector valued functions for all t.

• {ωt} is a sequence of independent random vectors with different distributions, and
represents the state noise process.

• {υt} is a white noise vector process, that represents the observation noise.
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• The random vectors ωt, υt are mutually independent for every t.

• The distributions of ωt, υt are known or preselected.

• There is an initial state θ0 with known distribution.

The previous estimation problem can also be described in a different way. The stochastic pro-
cess {θt}, {zt} are said to form a (first order) evolution-observation pair, if for some random
starting point θ0 and some evolution up to t the following properties hold (Kaipio & Somer-
salo, 2005):

• The process {θt} is a Markov process, that is,

p(θt|θt−1, θt−2, . . . , θ0) = p(θt|θt−1). (3)

• The process {zt} has the memory-less property (3) with respect to the history of {θt},
that is,

p(zt|θt, θt−1, θt−2, . . . , θ0) = p(zt|θt). (4)

• The process {θt} depends on the past observations only through its own history, that is,

p(θt|θt−1, zt−1, zt−2, . . . , z1) = p(θt|θt−1). (5)

An evolution-observation pair can be illustrated with the following dependency scheme:

θ0 −→ θ1 −→ θ2 −→ . . . −→ θt −→ . . .
↓ ↓ ↓
z1 z2 zt

Notice, that as soon as a state-space model is defined for an evolution-observation pair, then
the assumptions of the model come in parallel with the above definitions (Kaipio & Somersalo,
2005). Assume that the stochastic processes {θt}, {zt} form an evolution-observation pair.
Then the following problems are under consideration:

• Prediction, that is, the determination of p(θt|zt−1, zt−2, . . . , z1).

• Filtering, that is, the determination of p(θt|zt, zt−1, . . . , z1).

• Fixed interval smoothing, that is, the determination of p(θt|zT , . . . , zt, . . . , z1), when a com-
plete measurement sequence is available for t = 1, 2, . . . , T.

Based on the conditional or posterior densities, estimators for the states can be defined in a
Bayesian framework. It can also be noticed, that all the above problems are computationally
related to the prediction problem as an intermediate step.

4. Dynamical estimation of EPs with a linear state-space model

The sampled potential (from channel l) relative to the successive stimulus or trial t can be

denoted with a column vector of length M, i.e. zt = (zt(1), zt(2), . . . , zt(M))T for t = 1, . . . , T,
where T is the total number of trials, and (·)T denotes transposition.

A widely used model for EP estimation is the additive noise model (Karjalainen et al., 1999),
that is,

zt = st + υt. (6)
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The vector st corresponds to the part of the activity that is related to the stimulation, and the
rest of the activity υt is usually assumed to be independent of the stimulus. Single-trial EPs
can be modeled as a linear combination of some pre-selected basis vectors. Then the model
takes the form

zt = Htθt + υt, (7)

where Ht is the observation matrix, which contains the basis vectors ψt,1, . . . , ψt,k of length M
in its columns, and θt is a parameter vector of length k. The estimated EPs ŝt can be obtained
by using the estimated parameters θ̂t as follows:

ŝt = Ht θ̂t. (8)

The measurement vectors zt can be considered as realizations of a stochastic vector process,
that depend on some unobserved parameters θt (state vectors) through (7). For the time evo-
lution of the hidden process θt a linear first order Markov model can be used (Georgiadis et al.,
2005b), that is,

θt = Ftθt−1 + ωt, (9)

with some initial distribution for θ0. Equations (7), (9) form a linear state-space model, where
Ft, Ht are preselected matrices. Other assumptions of the model are that for every i �= j the
observation noise vectors υi, υj and the state noise vectors ωi, ωj are mutually independent
and independent of θ0.

5. Kalman filter and smoother algorithms

Kalman filtering problem is related to the determination of the mean square estimator θ̂t for
θt given the observations z1, . . . , zt (Kalman, 1960). This is equal to the conditional mean

θ̂t = E{θt|z1, . . . , zt} = E{θt|Zt). (10)

The optimal linear mean square estimator can be obtained recursively by restricting to a linear
conditional mean, or by assuming υt and ωt to be Gaussian (Sorenson, 1980). The Kalman
filter algorithm can be written as follows:

• Initialization

Cθ̃0
= Cθ0

(11)

θ̂0 = E{θ0} (12)

• Prediction step

θ̂t|t−1 = Ft θ̂t−1 (13)

Cθ̃t|t−1
= FtCθ̃t−1

FT
t + Cωt (14)

• Filtering step

Kt = Cθ̃t|t−1
HT

t (HtCθ̃t|t−1
HT

t + Cυt )
−1 (15)

θ̂t = θ̂t|t−1 + Kt(zt − Ht θ̂t|t−1) (16)

Cθ̃t
= (I − Kt Ht)Cθ̃t|t−1

, (17)
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for t = 1, . . . , T. The matrix Kt is the Kalman gain, θ̂t|t−1 is the prediction of θt based on θ̂t−1,

and θ̂t−1 = E{θt−1|zt−1, . . . , z1} is the optimal estimate at time t − 1.

If all the measurements zt, t = 1, . . . , T are available, then the fixed interval smoothing prob-
lem can be considered, that is,

θ̂s
t = E{θt|z1, . . . , zT} = E{θt|ZT}. (18)

The forward-backward method for the smoothing problem (Rauch et al., 1965), which gives
the smoother estimates as corrections of the filter estimates is complete through the backward
recursion:

• Smoothing

At = Cθ̃t
FT

t+1C−1
θ̃t+1|t

(19)

θ̂s
t = θ̂t + At(θ̂

s
t+1 − θ̂t+1|t) (20)

Cθ̃s
t

= Cθ̃t
+ At(Cθ̃s

t+1
− Cθ̃t+1|t

)AT
t , (21)

for t = T − 1, T − 2, . . . , 1. For initialization of the backward recursion the filter estimates are
used, i.e. θ̂s

T = θ̂T .

6. EP estimation based on a generic model

The following state-space model for dynamical estimation of evoked potentials is here con-
sidered:

θt = θt−1 + ωt (22)

zt = Hθt + υt, (23)

with the selections Ft = I, t = 1, . . . , T, i.e. a random walk model, and Ht = H for all t.

The observation model can be formed from the impulse response of an FIR filter. Consider a
linear (non-causal) finite response filter with impulse function defined by the sequence {h(n)}
over the interval −M ≤ n ≤ M. For a given input zt(n), n = 1, . . . , M the output is given by

yt(n) =
∞

∑
k=−∞

h(n − k)zt(k) =
M

∑
k=1

h(n − k)zt(k), (24)

where zt(n) = 0 for n < 1.

The output of the filter yt = (yt(1), yt(2), . . . , yt(n), . . . , yt(M))T in terms of the input vector

zt = (zt(1), zt(2), . . . , zt(n), . . . , zt(M))T , for n = 1, . . . , M, is given in a compact matrix form
by

yt =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

h(0) h(−1) . . . h(1 − M)
h(1) h(0) . . . h(2 − M)

...
...

...
...

h(n − 1) h(n − 2) . . . h(n − M)
...

...
...

...
h(M − 1) h(M − 2) . . . h(0)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

zt, (25)
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where the filter operator P, i.e. yt = Pzt, contains time-shifted versions of the impulse function
in its columns. The performance of the filter can be approximated by choosing less vectors to
form an observation model H with k columns, selected for i = 1, . . . , k as

ψi = (h(−di), . . . , h(M − 1 − di))
T , (26)

where di can be selected based on the values 0, M/(k− 1), 2M/(k− 1), . . . , M. An approxima-
tion of the filter performance can be obtained, for example, through the matrix H(HT H)−1HT

in the ordinary least squares sense. Different observation models, for example, the Gaussian
basis (Georgiadis et al., 2005b; Qiu et al., 2006; Ranta-aho et al., 2003), here seen as a low pass
filter, can be used.

For the covariances of the state and observation noise processes the choices Cωt = σ2
ω I,

Cυt = σ2
υ I for every trial t can be made. Then, the selection of the last variance term is not

essential, since only the ratio σ2
υ /σ2

ω has effect on the estimates. A detailed proof can be found
in (Georgiadis et al., 2007). Then the choice Cυt = I can be made, and care should be given
to the selection of only one parameter σ2

ω . In general, if it is tuned too small fast fluctuation
of EPs are going to be lost, and if it is selected too big the estimates have too much variance.
The selection can be based on experience and visual inspection of the estimates as a balance
between preserving expected dynamic variability and greater noise reduction. Extensive dis-
cussion and examples related to the selection of this parameter can be found in (Georgiadis,
2007; Georgiadis et al., 2005b; 2007).

7. Examples

7.1 Amplitude variability

In this example, measurements were obtained from an EP experiment with visual stimulation.
310 fixed intensity flash stimuli (red squares) were presented to the subject through a monitor
(screen 36.5 x 27.6 cm, distance 1 m). The stimuli were randomly presented every 1.5s (from
1.3s to 1.7s) and their duration was 0.3s. The measurement device was BrainAmp MR plus and
the sampling rate was Fs = 5000Hz. Prior to the estimation procedure the EEG channels were
band pass filtered with pass band 1-500Hz. Then epochs of 0.5s relative to the presentation of
stimuli were sampled from channel Oz. All the epochs were kept for estimation.

The observation model was created based on a low pass FIR filter with impulse response
obtained by truncating an ideal low pass filter (sinc function) with a Hanning window. The
cut-off frequency was selected to be fc = 20Hz and the number of vectors was selected to be
k = 21. The empirical rule:

k =

[

fc

Fs/2
M

]

+ 1, (27)

where [·] denotes integer part, seemed to produce good values for k for different values of
Fs, fc, M. The selected observation model is illustrated in Figure 3, where the columns of the
matrix H are represented as rows in an image plot.

Kalman filter and smoother estimates were computed for the model (22), (23) with the se-
lection σ2

ω = 1. The value was chosen empirically by visual examination of the estimates.
For initialization of the algorithms, half of the measurements were used in a backward re-
cursion with Kalman filter algorithm. The last (converged) estimates were used to initialize
the Kalman filter forward run. For the initialization of the final backward recursion (Kalman
smoother) the filter estimates were used.

www.intechopen.com



"�#
$�����������
��
%�����	��
&����������'.

�������	



�
�
�
�
��

�
�
�
�

��� ���� ���� ���� ����

�

��

��

��

�

�

�

�

����

��� ���� ���� ���� ����

�

�

��
����

�����������

Fig. 3. The selected observation model. Up: the columns of the matrix H as rows in an image
plot. Down: the 11th column.

Figure 4 (top, left) shows the noisy EP measurements as an image plot. The positive dominant
peak, here occurring about 160 ms after visual stimulation, is visible at the center of the im-
age. The obtained estimates are presented in the same figure for Kalman filter (top, right) and
smoother (bottom left). The averaged EPs obtained from the raw measurements and from
the estimates are also seen in the middle of the figure. The positive dominant peak can be
observed from this plot. Clearly, the time variation of the EPs is revealed. A decrease in am-
plitude of the dominant positive peak is clearly observable, suggesting possible habituation
to the stimuli presentation. The amplitude of the peak, estimated simply as the maximum
value within the time interval 100-200ms after the presentation of the stimuli, is also plotted
as a function of the successive stimulus t. Furthermore, the time-varying latency of the peak
is presented. From these plots it can be easier observed the gradual decrease of the amplitude.
Finally, the improvement due to the smoothing procedure is visible. The smoother algorithm
cancels the time-lag of the filtering procedure. In parallel, it removes greater the noise, thus
improving the latency estimation, especially for the very weak evoked potentials.

7.2 Latency variability

In this example, measurements related to the P300 event related potential were used. The P300
peak is one of the most extensively studied cognitive potential and there exist many studies
where the trial-to-trial variability of the component is discussed, for example, (Holm et al.,
2006).
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Fig. 4. Single-trial EP amplitude variability.

EEG measurements were obtained from a standard oddball paradigm with auditory stimula-
tion. During the recording, 569 auditory stimuli were presented with an inter-stimulus inter-
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val of 1s, 85% of the stimuli at 800Hz and randomly presented 15% deviant tones at 560Hz.
The subject was sitting in a chair and was asked to press a button every time he heard the
deviant target tone. The sampling rate of the EEG was 500 Hz. From the recordings, channel
Cz was selected for analysis, after bandpass filtering in the range 1-40Hz. Average responses
from the two conditions are shown in Figure 2 (Section 2). For investigation of the single trial
variability of the P300 peak, EEG epochs from -100 ms to 600 ms relative to the stimulus onset
of each deviant stimulus were here used.

The model was designed as in section 7.1 but now for the slower P300 wave the selection fc =
10Hz was made. The application of the empirical rule (27) gave in this case k = 15. Kalman
smoother estimates were computed with the selection σ2

ω = 9, with respect to the expected
faster variability of the potential.

In Figure 5 (I) there are presented the EP measurements in the original stimulus order (trial-by-
trial). In the same figure (II) the obtained estimates based on the measurements (I) are shown.
Clearly, in the estimates, the dynamic variability of the P300 peak potential is revealed, sug-
gesting that it cannot be considered as occurring at fixed latency from the stimuli presentation.
At the same image (II), the estimated latency is also plotted as a function of the consecutive
trial t. The latency of the peak was estimated from the Kalman smoother estimates based on
the maximum value within the time interval 250-370ms after the presentation of the stimuli.

The estimated time-varying latency of the P300 peak was then used to order the single-trial
measurements. The sorted single-trials (condition-by-condition) are shown at Figure 5 (III).
The shorted latency estimates are plotted again over the image plot. This plot clearly demon-
strates that the latency estimates obtained with Kalman smoother are of acceptable accuracy.

Finally, the algorithm was also applied to the sorted measurements (III). The value σ2
ω =

4 was selected and new point estimates for the latency were obtained as before. Kalman
smoother estimates and the new latency estimates are plotted in Figure 5 (IV). The linear trend
of the sorted potentials allows the use of even smaller value for state-noise variance parameter
(Georgiadis et al., 2005b), thus reducing even more the noise without reducing the variability
of the peak. The last obtained estimates of the latencies were plotted over the original non
sorted measurements (I). The similarities between the estimated latency fluctuations in (I)
and (II) underline the robustness of the method.

8. Conclusion and Future Directions

EP research has to deal with several inherent difficulties. Traditional analysis is based on aver-
aged data often by forming extra grand averages of different populations. Thus, trial-to-trial
variability and individual subject characteristics are largely ignored (Fell, 2007). Therefore,
the study of isolated components retrieved by averages might be misleading, or at least it is
a simplification of the reality. For example, habituation may occur and the responses could
be different from the beginning to the end of the recording session. Furthermore, cognitive
potentials exhibit rich latency and amplitude variability that traditional research based on av-
eraging is not able to exploit for studying complex cognitive processes. Latency variability
could be used, for instance, for studying perceptual changes, quantifying stimulus classifica-
tion speed or task difficulty.

In this chapter, state-space modeling for single-trial estimation of EPs was presented in its
general form based on Bayesian estimation theory. This formulation enables the selection
of different models for dynamical estimation. In general, the applicability of the proposed
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Fig. 5. Single-trial EP latency variability.
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methodology primarily relates on the assumption of hidden dynamic variability from trial-to-
trial or from condition-to-condition. A practical method for designing an observation model
was also presented and its capability to reveal meaningful amplitude and latency fluctuations
in EP measurements was demonstrated. In the approach, optimal estimates for the states
are obtained with Kalman filter and smoother algorithms. When all the measurements are
available (batch processing) Kalman smoother should be used.

EPs also contain rich spatial information that can be used for describing brain dynamics
(Makeig et al., 2004; Ranta-aho et al., 2003). In this study, this important issue was not dis-
cussed and emphasis was given on optimal estimation of some temporal EP characteristics.
Future development of the presented methodology involves the extension of the approach
to multichannel and multimodal data sets, for instance, simultaneously measured EEG/ERP
and fMRI/BOLD signals (Debener et al., 2006), for the study of dynamic changes of the central
nervous system.
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