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1. Introduction

This study, dealing with the vehicle trajectories modeling, is a subject of a scientific research
in our Laboratory, within the framework of a research program on road safety. For many
years, road accidents have been the focus of attention of the authorities and vehicle
manufacturers. The accidents due to the vehicle loss control have very serious consequences
in human terms (WHO, 2004).

In the literature, the first research works on the vehicle loss control risk consisted in defining
a critical failure speed in a bend or a speed profile to be respected according to the road
geometrical characteristics and the vehicle dynamic state (Lauffenburger, 2003). Other
works in progress consist of using a dynamic vehicle model, to carry out an analysis of
sensitivity in order to determine the most influential parameters on the answer of this
model.

In addition, the LCPC (Laboratoire Central des Ponts et Chaussées) launched a research
operation MTT (Métrologie des Trajectoires et du Trafic) and the research projects
SARI/RADARR and DIVAS. Within this framework, several observatories of vehicle’s
trajectories (edge of way or instrumented vehicle) in bend were developed then deployed in
order to analyze the trajectory stability and to understand how it would be possible to detect
a failing trajectory.

In this study, we developed a new method to evaluate risk of trajectory failure by using
experimental data measurements. The method consists of defining a metric (or distance)
able to compare trajectories each other in order to evaluate the handling loss risk. Then we
determined the limit states (or the critical sections) which govern the intersection between
Vehicle, Infrastructure and Driver (V/I/D) in the safety trajectory space. Indeed the very
complex systems (with several configurations variables) and a strongly constrained
environment can cause failure modeling of many algorithms, due to their complexity.
However the probabilistic trajectories modeling are used in order to estimate the risk
indicator. It consists in considering some parameters as random variables in order to take
into account the risks induced to the infrastructure, the vehicle, the behavior of the driver
and the environment (weather or traffic). Lastly, we will calculate the probability of going
beyond of the threshold applied to the distance.
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148 Modelling, Simulation and Optimization

The results can also be used on the one hand: to find the characteristics of the infrastructure
which will be modified in order to minimize the lane crossing risk, and in addition: to warn
the driver by detecting the failure trajectory. The originality of this method is not only the
use of a particular norm (taking into account the vehicle position, velocity and acceleration)
to compare trajectories between them, but also the use of reliability analysis of the vehicle
trajectories.

In this chapter, after the introduction, in the first part, we define vehicle’s trajectory as a
vectorial stochastic process. In the second part, a functional filter (Mahalanobis distance and
Euclidean distance) judiciously chosen are used to project on IR the set of the observed
trajectories in order to get a stationary scalar process. In Third part, we will use a statistic
analysis on our scalar process in order to characterize and to identify it. Then, one identifies
the whole of the parameters intervening in each limit state by using the constraints applied
to the vehicle. Lastly, we will use reliability analysis method to build a risk indicator. The
approach consists of drawing lots configurations at random by probability laws and to
connect between them to generate an ideal trajectory. We will calculate their probability
function. Then with the already defined safety margin, we make the comparison of the
probability obtained in that admitted preliminary. The safety margin which bounds the
failure domain to the safety domain is determined by the limit state function. The risk of
lane crossing is quantified by the risk indicator (reliability) estimate.

2. Vehicle trajectory definition

2.1 Deterministic function

The vehicle trajectory, during an amount of time T =[0,7] is the resultant of an interaction
between vehicle, infrastructure and driver. It can be defined by the knowledge of the
following deterministic function:

®:T->IR’

t > D) {x(t),y(r)%(t)%(r), 0.2 (r)) 2

Where the parameters of function ®(t) represented the vehicle longitudinal position, the
lateral position, the longitudinal velocity, the lateral velocity , the longitudinal acceleration
and the lateral acceleration. The sample {xi, k € Kn} is considered as a discretized trajectory
of a two-dimensional second order mean-square continuous, at times {tx, k € Kn}.

However, the behavior of the dynamical system to investigate is fundamentally nonlinear. It
expresses the dynamics of a system whose mechanical behaviour and connections are very
complex. Consequently, it is necessary to take into account various levels of uncertainty
(uncertainty of measurements, risks on control,...). For example, the same driver circulating
with the same vehicle on the same road under the same conditions will not twice reproduce
the same trajectory within the meaning of (1). Obviously, it's very important and necessary
to take into account this random part.
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2.2 Vectorial stochastic process

It is thus more judicious to model the trajectories of a triptych V-I-D (Vehicle, Infrastructure,
Driver), by realizations of a vectorial stochastic process (Koita et al., 2008) in the following
form:

U : TxQ—IR
0’x
atZ

ot o — K. oy
(t,w) ~U(t,0) —(x(t,a)),y(t,a)), P (t,0), P (t,0),—(t,0), P (t,a)))

where Q is the realizations space.

As soon as the driver changes, the experimental trajectories collected are discrete
realizations of different stochastic processes. From this definition, we use a database of
trajectories. This database is made up of L realizations of experimental trajectories resulting
from the same vectorial stochastic process noted U of the form :

U : TxQ—IR’

% 3)

_ xSy OX 0y
(t,w) > U(tw) —(x(t,a)),y(t,a)), P t,0), P t, ), e t, ), P (@, a))j

The reader will find in (Koita, 2008) more complete information on the experimental
observations and especially methodology used to say that the trajectories considered result
from the same stochastic process. To illustrate our remarks on the trajectories observed, the
figure (1) represent a realization of the process.

3000

3000

Lateral acceleration

Fig. 1. Vehicle lateral position and lateral acceleration

The trajectories of the studied process represent a behavior of control identified on a given
turn. The final goal of this study being to analyze the risk of failed trajectory, therefore we
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choose to work on the behavior of control of fast trajectories. The drivers having realized
these trajectories were considered in a normal stress state at the time of the experimentation.

From this definition of the vehicle trajectory, a particular trajectory was defined with the
aim of comparing later, all the observed trajectories to this particular trajectory. This
particular trajectory will be regarded as reference trajectory for all the study.

2.3 Reference Trajectory

There exists in the literature several work concerning the reference trajectory for example (
Lauffenburger et al, 2000) predict the reference trajectory by the splines method according to
the road reference frame and a behavioral model of the driver. The reference trajectory
considered in this study is the average function of the whole of the trajectories.

m, :IR—Mat (6,1)

(0 =m, 0=U0=1 $U0 @

This choice is justified on the one hand, in the data measurements where we note that most
of the drivers roll while following the road center and on the other hand, the distance which
we will use later in this study to compare trajectories between them. It is a distance which
estimates the difference between a variable and its median value. The average trajectory can
be also justified as trajectory of reference because not only it grants more weight in the
majority of the observed trajectories having similar values but also it remains sensitive to all
the trajectories observed of the turn in particular to the extreme trajectories. What is useful
and necessary to take account of all the information delivered by the turn and received by
the drivers (perception of the road).

After having defined the vehicle trajectory like vectorial stochastic process, no one needs a
statistical analysis of this process. But before that, the other studies on the same database
showed the partial stationary of a parameter or several parameters at the same time but
never a complete stationarity of all the parameters of the trajectory at the same time. The
same studies showed that none stationarity of this process comes at the same time from the
none stationarity of its moments (the average , the standard deviation o, etc).

From now, we will make a projection of this vectorial process on a functional filter. The goal
of this projection is not only to work on a scalar process easy to analyze but especially to
obtain a stationary scalar process. The important role of the stationarity of the process is the
interval of prediction of the failure of the trajectory is different compared to an evolutionary
process.

3. Distance evaluation between trajectories

We noted through the first observations on the measurements data, that the trajectory
parameters are not stationary throughout the turn, because as soon as the driver changes,
the experimental trajectories collected are discrete realizations of a different process. To
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conclude, it is obviously necessary to be placed within a framework where one lays out of
observations of the same process of sufficient number. The goal of this section will be to
transform our vectorial process U in scalar process making a projection without losing the
information contained in the system interaction (V/1/D).

Starting from this sample (or class) of trajectories having similar statistical properties, it will
be advisable to analyze statistically the scalar process D; =g(U) where i={E,M}. This implies
the use of a suitable topological distance, the choice was made on the Mahalanobis distance
Dy (Xinrong, 2001) and the Euclidean distance Dg (Lanequel, 1992), with standard variables.

This approach of modeling consists of considering the distance like a realization during the
time of a process. One regards the trajectory parameters as random in order to taking into
account of the risks relating to the infrastructure, vehicle, driver and environment (weather
or traffic).

3.1 Euclidean distance (norm)
It is a distance in the Euclidean metric space whose characteristic is to grant the same weight
to all the components of the vector or the matrix. It is defined by the following equation:

D,=dU,0)=JU-0UYu-0Y (5)

This distance obtained is a scalar and its major disadvantage is to not taken into account of
the correlation between components (in our case, the trajectory parameters). The projection
of a vectorial process U(t) give a scalar process Dg(t) defined by:

D, :OxT—IR
(t@) - D, (t0) = (Ul 0)-U)U(,0)-U (1))

)

3.2 Mahalanobis distance

In statistics, the Mahalanobis distance is a measurement of distance introduced by P.C
Mahalanobis in 1936. It is based on the correlation between variables by which various
models can be identified and analyzed. This distance is associated with particular metric
called Mahalanobis metric. It is a distance to the probabilistic direction between a
measurement and a Gaussian probability law. Therefore, it is usable when one can
approximate the distribution of the data by a normal law. One made tests of adequacy to
show that the distribution of the observations data follow a normal law.

The characteristic of this distance is to estimate the deviation between a reference trajectory
and an observed trajectory even if the components of the trajectory don’t have the same
magnitude. It grants a less important weight to the most disturbed components. It is also a
method of dissimilarity measurement between two random vectors of same sample.

In practice, we suppose that one has L observations of the process U(t) in the discretizations
O=ty<t;<...<ty1=T of the interval [0, T].
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In these conditions, one can define the Mahalanobis distance between vector U of the
reference observations and vector U of the discrete observations of the mth trajectory by:

—dU.0)=J[v-TYz W-0)] )

Where X is a variance-covariance matrix of the random vector (U U )

The projection of a vectorial process U(t) give a scalar process Du(t) defined by :

D, :QOxT — IR

(0)> D, =\[U.0)- W) = Ue0)- T )] ®

3.3 Application

To illustrate our remarks at the distances between trajectories, the figure (2) shows an
example of distance calculation with the methods (Mahalanobis and Euclidean). These two
distances represent the deviation between reference trajectory (or average) and the observed
trajectories.

30

20 -

L L L L L
0 500 1000 1500 2000 2500 3000
Process Ym as a function of time

E%WMWMWM

0

0 500 1000 1500 2000 2500 3000
Process Ye as a function of time

Fig. 2. Distance between trajectories

We can notice the existence of similarity zones between the scalar processes Duy(t) and Dg(t)
in the figure (2) but also great differences exist sometimes. This first result explains that the
correlation between the parameters can play a very important role. Therefore, a significant
difference between both methods exists. We note that the Euclidean distance Dk is less
sensitive to the parameters variations than the Mahalanobis distance Di.

The figure (3) represents the temporal mean and standard deviation of the processes Dg(w,t)
and Dy(o,t). In blue, we have the Mahalanobis distance and in red the Euclidean distance.
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Fig. 3. Mean and Standard deviation of scalar processes

The figure (3) shows that these functions vary according to time and present a difference
between them. We also notice that the processes are positive by construction because being
distances thus they are not centered.

In order to obtain a centered scalar process, we have done a new transformation on the
processes Dy(t) and Dg(t). We obtained the centered scalar processes Ym(t) =Dm(w,t)-mpm(t)
and Y.(t) =Dg(w,t)-mpe(t). Where mpm(t) and mpe(t) are the average distance of the processes
Dwm(w,t) and Dg(w,t). The next step consists of doing a statistic analysis of these scalar

processes.

4. Scalar process analysis

In this part, at first we will check the stationarity assumptions of scalar processes Ym(t) and
Yg(t). Then, in the second section, we will describe the characterization of these processes.
Afterwards, a third section will make it possible to identify the law of these processes.
Lastly, a fourth section we will identify the law of maximum processes.
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4.1 Stationary and ergodicity analysis
That is to say a function Y(t) with (t € R+) : Y(t) is a function or a random process, for each
time t; fixed, Y(t;) is a random variable. The process Y(t) is entirely characterized (in
probability) if one knows the probability density function (pdf) united multivariate of all
finite collection (vector). (Bouleau, 1994)

YE={Y(t1), Y(tz),. e Y(ti),. e Y(tM)} and YM={Y(t1), Y(tz),. e Y(ti),. e Y(tM)} (9)

For all t; and finite M.

After having defined a stochastic process, it is necessary to check the assumptions of
stationarity and ergodicity of the scalar process Y(t). A random process is stationary by
definition, if its moments are invariants by translation of time. We checked this assumption
of two-order stationarity on our observations data by calculating the mean, the variance and
the auto covariance function of the process Y(t). (Kree, 1983). By construction, the average
and the variance are respectively equal to zero and the unit because the process was
standardizes.

T

Fig. 4. Mean of the centered scalar process as a function of time (ms).
The auto-covariance function Cy(ty,t2), is the function of two variables t1 and t2 given by :

C,:RxR—>R

(t,,t,) > C,(t,,t,)=ColY(1),Y(t+6))=C,,(t,, —1)=C,(5) (11)
5 = ti+l - ti

The figure (5) represents the auto-covariance function of processes Dk et Dy
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Fig. 5. Auto-covariance function of Dm(t) and De(t) as a function of time (ms).

We have just shown that the average, the standard deviation and the auto-covariance
function do not depend on time. Thus, the processes Ym(t) and Yg(t) are stationary with
order 2. After having checked the assumption of stationarity of the process, it is interesting
to check the assumption of the process ergodicity. A process is ergodic, if the equivalence
between the overall average (mean) and the space average on an infinite interval is verified:

lim

=EY(w,0)e m, = R ;—Tj (s)ds = constante (12)

By checking the assumption on our observations data, we note that it is checked. After
having checked these assumptions, we use also a statistical test of stationarity (Xiao, 2007),

4.2 Scalar process characterization

To characterize processes Ym and Yg, we will estimate the power spectral density, the
probability density and the function of distribution (Soize, 2000).

Power Spectral Density function Estimate

The objective of this section consists in considering the Power Spectral Density of the
process Y(t) in order to be able to generate trajectories resulting from the same process. In
referent in the preceding section of this study, it was checked that the process Y(t) is
stationary at second-order. A transformation was made on the scalar process of kind have a
new centered process. The PSD is obtained by using this following formula:
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(13)

Where Wr is a temporal window (Hamming model). For [=1....L , where L is the number of
trajectories in the class. The figure (6) shows estimated Power Spectral Density of Y, and Y..
We have obtained negative PSD because we have used log function to make a zoom on the
figures.

PSD Estimation of Process Ym et Ye

Fig. 6. Power Spectral Density estimates of the process Ye and Y.
The red and blue curves correspond respectively to the PSD of the processes Y, and Ye.

Probability Density function Estimate

As previously, to characterize the processes Yn(t) and Ye(t) in a complete way, it is necessary
to estimate its probability density Py and its distribution function Fy. Estimated Py and Fy
are then defined by the following relations:

N N . _
PY(x)= —11, (x) xeX
JEROEINE

J
2N,
k=1

(14)

1T, (x); xeX

ﬁXM(x): Z

J€Jm

Where 1Ip; is a indicator function of D;

The two curves in the figure (7) represent the probability density function of the processes
Ym(t) and Ye(t). The probability density of the process Yn(t) tends towards a Gamma law
whereas the process Ye(t) tends towards a Gaussian law.
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Probability Density function of process Ye

Fig. 7. Probability Density function of Y, and Ye.

Distribution function Estimate
The two curves in the figure (8) represent the distribution function of the processes Y, and
Y.. We note a big difference between them as in the probability density.

Distribution function of Ye

Fig. 8. Distribution function of processes Y, and Y.

After the characterization of process Yg(t) and Ywm(t), the next section will consist to identify
the scalar process Yg(t) and Ywm(t).

4.3 Scalar process identification
We initially calculated the kurtosis (K) and skewness (S) coefficients to have an idea of the
classical probability laws to use for the approximation of the processes Yg(t) and Ywm(t) laws.
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Kurtosis coefficient

The kurtosis coefficient is a statistic which measures the degree of probability of the extreme
events. More, it is large, more the tails of distribution are thick compared to those of the
normal law, i.e. more of the extreme events can potentially occur. This coefficient noted K is
calculated by:

=~ =

X4
K = 25 3 where Uy = 2 X, (15)
o

SIS

Skewness coefficient

The skewness coefficient measures the degree of asymmetry of the distribution. For a
perfectly symmetrical distribution (for example, a normal law), the coefficient of asymmetry
S= 0. If the coefficient S>0, the distribution is asymmetrical on the left: there is a strong
probability that an event is with the top of the average that in lower part (the modal value is
with the top of the average). If, the distribution is asymmetrical on the right: there is a
weaker probability than an event is with the top of the average than in lower part (the
modal value is with the lower part of the average). This coefficient noted S is calculated by
the following equations:

U, . > X
K = “— where , = =¥—*% 16
o H N (16)
Kurtosis Skewness
Process Ym 8.6970 2.5454
Process Yg 3.84 1.5286

Table 1. Kurtosis and skewness coefficient of processes Yg and Ym

While referring on the one hand, visually on the figure (7) and on the other hand, by looking
at the kurtosis and the skewness coefficients, we note that the laws of our processes can be
approximated by classical laws (Bouleau, 1986). The use of the comparison criterions (Lelu,
2002) made it possible to choose the best approximations for the two laws characterized
previously. The normal law was selected for the Euclidean distance and the Gumbel law for
the Mahalanobis distance. The figure (9) represents the target law of probability of scalar
processes Ym(t) and Yg(t) as well as the law of probability of the approximations of these
processes.
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Ye
approximated

Ym
approximated

Probability Density function of process Ym

100

Fig. 9. Probability density function of the process Ye and Ym and their approximated

The figure (9) shows a better approximation for our laws especially for the Gumbel law. The
theoretical laws obtained enable us to simulate distances between trajectories for the studied
bend. These simulated distances will have the same statistical properties as the sample of
distances which was used to build the model of distances. The figure (10) represents an
example of distance obtained with the measured trajectories and another obtained by
simulation of process Yg(t). The red curve corresponds to that obtained by the data of

measurements and the blue one corresponds to that simulated.

Simulated distance
Distance of the process De

Comparison of Euclidean distance and simulated distance

3000

Fig. 10. Comparison between Euclidean distance and simulated distance
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We can conclude that the model based on distances implemented is validated. The next
section will be to identify the law of the maximum of processes Yg(t) and Ywm(t).

4.4 |dentification of process maximum law

In the section (1) of this part, we showed that scalar processes Ym(t,w) and Yg(t,w)
respectively follow the law of Gumbel and the normal law. To estimate trajectory
probability of failure, we will identify the law of maximum of the scalar processes Yg(t) and
Ym(t). The purpose of the maximum law identification is to eliminate any temporal aspect
along the bend.

According to the stability principle, if the law of an initial process is of type I, II or III,
corresponding to a law of maximum, then the law of maximum is of the same type. The
extreme law of type I (Gumbel) has as an asymptotic law of the maximum(Jacob, 1993). This
law is represented by the following formula:

Eq (x) = eXp[— e’(an(x*"n ))]

_ o, (e, e w) (17)
f(x)=ae expl—e

Where u, is a location parameter, representing the mode (or the most probable value) of U,
and the characteristic value of X. uso, measures the dispersion of this variable while a., is
the maximum intensity of X. The figure (11) represents the estimate of the law of the
maximum of process Ye (T) and its approximation.

Xe
approximated
T

Fig. 11. Probability density function of process Xe and its approximation
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We can conclude that the law of maximum of a Gaussian process is a law of Gumbel. For
these laws of maximum, to estimate the trajectory probability of failure, it is necessary to
define the trajectories limit states. The next step will be to determine these limit states.

5. Trajectory stability criteria

The final aim of this study is to estimate the trajectory probability of failure knowing its
variation compared to the reference trajectory. For that, it is necessary to define the safety
field of the trajectory. In this part, we will determine the trajectory criteria of stability. Then
we will speak about the limit states of the trajectories. Finally we will calculate the threshold
distance D eshola NOt to be exceeded to remain in safety.

5.1 Trajectories stability criterion

Security criteria

Safety criteria in longitudinal control can be treated as a problem to assure a minimal
distance between vehicles. In this study, we will insist on the criterion of comfort.

Comfort criteria

Passenger comfort in public ground transportation is determined by the changes in motion
felt in all directions, as well as by the other environmental effects. Typically, acceleration
magnitude is taken as a comfort metric. Consequently, the jerk, i.e. the acceleration’s
derivate better reflects a human comfort criterion. As its name suggests, jerk is important
when evaluating the destructive effect of a motion on a mechanism or the discomfort caused
to passengers. The movement of delicate instruments needs to be kept within specified
limits of jerk as well as acceleration to avoid damage.

In (Zakowska,2008) comfort due to motion changes in a vehicle’s longitudinal direction has
been treated; When designing a train and elevators, engineers will typically be required to
keep the jerk less than (2 m/s3) for passengers comfort. However, the bounded longitudinal
jerk in this study is less than (3 m/s3).

The main theoretical assumption is: a subject driving on a self-explaining road assumes a
correct and safe trajectory and the local lateral accelerations depend only on the road
curvature geometry. If the driver corrects the vehicle’s trajectory more than what road
curvature imposes, the road is not self-explaining and, consequently, it can be unsafe. If the
local transversal accelerations do not depend only on the actual road curvature, they are
biased by driver’s corrections of trajectory. The local variability of lateral acceleration shows
clearly the corrections of trajectory that the driver assumes and this could be so labeled as a
discomfort index. These repeated local oscillations represent a violation of the driver
expectancy. Authors have used formula (18) to estimate pathologic discomfort:

ez
o}

J

s=L N 62
P = (s =3 22 a9
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By applying this criterion to the representative sample of trajectories observed on the same
studied turn, we obtained after standardization, PD ranging between (0.15 and 1). However,
the bounded pathologic discomfort in this study is less than (0.75). All the trajectories which
do not respect these two criteria are regarded as unstable.

5.2 Trajectories limit state

Constraints obtained through the preceding criteria give practical limits of variations for the
vehicle kinematics parameters in security and comfort conditions. This subset Ds is made up
of the trajectories which respect the comfort criterion.

Unsafe Trajectories

Space Dy Safe trajectories

Space Dg

Fig. 12. Vehicle trajectories space

However, the bounded trajectory parameters are less than: {transversal position (2m),
longitudinal speed (22m/s), lateral speed (9m/s), longitudinal acceleration (3m/s?) and
lateral acceleration (4 m/s?)}.

5.3 Threshold Distance

The distances calculated starting from the observed trajectories lie between (0, 15). In this
study, we choose a threshold distance equal to (10) beyond which the trajectory is unstable.
This assumption is checked through the limit states previously definite. The figure (13)
represents the delimitation zone of the safe distances and that of the unsafe distances. The
two zones are separated by the distance threshold. This distance threshold will be used in
the next step to estimate the trajectory probability of failure.

The last step of this study will consist to apply the analysis reliability of civil engineer.

6. Reliability analysis of trajectories

In this part of the chapter, we propose tools of the probabilistic reliability theory to assess
safety indices of trajectories. The method consists to treat firstly the function of limit state
and the transformation of the physical space variables towards the space of the normalized
variables. Then, the reliability indice will be calculated. Lastly, as any analysis reliability
engineer, one will evaluate the probability of failure (PF) associated with the selected limit
state. We recall that the stationnarity assumption takes all its sense in this part to predict a
failing trajectory.

We point out that the maximum of the process Yg(t) or Ym(t) is represented by:

Y(®)=Sup _,,,|dU (t, ), U(1) | (19)
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Y(w) is a regular random variable for which one has a good approximation of his law. Let
G:IR2>IR;x 2 G(x) =y - d where d is an element of IR+ and G is the limit state function.

We choose to define the safety and the failure events by :

E.={weQsuch GX( ) <0 }andE ={weQsuch GX(w)) >0}
And the safety domain and the unsafe domain by :

D,={xelR such G(x) <0 }and D = {x € IR such G(x) >0 }

It acts, once known the probability density Py of the random variable X and after having

defined the events E, and E, it is necessary to calculate the probabilities P(Es) and P(Ey).
We obtain :

P, =PE )= [py(ydy and PE)=1-PE) 0)

This is why, one interests only in the estimate of I

We based then on a classical result of the probabilities calculation which says that under
certain conditions (that we will suppose satisfied here), one can always build a regular
transformation T such as if X is a Gaussian v.a. standard with values in IR, then one with the
equality in law Z=T (X). The safety and the failure events are written by:

E, ={weQsuchI'(Z(®))<0 } and E, = {® € Qsuch ['(Z(w)) > 0 }, where '=GoT"'
The images per T of the safety and failure fields are written as for them:

Ag=T(D,)={xeIRsuch I'(x)) <0 }and A, =T(D,) = {y € IR such I'(y)) <0 }
One has then:

e-x2/2

P, = “.!.IA( X)p x(x)dx  where p,(x) = Ners (21)

The law of Y being known it is possible to obtain an approximation of PF either by using a
method of the Monte Carlo type or by using methods of approximation (FORM and SORM
methods) (Lemaire, 2005). For that we must initially define the index of Hasofer-Lind:

S = d(O, A,) where O is origin point of IR. To get ,BHL consists to solve the following

problem:
Find y" e IR such that
[y = pin 1] 2
FORM method

Elle consiste a effectuer une approximation du 1er ordre de A; au voisinage de y*

I'(y)—(VIG),y'
P, est approchée par PF = ®(-B,,) avec By = (y )‘V<r( ()y ),y >
y
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and @ is the distribution function of Gaussian law in IR.

SORM Method
It consists in carrying out a second order approximation of A in au voisinage de y*

We can use for example the following approximation (due a Breitung):

4.1 -1/2

PfL ~O(-Ly) Z(l < ﬂHLZi(y*)

i=1

avec y,(y ), i=1,...,d -1les courbures principales de I', au design point y

7. Conclusion

The goal of this chapter was to estimate the trajectory probability of failure by using metric
(or distance) between the trajectories starting from data of experimental measurements.

Initially, after having defined the trajectory of the vehicle and its properties, we considered a
sample of trajectories resulting from the same stochastic process vectorial. The trajectories of
the process are the solutions of a stochastic differential equation controlled by the system of
control. Then, we projected the dated measurements of this process on IR in order to bring
back to have scalar problem. This step passes by the use of judiciously selected functional
(one based on the use of the Euclidean distance, the other based on the use of the
Mahalanobis distance).

Afterwards, we considered the process (scalar) of deviations with the average distance of
the sample. It is this process which we sought to characterize. An statistical analysis was
carried out on this scalar process with an aim of studying the stationnarity. The stationnarity
assumption was not rejected for these processes.

Then, to identify the model of distance between trajectories, on the one hand, we
characterized each process by estimating the probability law, the function of distribution
and the power spectral density. In addition, we identified the laws of probability of each
process by a reasonable approximation. The validation of this approximation was made by
using the integral criterion.

Then, after having identified the law of maximum of the two preceding laws and by using
of the safety and comfort criteria of the trajectory, we estimated the probability of failure.

Finally, we present simulation results of the proposed methods. The validation is carried out
by means of experimental measures.
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