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1. Introduction

Study of electromagnetic wave propagation within tunnels was driven in the early seventies
by the need for communication among workers in mine tunnels. Such tunnels are found in
the form of a grid of crossing tunnels running for several kilometers, which called for
reliable means of communication. Since then a great number of contributions have appeared
in the open literature studying the mechanisms of communication in tunnels. Much
experimental and theoretical work was done in USA and Europe concerning the
development of wireless and wire communication in tunnels. A typical straight tunnel with
cross sectional linear dimensions of few meters can act as a waveguide to electromagnetic
waves at UHF and the upper VHF bands; i.e. at wavelengths in the range of a fraction of a
meter to few meters. In this range, a tunnel is wide enough to support free propagation of
electromagnetic waves, hence provides communication over ranges of up to several
kilometers. At those high frequencies, the tunnel walls act as good dielectric with small loss
tangent. For example at a frequency of 1000 MHz, the rocky wall with 102 Siemens/m
conductivity and relative permittivity of about 10 has a loss tangent equal to 0.018. So the
electromagnetic wave losses will be caused mainly by radiation or refraction through the
walls with little or negligible ohmic losses as deduced by Glaser (1967, 1969).

Goddard (1973) performed some experiments on UHF and VHF wave propagation in mine
tunnels in USA. His work was presented in the Thru-Earth Workshop held in Golden,
Colorado in August 1973. Goddard’s experimental results show that small attenuation is
attained in the UHF band. He also measured wave losses around corners and detected high
coupling loss between crossing tunnels. The theory of mode propagation of electromagnetic
waves in tunnels of rectangular cross section was reported by Emslie et al (1973) in the same
workshop and later in (1975) in the IEEE, AP journal. Their presentation extended the theory
given earlier by (Marcatelli and Schmeltzer, 1964) and have shown, among other things, that
the modal attenuation decreases with the applied frequency squared. Chiba et al. (1978)
presented experimental results on the attenuation in a tunnel with a cross section close to
circular except for a flat base. They have shown that the measured attenuation closely match
the theoretical attenuation of the dominant modes in a circular tunnel of equal cross section.
Mahmoud and Wait (1974a) applied geometrical ray theory to obtain the fields of a dipole
source in a tunnel with rectangular cross section of linear dimensions of several
wavelengths. The same authors (Mahmoud and Wait, 1974b) studied the attenuation in a
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2 Mobile and Wireless Communications: Physical layer development and implementation

curved rectangular tunnel showing a considerable increase in attenuation due to the
curvature.

Recent advances on wireless communication, in general, have revived interest in continued
studies of free electromagnetic transmission in tunnels. Notable contributions have been
made by Donald Dudley in USA and Pierre Degauque in France and their research teams.

In the next sections, we review the theoretical early and recent studies done on
communication within tunnels. We start by reviewing the mode theory of propagation in a
straight tunnel model with a circular cross-section. We obtain the propagation parameters of
the important lower order modes in closed forms. Such modes dominate the total field at
sufficiently distant points from the source. We follow by reviewing mode propagation in
tunnels with rectangular cross section. Tunnels with arched cross sections are then treated
as perturbed tunnel shapes using the perturbation theory to characterize their dominant
modes. We also review studies made on wave propagation in curved tunnels and
propagation around corners. We conclude by comparisons between theory and available
experimental results.

2. Tunnel wall Characterization

Before treating modal propagation in tunnels, it will prove useful to characterize the tunnel
wall as constant impedance surfaces for the dominant modes of propagation. This is
covered in detail in [Mahmoud, 1991, chapter 3] for planar and cylindrical guides. Here we
give a simplified argument for adopting the concept of constant impedance wall. By this
term, we mean that the surface impedance of the wall is almost independent of the angle of
wave incidence onto the wall. So, let us consider a planar surface separating the tunnel
interior (air) from the wall medium with relative permittivity & and permeability po where
g is usually >>1. At a given applied angular frequency o, the bulk wavenumber in air is

ky = o\ tyey and in the wall is k:ko\/g >>ky. We may define three right handed

mutually orthogonal unit vectors 7,7,7 where 7and? are tangential to the air-wall interface

and 7 is normal to the interface and is directed into the wall. Now consider a wave that
travels along the interface with dependence exp(jwr— jfz)in both the air and wall. For

modes with /8 <k, one has kj — 8> <k and definitely kj — 8> << k? . Hence the transverse

wavenumber in the wall (along n) & =k* - p* can be well approximated by the

n

k, =+/k* —ki which is independent of . If the wave is TE, polarized , i.e. having zero E,

n

and nonzero H,, the surface impedance of the wall is given by:
Z,=E, | H, =ouy/ k> =k =ny/ Je, —1 (1)

Similarly if the wave is TM,, polarized, the surface admittance of the wall is

Y,=H, | E, =—we | \Jk* ki =,/ ny\[e, -1 ()

where 1 is the wave impedance in air(=120 = Q).
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Wireless Transmission in Tunnels 3

The Z; and Y, in (1-2) are the constant impedance/admittance of the wall. When the air-wall
interface is of cylindrical shape, the same Z; and Y, apply provided that

(k> =k} )2a>>1 ([Mahmoud, 1991), where a is the cylinder radius. This condition is
satisfied in most tunnels at the operating frequencies.

=

Fig. 1. A circular cylindrical tunnel of radius ‘a” in a host medium of relative permittivity &,
and conductivity ‘c’.

3. Modal propagation in a tunnel with a circular cross Section

An empty tunnel with a circular cross section is depicted in Figure 1. The surrounding
medium has a relative permittivity & (assumed >>1) and conductivity o S/m. The circular
shape allows for rigorous treatment of the free propagating modes. The modal equation for
the various propagating modes was derived by Stratton [1941] and solved approximately
for the modal phase and attenuation constants of the low order modes in (Marcatili and
Shmeltzer, 1964), (Glasier, 1969) and more recently by Mahmoud (1991). In the following,
we derive modal solutions that are quite accurate as long as the tunnel diameter is large
relative to the applied wavelength. Under these conditions the tunnel wall is characterized
by the constant surface impedance and admittance given in (1-2). Specialized to the circular
tunnel, they take the form:

E¢ = UOZSHZ and 770H¢ = —KEZ (3)

Here Z,andY, are normalized impedance and admittance relative to my and ng?
respectively. Explicitly:

Z =1/\e —1—ic/ws,, (4a)

Y. =(¢, —ic/ws,) &, —1-ic/ ws, (4b)
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4 Mobile and Wireless Communications: Physical layer development and implementation

Because of the imperfectly reflecting walls, the allowed modes are generally hybrid with
nonzero longitudinal field components E; and H. (Mahmoud, 1991, sec. 3.4). Thus:

E. = jJ,(k,p)sinng exp(~jpz) (5a)
nH . ==jAJ,(k,p)cosmg exp(—jBz) (5b)

where A is the mode hybrid factor, fis the mode propagation factor, J(.) is the Bessel
function of first kind, and » is an integer =0,1,2.... The transverse fields E E,H ,and H,
are obtainable in terms of the longitudinal components through well-known relations as
given in the Appendix. The boundary conditions at the tunnel wall p=a require
that E, =n,Z H, and n,H, =-YE, . Using (A2) & A(3) in the Appendix along with (5), these

boundary conditions read:
F(u)+ jZu* /v =—pn/ Ak, (6a)

F(u)+ jYu* /v =—pnAlk (6b)
where:
u= kpa, v =k,a,
v: —u’ =(fa)’, and (7)
ul,@) _ J,,@)—J,., )

F,(u) = =n
Jn(u) Jn—l(u)+‘]n+1(u)

The prime denotes differentiation with respect to the argument and the last equality stems
from identities in (A4).

Equations (6) lead to the modal equation for the propagation factor £ and the mode hybrid
factor A. Namely:

(F, () + ju’Y, IN)(F, ) + ju’Z,/v) = n* (B k)" =0 (8a)

A-AN"=—j(Y. - Z ) 'k, / npv (8b)

3.1 The ¢- symmetric modes (n=0)
Considering first the ¢-symmetric modes we set n=0 in (8) which then reduces to two
equations for the TMoy and TEom modes; namely:

Fyu) = —ud, )/ Jy () =~ ju*T, /v (%)

Fyu) = =ud, )/ Jy () =~ ju*Z, | v (9b)
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Wireless Transmission in Tunnels 5

For the low order modes which are dominant at sufficiently high frequencies, u/v <<1,
hence the RHS of (9a-9b) are also <<1 and an approximate solution for the eigenvalue u is:

Uom = X1+ ¥, /V) (10)
Uom = X1+ jZ, V) (11)

for TMom and TEonm respectively. In the above x1,, is the mth root of the Bessel function J;.
Note that the second of (8) yields A=0 (H,=0) or infinity (E,=0) as expected for the TM, and

TEo modes respectively. Since fa=+v* —u* , we can use (10-11) to get the complex B factor.
Of particular interest are the modal attenuation rates, which take the forms

2

Xm Zs
Q, =—"_Re| _ Neper/m 12

The TE; modes are associated with Zs and the TM, modes with Y;. Since Z, << Y, (see (4)), it

is clear that the TEp) modes have considerably less attenuation than the TM, modes; it is less
by almost the factor &;.

3.2 Hybrid Modes

Next we consider the case n>0 for the hybrid modes. In the high frequency regime and for
the low order modes, we use the following approximations in (8): (8/ko)?~ 1, and u2/v<<1.
This leads to the approximate solutions:

u :xnfl,m(l"'j(zs +Ys)/2v) (13)

nm

and
U = Xpsrm(L+ J(Zg + 1)/ 2v) (14)

The corresponding modes are designated as HE,, and EH,, modes respectively.
Investigating the hybrid factor A (the second of eqn. 8), we find that it approaches +1 for HE
and -1 for EH modes in the infinite frequency limit. This means that the modes are hybrid
balanced modes in this limit. Further discussions on these modes are found in
(Mahmoud,1991, Chap.5).

Using (13)-(14) along with the relation Ba=~/v* —u* , we obtain the high frequency modal

propagation constant. Again, the imaginary part of 5 gives the mode attenuation rate o (o=-

Im(f)). The approximate modal attenuation factor « for the HE,, modes is:
2

_ xn—l,m v —~
a, = 2 Re[YS + Zx] (Neper/m) (15)
The attenuation rate for the other set of modes; EHnm modes, is the same except that the
Bessel root xn.1,m is replaced by Xn+1,m. The above formulae (12 and 15) show that the modal
attenuation is inversely proportional to the frequency squared and the radius cubed. Note
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6 Mobile and Wireless Communications: Physical layer development and implementation

that these Formulae are restricted to the lower order modes of the tunnel at sufficiently high

frequencies.
It is clear that the least attenuated mode of the TE) and TMy mode group is the TEy; mode,
while the least attenuated hybrid mode is the HE;; mode. It is interesting to compare the
attenuation rates of these two modes; namely the TEj; and the HE;; mode. Using (12) and
(15), we get the ratio

oo Y 2 38322 2 5078 16)
e x(%,l g +1 2405%¢.+1 ¢ +1

where we have neglected the earth conductivity o relative to we. As an example, for typical
earth with & =12, the above ratio amounts to 0.395, which means that the TEy; mode is the
least attenuated mode in a typical circular tunnel.

In order to check the approximate closed forms (12)-(15) for the attenuation factors, we
compare them with exact results presented recently by Dudley and Mahmoud [2006] in
Table 1. The table lists the attenuation rates of some of the dominant modes in a circular
tunnel of 2 meter radius and outer medium having &=12 at 1 GHz. It is seen that the
percentage error is less than ~2.7% for all the listed modes except the EHi1 mode. This mode
requires a higher frequency for the approximate attenuation to have a better accuracy.

Mode | Exact | Approximate | % Error
TEn | 1.098 1.096 0.18%
TEp, | 3.716 3.673 1.16%
TEps | 7.937 7.724 2.68 %
HE | 2.774 2.805 1.12%
HEx» | 7.158 7.122 0.50%
HEs; | 13.12 12.79 2.52%
TMp | 13.30 13.15 1.13%
EHp; | 20.18 12.794 36.6%

Table 1. Comparison between Exact [Dudley & Mahmoud,2006] and approximate
attenuation rates in dB/100meters at 1 GHz.

Exercise 1: Verify the approximate attenuation rates in Table 1, Column 3 by using (12) for
the TEom/ TMom modes and (15) for the HE,, modes.

Exercise 2: Using any root finding software, verify the exact attenuation rates in column 2 of
Table 1. To do so, you need to solve the modal equation (8) for the complex roots of u. You
can use (10),(11) or (13) as initial guess for u of the TEom, TMom and HE,, modes
respectively. Once you get u, the complex B is obtained from fa=+/v*—u* . The mode

attenuation rate o in Neper/m is the negative of the imaginary part of B. To convert to
dB/100m, note that 1 Neper/m= 868.8 dB/100m.

www.intechopen.com



Wireless Transmission in Tunnels 7

3.3 Mode Excitation

In the above we have ordered the modes in ascending order of their attenuation rates.
However, the actual level of the modes at a given distance from the source is determined
also by their excitation factor, which in turn depends on their field distribution and the
source type, location and orientation. The E-field distribution of the TEy and the HEy;
modes, which are the least attenuated modes, are sketched in Figure 2. The TEy; mode has a
circumferential E, field, which vanishes at p=0 and is quite weak at the wall p=a (being
proportional to Ji(up/a)). It follows that the TE¢; mode can be excited by a circumferentially
oriented linear dipole. For optimum excitation, the linear dipole should neither be at the
center or very close to the wall. Alternatively, the TEy; mode can also be excited by a current
loop placed in the cross section plane near the center of the tunnel. This will couple with H,
which is maximum at the tunnel center. Dudley (2005) has given rigorous treatment of TEg
modes excitation by a loop, which is located coaxially with the tunnel.

On the other hand, the HE;; mode is almost linearly polarized as demonstrated in the
Appendix (see equation A6). So, this mode is optimally excited by a linear dipole close to
the center of the tunnel. A detailed rigorous treatment of the HE,, mode excitation by a
linear dipole is found in (Dudley and Mahmoud, 2006).

TEo1 mode HE,; mode

Fig. 2. E-field lines of the lowest order modes in a circular tunnel.

Here we derive a simple formula for the excitation coefficient of the propagating modes in

the tunnel. The source is assumed to be a small linear electric dipole of vector moment 'P'
(Ampere-m) located at (p;,¢;) in the cross section at, say z=0 and oriented along an arbitrary

direction in the transverse plane. The total excited fields (E,H) are expressed as a sum over
the natural modes in the tunnel, so

(BH)= Y 4 @) exp(),2) (17)
p
Where (ér,fz,) ,¥=1,2...are the normal modal fields ordered in an arbitrary manner. The A,

are the excitation coefficients. The + signs correspond to the fields in the z>0 and z<0
respectively. To the above sum we should add a continuous of waves representing radiation
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8 Mobile and Wireless Communications: Physical layer development and implementation

through the surrounding host medium. However, this is normally heavily attenuated as
demonstrated in (Dudley and Mahmoud, 2006) and hence will be omitted. The mode
excitation coefficients are determined based on the orthogonality among the modes in a
tunnel with constant impedance walls (Mahmoud, 1991, section 3.6) and the field
discontinuity at the source. So we get ((Mahmoud, 1991, section 2.11).

S o S (18)

Exercise 3: For each of the linear electric dipoles
shown in Figure 3, what are the important excited
modes? [HE11 for dipoles 1, and 2, Both HE11 and TEO1

modes for dipoles 3 and 4].

Exercise 4: Apply (18) to get the excitation coefficient
for the HE11 mode when excited by a unit y-directed

dipole moment; P= ylocated at the center of the

tunnel p=0. Note that (ét,};t) are given by equations Fig. 3.

(A6-A7) in the Appendix. To simplify the problem,
assume that the frequency is high enough so that f=kjand A=+1. Find the power

launched in the HE{; mode.

4. A rectangular tunnel

Modal propagation in rectangular waveguides with imperfectly conducting walls is
considered to be an intractable problem in waveguide theory. In fact, as indicated by (Wait,
1967) long time ago, there is a fundamental difficulty with mode analysis in cylindrical
waveguides with finite impedance walls and cross-sections other than circular. In such
waveguides, a natural mode does not take the form of a wave with a single transverse
wavenumber as is the case with waveguides with perfectly reflecting walls. In contrast, a
waveguide mode is generally composed of a weighted sum of elementary waves having a
single transverse wavenumber each. A comprehensive discussion of this phenomenon is
reviewed by Mahmoud (1991 sec. 3.5) in relation to elliptical and rectangular waveguides.
However, simple, but approximate modal solutions valid in the high frequency regime have
been obtained by several authors. Marcatili &Scmeltzer (1964) obtain the x and y transverse
wavenumber approximately by treating the rectangular waveguide as two parallel plates in
the y and x directions respectively. Andersen et al. (1975) derive an aprproximate modal
equation for the transverse wavenumber by considering the mode to be composed of four
crossing plane waves interconnected at the tunnel walls by reflection matrices. The method
accounts for the coupling between horizontal and vertical polarizations upon reflection.
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Wireless Transmission in Tunnels 9

Wait [1980] and Mahmoud [1991, sec. 6.2.2] obtain an approximate TM type modal solution
based on the neglect of one weak boundary condition. In the following, we outline this
formulation.

So, consider a rectangular guide of width w and height 1 and outer medium of complex
relative permittivity . (=&-io/wsp) as depicted in Figure 4. The walls are characterized by

constant impedance and admittance Z,Y; as given by (4). For a TMy mode, or a vertically
polarized mode, E,=0 and E, may be given, for an even mode, by:

E, =cos(k,y)cos(k x)exp(—jpfz) (19)

Fig. 4. A rectangular tunnel in a host medium

In the above: k§ +k2 =k} — B*. Because the guide is oversized relative to the wavelength,

both k, and k, are << ko and } for the low order modes. The E, component is obtained from

the divergence equation V.E =0, hence:
JPBE. =8Ey/6y (20)

which shows that E; is of first order smallness relative to E,. The magnetic field components
are obtained as:
ok, =-PE, /ky,nyH, = 0,andnyH . = jOE,, | kyox (1)

where terms of second order smallness have been neglected (such as .k, /kg )- Now the

boundary condition at y=+h/2 requires that: (7yH,/E.)[,—+y= ifs , which reduces to:
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10 Mobile and Wireless Communications: Physical layer development and implementation

kyhtan(k,h/2) = jkoh!Y, (22)

This is an equation for the y-wavenumber and its solution leads to a set of eigenvalues ky,
n=1,2... Now we consider the side walls at x=+w/2. The boundary conditions at these two
walls are

E, =+nZ,H, (23)

770Hy = $I_/sEz (24)
Using (19) and (21) in (23) leads to a modal equation for k.
k wtan(k, w/2) = jkgw! Z, (25)

So (25) is an equation for k, whose solution leads to a set of eigenvalues k. This completes
the modal solution except that we have not satisfied boundary condition (24). Fortunately
however, H, is of second order smallness for the lower order modes, hence this boundary
condition can be safely neglected.
Approximate solutions of (22) and (25) for ky, and ku, in the high frequency regime,
(koh >> Y, ,kgw>> Z_ ) are:

kyh =nx[1+ j2Y | koh]

_ , (26)
ky,w=mr[l+ j2Z /kyw]

where m and n =1,3...are odd integers for the even modes considered. The corresponding
mode attenuation rate is easily obtained as:

Oy = 27" Re(Y) kol + 27°m* Re(Z,)/ k;w’  Neper/m (27)

The attenuation rate of the corresponding horizontally polarized mode may be obtained
from (27) by exchanging w and h. So:

Ly = 27" Re(Y) kgw’ +27°m* Re(Z,) / kih®  Neper/m (28)

These formulas agree with those derived by Emslie et al (1975). It is worth noting that like
the circular tunnel, the attenuation of the dominant modes is inversely proportional to the
frequency squared and the linear dimensions cubed. Comparing (27) and (28), we infer that
the vertically polarized mode suffers higher attenuation than the horizontally polarized
mode for w>h. Thus, for a rectangular tunnel with w>h, the first horizontally polarized
mode; TM,q1 is the lowest attenuated mode.

Exercise 5: Use (26) to derive (27). In doing so, note that

o =—Im[(ky —kZ, - k;,)” 1= (1/2ky) Im[k2, + kﬁn] . This, of course, is valid only for low order
modes such that mz/w and nz/h are <<k,. Compute the attenuation rate of the TMy1; and

TMi11 modes in a tunnel having w=2h=4.3 meters at 1 GHz. Take &=10 and ¢=0. [13.27 and
2.95 dB/100m]
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Wireless Transmission in Tunnels 1

We can infer from the above discussion that the attenuation caused by the walls which are
perpendicular to the major electric field is much higher than that contributed by the walls
parallel to the electric field.

60 : 1 :
N F— 1____Solid Curves: __ Exact ____
! Dashed curves: Approximate
40 f-----A-4--Ne---- T S R
dB/100m : !
30 frmmm T N T e
1
20 f----- Pad Gt N e B
1
. 1
10 p _Horizontals U N oL DTN L LT eTST PySppivayeya.
I
0 ............................ La o o2 5 3 4 4
0 400 800 1200 1600 2000

Frequency MHz

Fig. 5. Attenuation rates in dB/100m of VP and HP modes with m=n=1 in a rectangular

tunnel of dimensions 4.3x2.15 m. £.=10.

The approximate attenuation rates given by (27-28) for the horizontally and vertically
polarized (HP and VP) modes with m=n=1 are plotted versus the frequency in Figure 5.

Here the tunnel dimensions are chosen as (w,/) = (4.3m, 2.15m) and &,=10. It is clear that the
VP mode has considerably higher attenuation than its HP counterpart. The attenuation rates
obtained by exact solution of equations (22) and (25) are also plotted for comparison. It is
clear that both solutions coincide at the higher frequencies.

Ray theory:

When it is required to estimate the field at distances close to the source, the mode series
becomes slowly convergent since it is necessary to include many higher order modes. As
clear from the above argument, higher order modes are hard to analyze in a rectangular
tunnel. In this case the ray series can be adopted for its fast convergence at short distances,
say, of tens to few hundred meters from the source. At such distances, the rays are
somewhat steeply incident on the walls, hence their reflection coefficients decrease quickly
with ray order. Therefore, a small number of rays are needed for convergence.

A geometrical ray approach has been presented by (Mahmoud and Wait 1974a) where the
field of a small linear dipole in a rectangular tunnel is obtained as a ray sum over a two-
dimensional array of images. It is verified that small number of rays converges to the total
field at sufficiently short range from the source. Conversely the number of rays required for
convergence increase considerably in the far ranges, where only one or two modes give an
accurate account of the field. The reader is referred to the above paper for a detailed
discussion of ray theory in oversized waveguides.
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12 Mobile and Wireless Communications: Physical layer development and implementation

5. Arched Tunnel

So far we have been studying tunnels with regular cross sections having either circular or
rectangular shape. These shapes are amenable to analytical analysis that lead to full
characterization of their main modes of propagation. However, most existing tunnels do not
have regular cross sections and their study may require exhaustive numerical methods
(Pingenot et al., 2006). In this section we consider cylindrical tunnels whose cross-section
comprise a circular arch with a flat base as depicted in Figure 6. This can be considered as a
circular tunnel whose shape is perturbed into a flat-based tunnel. So, we use the
perturbation theory to predict attenuation and phase velocity of the dominant modes from
those in a perfectly circular tunnel.

y
A

«— L —

Fig. 6. An arched tunnel with radius 2 and flat base L.

5.1. Perturbation Analysis
We consider a cylindrical circular tunnel of radius ‘a” and cross section Sy surrounded by a
homogeneous earth of relative permittivity &. Let us denote the vector fields of a given

mode by (E,,H,)exp(~y,z) where y, is the longitudinal (along +z) propagation constant.
Similarly, let (E,H)exp(+yz) be the vector fields of the corresponding mode in the perturbed

tunnel of of area S (Figure 7). Note, however, that the mode is a backward mode; travelling
in the (-z) direction. Both circular and perturbed tunnels have the same wall constant
impedance Z and admittance Y. Now, we use Maxwell’s equations that must be satisfied by

both modal fields to get the reciprocity relation V.(Ey x H — Ex Hy) =0 . Integrating over the

infinitesimal volume between z and z+dz in the perturbed tunnel, we get, after some
manipulations,
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zY @)

K~

C

Fig. 7. A circular tunnel and a perturbed circular tunnel with a flat base. The walls are
characterized by constant Z and Y.

~ [(ExH - ExH,).4,dC,
Cl

S < E— 29
77 [[,(EyxH - ExH,).a.dS @)

where C; is the flat part of the cross- section contour, g, is a unit vector along the outward

n

normal to the wall (=-a, ) and 4, is a unit axial vector. The integration in the denominator is

taken over the cross section of the perturbed tunnel. In order to evaluate the numerator of
(2), we use the constant wall impedance and admittance satisfied by the perturbed fields on
the flat surface: £, =Z H andH =-Y.E, . Zs; and Y; are given in (1-2). Using these relations,

(29) reduces to:

[ /2
-2 j [EoH.+E.H, +YEE, —ZH_H, Jdx
- [[(EyxH — Ext,).d.ds
S

V=7 (30)

The integration in the numerator is taken over the flat surface of the perturbed tunnel. So
far, the above result is rigorous, but cannot be used as such since the perturbed fields are not
known. As a first approximation we can equate these fields to the backward mode fields in
the un-perturbed (circular) tunnel. So we set: H, ~ H,_ ,E. ~—E, in the numerator. In the

denominator, the fields involved are the transverse fields (to z). So we use the

approximations: Exa, ~ Egxa, and Hxa, ~—Hyxa, . Therefore (30) is approximated by:

) LLz/Oz |:EOXHOZ -E, H, -YE - ZX]—[gz]dx
i [[(Exit,).a.ds

(31)

Thus, for a given mode in the circular tunnel, (31) can be used to get the propagation
constant of the perturbed mode in the corresponding perturbed tunnel. Of particular
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14 Mobile and Wireless Communications: Physical layer development and implementation

interest is the attenuation factor of the various modes. As a numerical example, we consider
an arched tunnel of radius a=2meters with a flat base of width L. The surrounding earth has
a relative permittivity &=6. For an applied frequency f =500MHz, the modal attenuation
factor, computed by (31), is plotted in Figure 8 for the perturbed TE¢; and HE;; modes as a
function of the L/a. Note that [/2=0 corresponds to a full circle and L/a=2 corresponds to a
half circle. Generally the attenuation increases with L/a. The HE;; mode has two versions
depending whether the polarization is horizontal (along x) or vertical (along y). Obviously
the two modes are degenerate in a perfectly circular tunnel (L=0). However as L/a increases,
this degeneracy breaks down in the perturbed tunnel. It is remarkable to see that the
attenuation of the horizontally polarized HE;1 mode becomes less than that of the vertically
polarized mode in the perturbed tunnel. This agrees with measurements made by Molina et
al. (2008).

It is interesting to study the effect of changing the frequency or the wall permittivity on the
mode attenuation in the perturbed flat based tunnel. Further numerical results (not shown)
indicate that the percentage increase of the attenuation relative to that in the circular tunnel
is fairly weak on f and &. Since the attenuation in an electrically large circular tunnel is
inversely proportional to f2, so will be the attenuation in the perturbed flat based tunnel.

20
15 /
§ HE11, /
= V-pol HE11,
° H;pol
£ - I
<
2 — | TE10
[e]
5
= a=2m
£=500 MHz
er=6
0
0 0,5 1 Ua 15 2

Fig. 8. Attenuation of the perturbed TEq; and HE1; modes in a flat based tunnel versus L/a.
Note the difference between the attenuation of the VP and the HP versions of the HEj;
mode.

5.2. An equivalent rectangular tunnel

As seen in Figure 8, the attenuation of the perturbed HE1; mode in the arched tunnel (with
flat base) depends on the mode polarization; namely the vertically polarized HE;; mode is
more attenuated than the horizontally polarized mode. The same observation is true for the
HE11 mode in a rectangular tunnel whose height ‘%’ is less than its width ‘w’. This raises the
question whether we can model the flat based tunnel of Figure 6 by a rectangular tunnel.
We will investigate this possibility in this section. To this end, let us start by comparing the
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attenuation of the HE,, mode in tunnels with circular and a square cross sections. For the
circular tunnel we have from (15)

— Zs /770 + Ys770 2
a |HEnm_ W[%’tl,m} (32)
Where x,,, is the mth zero of the Bessel function Jx1 (x). This formula is based on the

condition: kya >>x,_; ,, . For the rectangular tunnel with width ‘w’ and height ‘i’ the

attenuation of the HE,,, mode (with vertical polarization) is given by (27) which is repeated
here

272 mzZ/ nZY
& | iEm= { 270 S”O} (33)

kg W w

This is valid for electrically large tunnel, or when ky >>mz/w and nz/h . Specializing this

result for the HE;; mode in a square tunnel (w=h and m=n=1) , we get:

272
alppii=——Zs/ 10 + Y7o | (34)
koW

Now compare the circular tunnel with the square tunnel for the HE;; mode. From (32) and
(33), an equal attenuation occurs when

1/3
W’=(4ﬁ2/240482) a=1897a (33)

which means that the area of the equivalent square tunnel is equal to 1.145 times the area of
the circular tunnel. This contrasts the work of (Dudley et.al, 2007) who adopted an equal
area of tunnels. It is important to note that this equivalence is valid only for the HE;; mode
in both tunnels; for other modes the attenuation in the circular and the square tunnels are
generally not equal.

Now let us turn attention to the arched tunnel with flat base (Figure 6) for which we attempt
to find an equivalent rectangular tunnel. We base this equivalence on equal attenuation of
the HE;; mode in both tunnels. Let us maintain the ratio of areas as obtained from the
square and circular tunnels; namely we fix the ratio of the equivalent rectangular area to the
arched tunnel area to 1.145. Meanwhile we choose the ratio /w equal to the arched tunnel
height to its diameter. So, we write:

wh =1.145[(x — 0)a* + (La/2)cos], and

(34)
h/w=(+cosf)/2

where 0 = Arcsin(L/2a) is equal to half the angle subtended by the flat base L at the center
of the circle.
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Fig. 9. Attenuation of the HE;; mode in the arched tunnel of Figure 6 using perturbation
analysis and rectangular equivalent tunnel

Equation (34) defines the rectangular tunnel that is equivalent to the perturbed circular
tunnel regarding the HE;; mode. In order to check the validity of this equivalence, we
compare the estimated attenuation of the HE;; mode in the perturbed circular tunnel as
obtained by perturbation analysis and by the equivalent rectangular tunnel in Figure 9.
There is a reasonably close agreement between both methods of estimation for values of L/a
between zero and ~1.82.

6. Curved Tunnel

Modal propagation in a curved rectangular tunnel has been considered by Mahmoud and
Wait (1974b) and more recently by Mahmoud (2005). The model used is shown in Figure 10
where the curved surfaces coincide with p=R-w/2 and p=R+wy/2 in a cylindrical frame (p,4z)
with z parallel to the side walls. The tunnel is curved in the horizontal plane with assumed
gentle curvature so that the mean radius of curvature R is >>w. The analysis is made in the
high frequency regime so that kgw >>1. The modes are nearly TE or TM to z with horizontal
or vertical polarization respectively. The modal equations for the lower order TE, and TM,
modes are derived in terms of the Airy functions and solved numerically for the
propagation constant along the ¢- direction. Numerical results are given in (Mahmoud,
2005) and are reproduced here in figures 11 and 12 for the dominant mode with vertical and
horizontal polarization respectively. It is seen that wall curvature causes drastic increase of
the attenuation especially for the horizontally polarized mode.

This can be explained by noting that the horizontal electric field is perpendicular to the
curved walls, causing more attenuation to incur for this polarization.

Further study of the modal fields shows that these fields cling towards the outer curved
wall casing increased losses in the wall. Besides, the mode velocity slows down.
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Fig. 10. A curved rectangular tunnel
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Fig. 12. Attenuation of TM,q1 (HP) mode in a curved tunnel
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7. Experimental work

Measurements of attenuation of the dominant mode in a straight rectangular mine tunnel
were given by Goddard (1973). The tunnel cross section was 14x7 feet (or 4.26x2.13m) and
the external medium had =10 and the attenuation was measured at 200, 450 and 1000
MHz. Emslie et al [25] compared these measurements with their theoretical values for the
dominant horizontally polarized mode. Good agreement was observed at the first two
frequencies, but the experimental values were considerably higher than the theoretical
attenuation at the 1000 MHz. Similar trend has also been reported more recently by Lienard
and Degauque (2000). The difference between the measured and theoretical attenuation at
the 1000 MHz was attributed by Emslie et al.(1975) to slight tilt of the tunnel walls. Namely,
by using a rather simple theory, it was shown that the increase of attenuation of the
dominant mode due to wall tilt is proportional to the frequency and the square of the tilt
angle. As a result, it was deduced that the high frequency attenuation of the dominant mode
in a rectangular tunnel is governed mainly by the wall tilt.

Goddard (1973) has also measured the signal level around a corner and inside a crossed
tunnel. The attenuation rate was very high for a short distance after which the attenuation
approaches that of the dominant horizontally polarized mode. Emslie et al. (1975) have
explained such behavior as follows. They argue that the crossed tunnel is excited by the
higher order modes (or diffused waves in their terms) in the main tunnel. The modes
excited in the crossed tunnel are mostly higher order modes with a small component of the
dominant mode. These high order modes exhibit very high attenuation for a short distance
after which the dominant mode becomes the sole propagating mode. So the signal level
starts with a large attenuation rate which gradually decreases towards the attenuation rate
of the dominant mode. The theory presented accordingly shows good agreement with
measurements. More recently, Lee and Bertoni (2003) evaluated the modal coupling for
tunnels or streets with L, T or cross junctions using hybrid ray-mode conversion. They argue
that coupling occurs by rays diffracted at the corners into the side tunnels. It is found that
the coupling loss is greatest at L-bends and least for cross junctions.

Chiba et.al (1975) have provided field measurements in one of the National Japanese
Railway tunnels located in Tohoku. The tunnel cross section is an arch with a flat base as
that depicted in Figure 6. The radius 4=4.8 m, L=8.8m (L/a=1.83), the wall &=5.5 and o= 0.03
S/m. Field measurements were taken down the tunnel for different frequencies and
polarizations. The attenuation of the dominant HE;; mode was then measured for both
horizontal and vertical polarization at the frequencies 150, 470, 900, 1700, and 4000 MHz. We
plot the predicted attenuation of the horizontally polarized HE;; mode in this same tunnel
using both the perturbation analysis and the rectangular tunnel model in Figure 13. On top
of these curves, the measured attenuation is shown as discrete dots at the above selected
frequencies. The predicted attenuation shows the expected inverse frequency squared
dependence. The measured attenuation follows the predicted attenuation except at the
highest two frequencies (1700 and 4000 MHz) whence it is higher than predicted. This can
be explained on account of wall roughness or micro-bending of the tunnel walls that affect
the higher frequencies in particular.
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Fig. 13. Attenuation of the HE;; mode in the Japanese National Ralway tunnel by the
perturbation analysis and the rectangular tunnel model versus measured values (as
reported in (Chiba et al., 1973).

Measurements of the electric field down the Massif Central road tunnel south Central
France have been taken by the research group in Lille University and the results are
reported by Dudley et.al. (2007). The Massif Central tunnel has a flat based circular arch
shape as in Figure 6 with radius a= 4.3 m and L=7.8 m; that is L/a= 1.81. The relative
permittivity of the wall &=5 and the conductivity o= 0.01 S/m. The transmit and receive
antennas were vertically polarized and the field measured down the tunnel at the
frequencies 450 and 900 MHz are given in Figure 14. For the lower frequency, the field
shows fast oscillatory behavior in the near zone, but at far distances from the source (greater
than ~1800m), the field exhibits almost a constant rate of attenuation, which is that of the
dominant HE;; (like) mode. We estimate the attenuation of this mode as 27.2 dB/km. At the
900 MHz frequency, there are two interfering modes that are observed in the range of 1500-
2500m. One of these two modes must be the dominant HE;; mode. Some analysis is needed
in this range that lead to an estimation of the attenuation of the HE;; mode, which we find
as 6.8 dB/km.
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Fig. 14. Measured field down the Massif Central Tunnel in South France (Dudley et al., 2007)
at 450 and 900 MHz.

A comparison between these measured attenuation rates and those predicted by the
perturbation analysis or the equivalent rectangular tunnel (given in section 5) is made in
Table 2. Good agreement is seen between predicted and measured attenuation although the
measured values are slightly higher. This can be attributed to wall roughness and
microbending.

Perturbation Equivalent Measured
Analysis (dB/km) Rectangular model Attenuation
f=450 MHz 22.0 24.1 27.2
£=900 MHz 5.52 6.03 6.8

Table 2. Measured versus predicted attenuation rates of the HE;; mode in the Massif Central
Road Tunnel, South France.

8. Concluding discussion

We have presented an account of wireless transmission of electromagnetic waves in mine and
road tunnels. Such tunnels act as oversized waveguides to UHF and the upper VHF waves.
The theory of mode propagation in straight tunnels of circular, rectangular and arched cross
sections has been covered and it is demonstrated that the dominant modes attenuate with
rates that decrease with the applied frequency squared. We have also studied the increase of
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mode attenuation caused by tunnel curvature. Comparison of the theory with existing
experimental measurements in real tunnels show good agreement except at the higher
frequencies at which wall roughness, and microbending can increase signal loss over that
predicted by the theory. While the higher order modes are highly attenuated and therefore
contribute to signal loss, they can be beneficial in allowing the use of Multiple Input - Multiple
Output (MIMO) technique to increase the channel capacity of tunnels. A detailed account of
this important topic is found in (Lienard et al, 2003) and (Molina et al., 2008).
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10. Appendix

The transverse fields of a hybrid mode in a circular tunnel are obtained from the axial fields
by (Mahmoud, 1991, p. 7):

JOHy

= —Jjp »
E[ :—kZ_—vtEZ - k2 VIEZXZ
; 7 (A1)
A, :#V,HZ - L2205V, E,
k k
P P

Where V, is the transverse differential operator: V, =(8/0p)p+(0/ pop)p .

Using the axial fields in (5) we get the explicit expressions:

I nJ, (k .
E, =]]§—0 (,B/kO)J,'q(kpp)-FA%}sinngpe_mz
p pP
- (A2)
nJ,(k )
E(p:k_O (ﬂ/ko)in( "’p)+AJ;,(kpp) cos ngpe /P?
k, i k,p
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And
ko | , nJ, (k,p) y
ot = —(ﬂ/\/ko)]n(kpp)—% cos npe P2
T ’ (A3
k nl,(k,p) o
Moty ==& (B ko) =L+ J, (k) |sinnge™ /P
PL P

It is useful to express the transverse field in terms of Cartesian coordinates (x,y). Using the
Bessel function identities:

1], @) 1 = (g (1) + T,y )/ 2

' (A4)
@) = (J oy () = () /2
we get:
2k, _ _
L, =By + N1,y (kpp)sin(n—1)p+ [~ kg + A1, (k,p)sin(n + D
0
(A5)
2k,
—Ey = [ﬂ/kO + A]Jn—l(kpp)cos(n -Do+ [ﬁ/kO N A]J,H](kpp)cos(n +De
0
In the special case n=1, (A5) reduces to:
2k
k—/’Ex =[-8/ ko + A1, (k,p)sin2¢
0
(A6)
2k,
k—Ey =[Blky+AlJy(k,p)+[B/ky—AlJ,(k,p)cos2e
0
This shows that for the HE;; mode (A~ +1), the field is almost y-polarized.
The corresponding magnetic field is
2k, .
KH); =[BA/k, —l]Jz(kpp)sm2¢)
(A7)

2k
k—pHx = BN/ ko +11Jo(k ,p)+ [ BN kg —1]J5(k ,p) cOs 290
0

Equations (A6-A7) give the transverse fields of the HE;, modes.
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