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Fuzzy Pattern Modelling of Data Inherent
Structures Based on Aggregation of Data with
heterogeneous Fuzziness

Arne-Jens Hempel and Steffen F. Bocklisch
Chemnitz University of Technology
Germany

1. Introduction

Nowadays we are drowning in data but starving knowledge. In order to arise
knowledgeable from the flood of data it has to be analysed. The goal of such an analysis is
the creation of a model or the classification to a known phenomenon, e.g. modelling of the
traffic flow in cities, medical or machine diagnosis (Herbst, 2008; Hempel, 2008a; Weihs,
2005).

Basically there are two main philosophies to deduce a model, namely theoretical and
experimental modelling. In experimental modelling it is assumed that measurement data
(objects) reflect a phenomenon by data-inherent structures. Unfortunately every observation
is afflicted with inaccuracies such that the data might depict interesting phenomena
characteristics just vaguely.

The knowledge about occurring imprecision is additional and valuable information. With
the help of the fuzzy set theory it can be taken into account as a supplementary model
feature (Zadeh, 1965). By understanding the whole modelling problem as a fuzzy
classification task, where specific fuzzy sets referred to as fuzzy pattern classes form a
model equivalent, the fuzzy pattern modelling method represents such a capable approach.
Among several sophisticated solutions for such a task, which in general apply
nonparametric fuzzy sets or a composition of different fuzzy sets (Bezdek, 2005) the main
philosophy behind this work is the exclusive usage of a single specific parametrical fuzzy
set to model data-inherent structures as well as the data itself.

Its key feature — a closed and uniform framework — provides the ability to incorporate
occurring imprecision into the so called fuzzy pattern class model. The same framework
allows an automatic deduction of fuzzy pattern class models based on a set of learning data
with heterogeneous fuzziness.

The mission of the chapter is in the first place the introduction of the afore mentioned data-
driven fuzzy modelling method to an audience applying experimental modelling (e.g.
scientists, engineers, medical scientists or machine diagnosis specialists etc.). Another
objective is to make a novel contribution to the field of experimental modelling.
Consequently it is the concern of this work to provide a more general view onto the method.
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638 Modelling, Simulation and Optimization

In order to give an easy understandable survey about fuzzy pattern modelling the chapter
will be organized in four main sections:

e Definition of the fuzzy pattern class model.

The second section will establish the fundamental terminology, the mathematics and the
most general case of the multivariate fuzzy pattern class concept. Besides this definition part
the application of fuzzy pattern classes as well as the representation of data with fuzzy
pattern classes is introduced.

e Data-driven design of fuzzy pattern classes.

The automated design of fuzzy pattern models will be presented in section three step by
step.

e Properties of fuzzy pattern class models.

In order to complete the survey, section four will provide information about advantages,
disadvantages and limitations of fuzzy pattern models.

e State of the art research.

The last section will introduce ways to overcome the afore elaborated limitations of simple
fuzzy pattern class models by sketching the state of the art research about networks of fuzzy
pattern classes.

2. Definition of the Fuzzy Pattern Class Model

The multivariate fuzzy pattern class (FPC) is determined by set of basis functions. However,
due to the here pursued type of modelling a basis function defines also a one-dimensional
fuzzy pattern class model. Consequently a preliminary study of the one-dimensional class
definition provides an easy access to derive the multivariate case.

In its most general form a one-dimensional fuzzy pattern class A is defined by the following
unimodal side-specific parametrical prototype over a class specific reference system U, the
so called class space.

a
) 1 T4 Y <0
oo E VR
ph(u) = a 1)
u=0
1 w4
1+ (b_r — 1) a
With its graph illustrated by figure 1:
g class A
/ d,
d a-b,
a-b,
a0 R U

Fig. 1. One-dimensional class membership function with parameters
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According to figure 1 it becomes obvious that the unidimensional function concept is based
upon a set of seven parameters a and p = (b;, by, ¢, ¢, d;, d,). The further specification of
these parameters results from the fact that the parameter a characterises an entire fuzzy
pattern class (FPC), whereas the parameters combined in p are related to a specific
dimension of the class space (Bocklisch, 1987). Beyond their mere mathematical
functionality all parameters possess the following semantic meaning;:

e The parameter a represents the maximum membership value of the fuzzy pattern class
pt(w). Regarding a structure of classes a expresses the weight of a specific class.
Considering a dynamic classification process it embodies the topicality or authenticity of
the information represented by that class (Hempel, 2005; Paessler, 1998).

e In the normalised case a = 1, the parameters b;, b, € [0,1] assign the left- and right-
sided membership values at the class borders u = —c; and u = c,..

e ¢, ¢, mark the support of a class in a crisp sense. Both parameters characterise the left-
and right-sided expansions of a fuzzy pattern class.

e The continuous descent of the membership function is specified by the parameters d,, d,.
From a graphical point of view d,, d, determine the shape of the membership function,
or in other words, the fuzziness of a class. From a modelling perspective this means that
the d-parameters allow the incorporation of imprecision into a class model.

The smoothest class shape is obtained for d;,. = 2, whereas the crisp case results for
d;, — . However for calculation purposes d;,. = 20 has proven to be a sufficient value
to represent the crisp case.

Based on the introduced one-dimensional fuzzy pattern class model the multivariate fuzzy

pattern class A derives from the intersection of such basis functions using the N-fold

compensatory Hamacher intersection operator (2), where n denotes the index of the basis

functions and N the total number of dimensions (Scheunert, 2001).

N -1
1 1
Npam W = (ﬁ Z F) 2)
n

n=1

Regarding the main philosophy behind this paper, the key feature of this intersection is the
conservation of the parametrical class concept for the multidimensional case, see (3).

1w 1 lu, [\
1+ m _1(1 - sgn(u)) (E - 1) (E)
N ®)

N drn
+%Z(sgn(u) +1) <bi - 1) <|:n|>
n=1 ™m ™m

The definition of the fuzzy pattern class model is completed with the augmentation of the
class describing set of parameters by a class space position U, in the original feature space
and a class space orientation @. U, is also denoted as class representative since it determines
the spot of the highest class membership.

Figure 2 depicts the influence of the additional parameters for a two-dimensional three class
structure. The different location of each class results from the representatives

pu@) =a-
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U0 = (0.25,0.85)7, 1,0 = (0.5,0.5)T and 3, = (0.75,0.25)7, whereas an additional class
orientation ¢ of 50° has been applied to the middle class.
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-
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""i
Fig.2. complete representation left, border-curve representation right

As it can be seen there are two different ways of depicting fuzzy pattern class models a so
called complete representation and a border-curve presentation. The complete
representation is the most meaningful. It unifies the influence of all class parameters by
mapping an N-dimensional class into an N + 1 dimensional space, in particular the effects of
the shape defining parameters d can be observerd. As a consequence a complete
representation requires a lot of computational costs. On the contrary the border-curves of a
class are defined by the geometrical locus with same class memberships. It follows naturally
that the border-curve presentation based on equipotential membership lines can be
computed with less effort while capturing a class’s location, orientation and extension. The
border-curve representation equates a mapping of an N-dimensional class into an N
dimensional space. Figure 2 exhibits this border-curve mapping for the class membership
pu(u) = 0.5. Additionally it is pointing out the difference between the class space U and the
feature space X. Due to the fact that U is a class specific reference system each point or object
given in the feature space X has to be referred to U to be meaningful. The relation between
both is given by transformation (4) where u, corresponds to the centre of a class space and
the matrix T realises the class space rotation.

u=T(kx—-uy) |luelUxeX 4)

2.1 Data Representation with the help of Fuzzy Pattern Classes

One outstanding feature of the here discussed method is the treatment of measured objects
as fuzzy pattern entities. This means each object of a data set is considered to be a so called
atomic fuzzy pattern class. The fuzzy perception of objects is justified by the fact that every
observation (measurement) inheres an inaccuracy a so called elementary fuzziness (e.g.
imprecision of a sensor), see figure 3.
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crisp representation of datn objects Fuzzy representation of data objects
using atomic fuzey pattemn classes
Hy Iy
atommic FPC

UL LIS

Fig. 3. Set of fuzzy objects with heterogeneous elementary fuzziness

The denotation atomic results from the fact that objects are the smallest informational unit
available; they are the atoms of a data set. In order to signify that a fuzzy pattern class
represents an object it is defined upon a specific set of parameters. Due to the fact that it is
modelling the smallest informational entity the atomic class carries the weight a = 1 and its
border memberships are set to b, = 0.5. Furthermore it is unlikely for objects to exhibit
“internal” distributions therefore the class shape is assigned to d;, = 2 leading to the atomic
FPC description (5).

1+ —Z(l — sgn(xy)) <|Xn xonl)

Celn

uoPi(%) = ©)
1 n ~— A0n
+m;(sgn(xn) +1) <%)

The only parameter that has not been specified yet is the expansion of a fuzzy object
referred to as elementary fuzziness. The elementary fuzziness expresses the measuring
accuracy of a sensor or the trust behind the position of the object in the feature space (if it is
for example given verbally by an expert).

If there no such information available the elementary fuzziness is set symmetrically
according to the given sensor inaccuracy (e.g. two percent of the measurement scale). If on
the contrary there is access to such information the elementary fuzziness can take an
asymmetrical or heterogeneous shape which consequently has to be imbued to the
modelling process. Typical sources for elementary fuzziness are data sheets of a sensor,
sensor characteristics as well as statements of experts. Figure 4 sketches the emergence of
heterogeneous elementary fuzziness with the help of a nonlinear sensor characteristic
(another example is diode characteristics).
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Fig. 4. Set of fuzzy objects with heterogeneous elementary fuzziness

Assuming a feature space spanned by two of such sensors it is likely to obtain the following

exemplary set of fuzzy objects, see figure 5.

Especially when considering the border-curve (u(u) = 0.5) presentation, it can be imagined
that the elementary object fuzziness might affect an experimental deduced model. The latter
example motivates the reason to imbue elementary fuzziness into the modelling process.
Hence the here introduced concept of fuzzy data will serve as foundation for the

aggregation process.

sl I

Xz

A}

llll
=10 Q 1o 20 a0 40

Fig. 5. Exemplary set of fuzzy objects with heterogeneous elementary fuzziness

2.2 Fuzzy Patter Classification
As introductorily alluded the entire modelling task is understood as a fuzzy classification

task. In the framework of classification a more comprehensive model is characterised by a
set of meaningful classes. For this purpose all model relevant fuzzy pattern classes are
grouped together in a so called fuzzy pattern classifier. In operating mode the fuzzy pattern
classifier then assigns unknown objects to this class structure. The results of the
classification process are stored into a so called vector of sympathy § = (sy, S5, ..., sg)7. Each
component of § denotes the membership of a classified object to the corresponding class,
where K is the total number of classes.

The gradual membership of an object to a given class is calculated using (1).

sk = uk(xX) for k =1,2,..,K (6)
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According to the last section the objects to be classified are considered to be fuzzy entities.
However the classification of fuzzy pattern objects goes beyond the scope of this work such
that each object to be classified is denoted just by a vector of features X = (xq, x5, ..., xy)7
where N represents the number of feature dimensions. All full review about the
classification of fuzzy objects can be found in (Hempel, 2005)

Figure 6 illustrates the process of classification with the help of a one-dimensional three
class structure and the alongside listed classification results.

Iy 3 ;
class 1 class2 class3

— cl ass| n:muh.'rsirip
b, =02

classification

— — 2 5 = 095
— L "

™,
s, i ;= |
' : 7 \ \\K‘ﬂkﬁ
T '!-\\. '!.:

object to be classified
Fig. 6. One-dimensional classification process

The vector of sympathy describes an assignment of the object to the class structure with
respect to its location in the feature space. Since the classifier comprises three fuzzy pattern
classes it assigns three values of membership.

3. Aggregation of Fuzzy Pattern Classes from Data with Heterogeneous
Fuzziness

As mentioned earlier the concept of classification embodies three subtasks: discovery of
(data-inherent) structures, modelling of these structures and finally the usage or application
of these models to classify unknown data.

At this point it is assumed that the first task, discovery of a structure within a set of data, has
been resolved by a preliminary conducted cluster analysis or any other structure
discovering algorithm (Bacher, 1996; Jain 1988). This section revolves around the question
how to model an already structured set of data applying the afore introduced definition of
fuzzy pattern classes as a modelling framework. Hence it is addressing the second task.
Basically fuzzy pattern class models can be obtained via two different ways (Bocklisch,
1987). First via definition by expertise, where an expert interprets the data at hand and
determines all class parameters based upon task and domain specific knowledge. This
approach is not pursued here.

The here featured second approach is a data-driven method, strongly advocating the goal to
model known data-inherent structures. Based upon the class labelled set of “learning” data
all class parameters are assigned automatically by a two step aggregation procedure,
according to figure 7 (Hempel, 2005; Pafsler, 1998).
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step 1 step 2
. . fuzzy pattern class

determination position & rotation

) of class space position | = determination fuzzy
set of learnin, . : - f £
bioct and orientation learning objects | Of fuzzy pattern [ —— pattern
objects + in class space class parameters
object transformation —_— P class

into class space

Fig. 7. Signal flow and general progression of the object aggregation to fuzzy pattern classes

As figure 7 indicates the class construction starts with the determination of the class location
and rotation in the first step and is completed with assignment of the class parameters in the
second step. The main features during this procedure are:

e consideration of the data fuzziness throughout the entire process,

e mapping of data distribution onto the class shape and

e data sequence independency.

Besides its specialisation on fuzzy data the class aggregation can also be applied to usual
(crisp) data. In order to perform a congeneric aggregation the crisp learning dataset is just
extended to a set of fuzzy objects, using the introduced function concept section 2.2.

Since the multivariate fuzzy pattern class model derives from its basis functions the task of
deducing the class parameters can be performed in a dimension wise manner. Hence, for the
sake of clarity all computations will be only shown for an arbitrary dimension, all further
dimensions follow analogously.

3.1 First Step of Aggregation: Determination of the Class Space

As mentioned before the aggregation is based on a class labelled set of data being split up
according to its class labels. Each subset is treated separately but in the same manner by the
subsequent algorithm, resulting in different fuzzy pattern classes. Because of its uniformity
the class construction will be shown with an exemplary subset x given in the original feature
space, where N represents the number of object dimensions and M total number of objects.

x?_l “ese x]:M
= < : 2 : ) (7)
XN1 XNm
Origin of the class space

The origin Uy = (Ugq, ..., Ugj, -, Ugy) T Of the class space is referred to as class representative it
marks the location of the highest class membership and is the reference point for all other
parameters. It is calculated dimension-wise as the mean over all class supporting objects. In
order to allow for heterogeneous elementary fuzziness each object representative is adjusted
based on its specific elementary fuzziness, (see figure 8).
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object with heterogeneous
. FPC representation ) 8

1 4 elementary fuzziness
g of an object consideration of . ay
heterogeneous
fuzziness
Cq Cer X1 Ca Cer Xl
object representative elementary adjusted object
fuzziness representative

Fig. 8. Consideration of object specific elementary fuzziness via object representative
adjustment

The above illustrated adjustment is realised by a weighted mean over the object
representatives, the left-sided and right-sided elementary fuzziness in every dimension, see
equation (8).

1
Xij = 1+ 29 (xi,j +9(2x;,) = Coij + Ceri,j)) ®)

X110 Xam
S o

Xn1 o Xym
The weight of the object borders c,, ¢, is be specified by the parameter ge[0,1], where g = 0
blanks out the influence of the elementary fuzziness and g = 1 values object representative
and the elementary fuzziness equally. For the fully automatic class construction g is set

according to the membership of c,, c., (g = 0.5).

Figure 9 demonstrates the effect of the adjustment procedure for a two-dimensional object.
2d object with heterogeneous

elementary fuzziness

yielding:

A
Cer2
Cel Ceﬂ g
| o
adjusted object
representative
object representative
Ce12

Fig. 9. Fuzzy induced representative adjustment for two-dimensional object

Rotation of the class space

In order to realise an optimal FPC-model of the data structure the class specific reference
system U is rotated into the neutral axis of x. Thus the alignment of a class space UV is
defined by a set of N—1 rotation angles and stored in the parameter vector

@ = (@1, P2 0, on-1)".
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Dealing with fuzzy objects it has to be born in mind that the elementary fuzziness might
affect the class orientation. Similar to the above considerations the elementary fuzziness is
taken into account by the adjusted object representative (9).
The entire rotation can be denoted in matrix representation:

T=Ty_1 Ty_g*e+Ti+..- Ty where T; € RNV

cosg; forip=i,=1orli

sin.(pl- foriy =1,i, =i (10)
Ty = (ti,1,) [ti,, = { —Sin@;  foriy =ii,=1

1 forl#i, =i, #1i

0 else

3.2 Second Aggregation Step: Determination of the Class Parameters

After the determination of the class space U all class parameters can be deduced based on
the position and fuzziness of the class supporting objects. Since the origin of the class space
is the reference point for all class parameters it is also necessary to refer the class supporting
objects to their class space.

Transformation of the objects into the class space

Such a reference is generated by an affine object transformation into the class space, see
equation 11.

Uy 0 UM
u=T(x—uy) whereu=| i ™~ (11)
Uyt Unm

Due to the fact that the objects themselves are fuzzy pattern entities a mere transformation
of the object representatives according to (11) is insufficient, as their elementary fuzziness
has to be transformed into the class space as well. Figure 10 depicts this concern for the two
dimensional case.

b fuzzy object in feature space
Cs

bt

branskorms o

.

PeEbeere Spoacy x

Fig. 10. Transformation of fuzzy pattern objects
Several methods to transform a fuzzy object have been reviewed considering

interpretability, errors and computational costs (Hempel, 2005) The most promising method
takes the heterogeneous elementary fuzziness into account using the back-transformed
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unity vectors of the class axis and their intersection points with the border curve
(u(u) = 0.5) of the fuzzy object.

*»

X
fuzzy object
(1l i ke-transformes] unliy
A Lo 4 Class sl I
¢ U,
T .
transiormisd elementa
- S i reaas . il il — ||7_ FEITHYSS
1‘nl 'E.!

class space -

axis L el

feature space X,

Fig. 11. Principle of object transformation

As figure 11 exemplifies, the values of the elementary fuzziness for a specific class axis (U;)
results from the dilation factor of its transformed unity vector 7. Due to the side specific
modelling and the heterogeneous elementary fuzziness the significant ce-parameter are
selected by quadrant discrimination during calculation.

After their transformation the set of objects is split up into two ordered sets of left-sided and
right-sided objects 0y;, 0,;.

IN

Or; = {u} |ugi Supy Sujp < - Sup

(12)

v

Oy =} fugr 2wy 2o > 2wy

Specification of the class borders
In each class space dimension the extensions c;, ¢, of a class are determined by the
outermost objects including the elementary fuzziness, (14)

C; = max (Uj ¢ + Copri
ri s=1...R( 1,5 erl,s)

Cy = s:1i.r..1L(ui’S K Celi,s)

(13)

fuzzy pattern class model

7Y

. i

W Wipaligs Wips gy Uy Clg ¥00a, u
Fig. 12. Specification of the class borders in the ith dimension

www.intechopen.com



648 Modelling, Simulation and Optimization

Since the class parameters d;,, by, are obtained analogously for each class space dimension
as well as for the left- and right-handed function branch the following considerations are
straitened to the right-sided function branch.

Determination of the class shape

The shape of a fuzzy pattern class (d,) is assigned based on the agglomeration properties of
the class supporting objects. The more the data resembles an agglomeration according to a
geometric series the smoother the class shape. The rate of resemblance is determined by the
mean distance alteration between two adjacent objects q; ;.

Figure 13 depicts the calculation of this rate g; ; for an arbitrary class dimension.

jl 1 L (‘

- { | | s :
\}Ljf I \ By gy =30 * E. a1 T, )

‘;T"u u. U 7

h (] Lj  H o Ly i

B | =3 | =

Fig. 13. Distance between adjacent objects including their elementary fuzziness

Based on the mean change of distance between two adjacent objects the class shape d;; is
determined in such a manner that the smoothest class shape d;, = 2 is realised when the
objects are cumulating in the centre of the class conform to a geometric series. On the
contrary the crisp class shape d;. = 20 is obtained when the objects are at least equally
distributed over the class space.

The effects of the object specific elementary fuzziness c,,; j, ey j is balanced out against the
number of class supporting objects R. Correspondingly, the shape of classes being
supported by a small number of objects is mainly characterised by the elementary fuzziness,
whereas classes with a high number of class supporting objects experience a reduced
influence of the elementary fuzziness onto their shape.

Assignment of the border membership

The value for border membership b, is derived under the conservation of the object
cardinality. This means that the sum of the area under all objects is required to be equal to
the area under the fuzzy pattern class function, see figure (14).

!
fuzzy objects A(,th A

class fuzzy pattern class

Lol —

u, u, u,, u,., U, c, U, u, .U

Fig. 14. Claim for the conservation of the object cardinality
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The border memberships b, are estimated over the unity interval b, € [0,1] by (14) taking
into account the prior results for ¢, and d,..

Cri
du
Acass =f i = Aopjs |byi€[0,1] (14)
0 1+(L_1>(M) "
bri Cri

Assignment of the class weight

The weight of a class within a structure of fuzzy pattern classes depends on the total
number of its class supporting objects M, (a = f(M)). Under the assumption of an
evolutionary growing class weight a results from (15).

a(M) = e (1 - (M)M> (15)

Amax

The assumption of an evolutionary growing according to (Peschel, 1986) is motivated by the
fact that the emergence of a class from elementary observations is a structural transition
from a quantitative growing to a qualitative one (classes are superordinate entities
compared to objects).

4. Properties of Fuzzy Pattern Class models

The introduced fuzzy modelling concept is round off by having its major properties,
advantages and drawbacks discussed subsequently.

The most characterising features of fuzzy pattern class models namely versatility,
uniformity, treatment of fuzzy data and a closed modelling framework emanate from the
unimodal, side-specific and parametric class membership function.

In its most general case fuzzy pattern classes offer multivariate fuzzy models with various
asymmetric shapes, ranging from peak- over bell- to crisp forms (see figure 15). Together
with the introduced data-driven design fuzzy patter classes allow to map class internal
object distributions as well as correlative relations.

Besides all multi-dimensionality and flexibility the parameters of fuzzy pattern classes
remain semantically motivated ensuring its the interpretability and transparency.

Furthermore the parametric class concept provides a good trade off between data
compression, computational cost and generality. Especially for high dimensional models a
sufficient level of data compression is reached since each fuzzy pattern class is defined upon
a set of eight parameters per dimension. By connecting the basis function of every
dimension exclusively on parameter level the chosen conjunction operator saves
computational costs.

Both advantages are traded off for generality in so far as fuzzy pattern classes are convex

models, specifying a convex area of the feature space. Consequently FPCs are most suited
when it comes to model convex data-inherent structures.
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Fig. 15. Side-specific shape variety of fuzzy pattern classes

However when it comes to model nonconvex data-inherent structures fuzzy pattern class
models are afflicted with errors. Figure 16 illustrates such an error by having an enclosed
central object accumulation aggregated to a fuzzy pattern class.

Fig. 16. right: data-inherent structure; left: associated fuzzy pattern class

The region between the ring shaped object arrangement and the central object accumulation
does not belong to the given data structure. Nonetheless it will be associated with high
grades of memberships by the corresponding fuzzy pattern model.

5. Networks of Fuzzy Pattern Classifiers

In order to circumvent this major drawback two possibilities have been thought of, leading
to the state of the art fuzzy pattern research. The first way is a cluster based approach
rendering a nonconvex describable by segmenting the data into convex subsets. The second
access to dissolve the convexity drawback arises from the adoption of fuzzy pattern anti
classes (FPAC) (negating fuzzy pattern models).
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Both approaches lead to hereafter introduced networks of fuzzy pattern classifiers or so
called fuzzy pattern classifier network. A Fuzzy Pattern Classifier Network (FPCN) consists
of interconnected Fuzzy Pattern Classifier (FPC) nodes, representing its functional core. It is
a modelling approach combining fuzzy set theory and network theory, as powerful and
flexible tools of modelling.

5.1 Cluster Based Fuzzy Pattern Classifier Networks

In the cluster based approach the layout of the network structure and the configuration of
classifier nodes, will be addressed by a hierarchical clustering and selection strategy. Aside
from the fact that a mere clustering would work on every data-inherent structure it might
create considerably large structures of fuzzy pattern classes at the expenses of model clarity.
In order to maintain model clarity different layers of detail corresponding to a certain
structural resolution have been introduced.

In its current implementation the cluster based fuzzy pattern network evolves from coarse
to fine structures (Hempel, 2008a; Hempel, 2008b). Starting with the entire set of data a
cluster analysis is conducted. Since each cluster method uses its specific strategy to discover
structures some phenomena typical structures remain indiscoverable by a certain method
(Jain, 1978). That is why at least an ensemble of sufficiently diverse cluster algorithms is
applied (Strehl, 2005). Based on the clustering results (class labels) the data set is split into
the most stable cluster configuration. All subset are modelled as fuzzy pattern class (see
section 3) in an associated classifier node and subsequently treated separately but in the
same manner, producing the next level of detail. As an overall result the cluster based
approach leads to a network oriented hierarchical fuzzy pattern model.

An exemplary cluster based FPCN with the supporting set of data is given by figure 17.

-

% L TR o "
3 2] 1
. 1
. : \
a 1
N
L} "L \\"‘_ n
1y e —
1
> sepond level of detail
" it . i F « T 1T 1 (aralysis of subsets)
X

Fig. 17. cluster based fuzzy pattern network model

In the first level of detail (entire data set) the cluster analysis returned the highlighted
(dashed lines) three class structure stored in the first fuzzy pattern classifier node. In the
second level analysis each subset is treated separately generating a three class structure for
the upper left subset summarised by the upper classifier node and a two class structure
captured in the lower classifier node. Finally, each classifier is connected with its preceding
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node, eventually creating the tree-like FPCN. In detail the classifier nodes are connected
with respect to the components of the sympathy vector that is originating from the fuzzy
pattern classes of preceding node. This clear connection facilitates the information
propagation throughout the network. The node activation is based on the highest
component of the sympathy vector.

5.2 Fuzzy Pattern Classifier Networks with Anti-Classes

Instead of applying current clustering methods the fuzzy pattern anti-class (FPAC) strategy
exploits the inverse of a data structure to create a fuzzy model. The principal idea behind
this approach consists in the negation of a class assertion over its unsupported class space,
see figure 18.
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Fig. 18. Anti-class approach for a ring shaped data structure
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Like it is depicted, the negation works on semantical level and from this point of view
FPACs can be seen as a further specification of a preceding fuzzy pattern class. The repeated
specification of fuzzy pattern classes and anti-classes can be interpreted as a network of
such classes.

In order to conserve the modelling framework, the automated model generation and the
model properties (such as flexibility, interpretability, computational efficiency, etc.) the
negating anti-classes are defined upon the same membership function concept as the fuzzy
pattern classes. Due to this definition it is also valid that FPACs, like usual fuzzy pattern
classes, can be supported by objects, or better so called anti-objects, and that the before
elaborated aggregation procedure can be applied on these anti-objects.

The crucial point of this approach lies in the determination of a set of anti-objects forming
an inverse data-inherent structure. Unfortunately these anti-objects are unavailable prior to
the design such that, they have to be generated and distributed over the class space.
Concretely this generation and distribution process is driven by the policy that anti-objects
will exclusively accumulate in the unsupported class space within the borders of an object
modelling FPC.

Figure 19 illustrates the results of the above outlined anti-object generation with the help of
the example given in figure 16. Similar to figure 16 original objects are highlighted in blue,
whereas the constructed anti-objects are displayed in orange.
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Fig. 19. Right: objects and generated anti-objects; left: anti-objects only

Due to distribution policy the anti-objects accumulate in the area between the ring and the
central object agglomerations (see right side of figure 19) forming itself a ring-like anti or
inverse data-inherent structure (see left side of figure 19). Because this ring-like anti-object
structure is again a nonconvex structure the modelling fuzzy pattern anti-class will be
inadequate and it might appear that the whole problem was just shifted to the anti-object
structure. This is not the case since the entire procedure can be repeated on the anti-class
yielding a convex set of anti-anti-objects and hence an appropriate anti-anti-class (see
figure 18).

In sum the fuzzy pattern anti-class approach results in a sequence of three fuzzy pattern
classifiers. The first one is a model over all given (original) objects it is further specified by
the second classifier (anti-node) comprising all anti-objects being itself specified by the last
classifier (anti-node). Figure 20 summarises the resulting fuzzy pattern model with the help
of its memberships (right) and its network presentation (left).

o anti=-node

fuzzy | ey |
pattern [+ patierm -
classifier | classifier

fuzzy pattern fuszoy pattem
class owver all class over
original objects  all anti-objects

Fig. 20. Right: complete fuzzy pattern model; left: associated fuzzy pattern classifier network

The fuzzy pattern network works similar to its design. An unknown object is evaluated by
the first classifier node ensuring a general membership to the data structure. Thereafter it is
processed by the first anti-node, excluding a membership if it is situated in the centre. In the
last step (third classifier node) this anti-class membership is negated for central located
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objects, ensuring that the region between centre and outer ring maintains a low
membership.

6. Conclusion

This chapter dedicates itself towards the establishment of a closed fuzzy modelling
framework for data-inherent structures. By and large the entire modelling process is
conceived as fuzzy classification task, where superordinate fuzzy classes agglomerate
structures of related data.

The closeness of this modelling framework is ensured by a side-specific, parametric, basis
function motivated, multivariate membership function concept holding for data as well as for
classes. Due to its central role the class membership function has been explicitly defined, its
adoptions for objects of data have been motivated and its application has been sketched.

The main concern this chapter lies in the presentation of a data-driven algorithm to
agglomerate fuzzy data to fuzzy class models without leaving the modelling framework.
The innovation regarding this agglomeration is the treatment of data that exhibits
heterogeneous elementary fuzziness (asymmetric measurement insecurities) and the
consideration of these heterogeneous elementary fuzziness throughout the whole
agglomeration process.

The resulting fuzzy pattern class model embraces advantageous properties like multi-
dimensionality, shape diversity, semantic interpretability, transparency, unimodality and
computational efficiency. The major drawback of the fuzzy class model arises from its
convexity.

The patronage of fuzzy pattern classes for convex shaped data sets can be resolved with a
network oriented design paradigm. In detail two state-of-the-art design approaches for
networks of fuzzy pattern classifiers have been sketched. Their data-driven design and their
combination are of particular interests for further research.

Another aspect of the here pursued type of structure modelling is that it works in the

original feature space without a transformations applied for fuzzy support vector classifiers
(Scholkopf, 2001; Li, 2008).
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