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Task Jitter Measurement in Multi-purpose
Real-time Systems

Pavel Moryc and Jindrich Cernohorsky
Technical University of Ostrava
Czech Republic

1. Introduction. Scope and problem definition

1.1 Real-time task and its physical realization.

A real-time task is a task, which meets its prescribed deadline. (More precisely, it is a task,
which benefit depends on its execution time.)

A control system is a computing system used to control a production technology (fig. 1).
Usually, a production technology includes many interacting sub-processes, which all need
to be controlled. A real-time task runs in parallel with other real-time tasks and interacts
with them. This type of parallelism can be called predictable.
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Fig. 1. Techhology control

However, another type of parallelism can be seen in the controlled technology as well. The
nature of the controlled technology is not fully known, and can only be described with
statistical methods. Hence, it is not possible to fully plan, how the technology will be
controlled, but from time to time it is necessary to interrupt the currently running control
task, and to react on an unplanned urgent condition.

A production system works for years, and during that time, it enters its various conditions
repeatedly. Thus, planned system operation means periodicity, while required reactions on
unplanned conditions (errors, hazards, etc.) present aperiodicity. The aperiodicity naturally
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stems from noise, disturbances, delays, and all other unpredictable phenomena in the real
world.

A very simple control system can be realized as a monolithic block having no vertical layers,
but usually, a layered structure involving both hardware and software layers is applied.
Typically, three domains of control can be recognized in the layered control system
structure:

* real-time task. It is a realization of a control algorithm, which controls the
technology. Its precise execution is a goal of the control system. But, the control
task itself is a pure design abstraction, which has to use services provided by
underlying system layers.

* operating system. The real-time operating system provides resources that support
control algorithm realization, and make possible that the control algorithm meets
its deadline. The operating system is a design abstraction as well.

* hardware. The hardware physically realizes the control task algorithm and the
operating system algorithm.

The real-time task directly uses not the basic resources provided by the hardware, but the
virtual resources provided by the operating system. Hence, the operating system can
significantly mitigate or amplify adverse effects of the hardware used. The quality of the
control system is assessed as its ability to support specified accuracy of control, which first
of all implies the ability to keep specified deadlines.

A real-time operating system is an operating system, which supplies resources that support
the execution of a given real-time task on the specified hardware this way, the real-time task
meets deadlines required by the controlled technology.

A real-time operating system should not enforce strict rules that nature cannot meet, but
rather provide resources that help to smooth the conflicts. As these resources are supplied
by the operating system, they are called virtual. Their quality depends not only on quality of
the operating system itself, but also on the quality of the underlying hardware resources.
The periodic task is designed to handle deterministic events. Hence, its basic characteristics
are its starting time and its deadline.

The aperiodic task is designed to interrupt the periodic task and handle an unplanned,
urgent, or even emergency event. Thus, its basic and most important characteristic is the
delay between the time when action is required and the time when it is started. This delay is
called latency.

Jitter is a variable deviation from ideal timing event. Scheduling jitter is the delay between
the time when a periodic task is scheduled to be started, and the time when the task is
started. Interrupt latency is the delay between the time when the interrupt is triggered and
the time when the interrupt service routine is started. The interrupt latency varies, and
therefore, it shows jitter. Kernel latency is defined as the delay between a nominal time
when a periodic task shall be switched to the running state, and the actual time when the
periodic task is switched to the running state (see Ripoll, 2001).

Both the virtual and hardware resources that support real-time task realization are
standardized in the POSIX 1003.13 specification, which defines four resource profiles that
can be used to design control systems. A higher profile extends the lower one (see tab. 1).
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Profile No. Profile Name
PSE 51 Minimal

PSE 52 Controller
PSE 53 Dedicated
PSE 54 Multi-purpose

Table 1. POSIX 1003.13 profiles

1.2 Multi-purpose real-time system

A multi-purpose real-time system can be defined as a resource set specified by the POSIX
1003.13 PSE 54 profile. It can be realized as an embedded PC computer, running multi-
purpose operating system. The multi-purpose operating system can be based on a general-
purpose operating system (e.g. Linux or Windows).

It has been measured (Ripoll, 2001), that the Linux kernel latency can reach up to several
hundreds of milliseconds. It is evident, that such latency makes the system unusable in most
technology control applications. This problem is well known, and basically, there solutions
were proposed:

* low-latency kernel,
e preemptible kernel,
*  hardware abstraction layer.

Low-latency kernel cannot be preempted by task. It is designed as a non-preemptible
(monolithic) block, but with the intention to minimize latencies and jitters of API services
typically used by real-time tasks.

Preemptible kernel can be preempted by task. Preemptivity by task means, that while a task
is being serviced by the kernel, another task can successfully call a kernel API service and
preempt the current flow of the kernel operation. This type of preemptivity is called
reentrancy. However, at least some parts of the kernel cannot be made reentrant. Moreover,
the idea of preemptivity itself does not imply, that the kernel is deterministically
preemptible, i.e. the kernel latency and its jitter are kept acceptably low.

Hardware abstraction layer (HAL, fig. 2) is a software layer installed between the hardware
and the operating system kernel. It is built as a module that is plugged into the operating
system kernel. It receives timer interrupts and sends virtual (software) interrupts to the
general-purpose operating system kernel, thus providing a virtual (slower) clock for the
general-purpose operating system. This can be seen as a cycle stealing. Because the HAL
microkernel can postpone the general-purpose kernel operation, it can make spare time to
run real-time tasks. Obviously, latencies and jitters of the HAL layer must be kept low
enough by design. In this publication, we will focus on the HAL based solutions only.

1.3 Multi-purpose real-time system based on Hardware Abstraction Layer

The HAL-based multi-purpose real-time system architecture is obtained from the general-
purpose operating system by installing the HAL layer into the general-purpose operating
system kernel space (see figure 2). In the Linux environment, the HAL layer is called
RTLinux microkernel.
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Fig. 2. POSIX PSE-54 multi-purpose system constructed as real-time extension of general-
purpose system by adding hardware abstraction layer.

As the RTLinux Free source code is available, it can be analyzed. Basically, it catches
interrupts from hardware, and sends them to the Linux kernel as software interrupts. The
software interrupts are special signals with low latencies, i.e. with very short times of
delivery. However, other software interrupts can preempt and postpone their delivery. If
the microkernel is heavily loaded, many internal and external signals can wait in queues for
delivery, and their delivery times could significantly vary.

The microkernel runs in the kernel space, as a kernel module. It shares the kernel space with
the rest of the kernel and with the real-time tasks. The safety barriers between the kernel, the
microkernel, and the real-time tasks are thin. It can be supposed, that a more safe solution
would adversely affect both the microkernel and the kernel real-time characteristics, their
overhead, latency and jitter.

It can be concluded, that the system must be forethoughtfully tested. However, a number of
possible iterations in an industrial technology design process is rather limited, and each
such iteration can be quite expensive. Hence, a model architecture that makes possible to
simulate and verify system behavior in various design stages is needed.

2. Existing measurement methods

First, existing measurement methods were studied. (Ripoll, 2001) is only partially focused
on tasks jitter measurement under RTLinux, but it can provide at least a starting point. More
details on yet existing approaches were found in (Proctor, 2001), and (Dougan, 2004). Taking
these approaches and experience into consideration, a model architecture design has been
approached.
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3. Designed measurement methods

As it has been yet mentioned before, the real-time task and the operating system resources
are mere abstractions, and the overall architecture including hardware must be taken into
consideration. Hence, the effort has been focused not on the formal approach only, but on its
applicability as well. A measurement architecture (a control system model) has been
designed and realized. The design has been intended tightly connected with an application
study. Therefore, it can be assumed, that obtained results will be useful for engineering
practice.

3.1 Generalized data acquisition program

The multi-purpose real-time system is typically used in applications, where both real-time
and non-real-time tasks co-exist in one computing system. Many of these applications are
interfaces between dedicated real-time and non-real-time IT levels. As a representative case,
a data acquisition system has been chosen. Based on that case, a model architecture has been
created. The data acquisition system has been reasonably simplified, generalized, and
extended with additional diagnostic timestamp outputs.

The obtained model architecture (fig. 3) contains and integrates resources, which make
possible to apply a defined workload to the system, as well as to measure, how the
workload task is executed on the system. Its core part is a model of a real-time task, named
RT-golem.

el thme task space Maon-renl Ume task space
| Data Processing Progranm ‘
T golem ISR T golerm ‘_Hﬂlﬁ!"]ﬂ;' Lainwix kermnel
periodic task e
F — o B | e ——
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Fig. 3. RT;golem architecture

The RTLinux microkernel creates two separate software areas. First, it is a real-time space
(compare fig. 2), in which real-time tasks run. Second, it is a non-real time task space, which
contains the non-real-time Linux kernel space, and the Linux application space. (As it has
been yet noted (see section 1), the real-time task space is realized inside the kernel space,
and barriers between the two task spaces are realized by software means only). The RT-
golem contains a periodic task, and an interrupt service routine. The periodic task
represents the generalized data acquisition task, which in each instance measures its starting
time and its finishing time, and sends the time stamps to a mass storage device (a hard disk).
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In general, it would be possible to process the values either online, at the time in which they
were being produced, or offline, after the simulation has been finished. The RT-golem
operation creates a basic load in the system. Both theory and experience require testing
under load, however, on certain PC hardware architectures, more jitter has been observed
under less workload (Proctor, 2001). Hence, it has been decided to minimize the inevitable
basic load caused by the measurement device as possible, and the offline data processing
has been used. RTLinux itself does not provide a resource, which makes possible to access
hard disk directly. Therefore, data has to be transferred from the real-time space to the non-
real-time space first, and it can be stored to the hard disk using standard Linux API kernel
calls then.

The interrupt service routine (ISR) is designed to support the ISR latency measurement. For
the ISR latency measurement, a new method has been designed (Moryc, 2007). It is called
the saturation method.

3.2 Interrupt latency measurement

Interrupt latency is one of the most important real-time system characteristics, as it describes
the system ability to react to (and upon) unplanned conditions. A saturation method has
been designed for measuring interrupt latency (see fig. 4). A rectangle-wave signal from a
precise X-tal driven signal generator enters the system hardware input and triggers an
interrupt request. The request is further processed by the system, and at the end, the control
is given to the interrupt service routine. As the input signal is periodic and its period is
stable, the interrupt service routine is run periodically, and it is possible to observe a time
interval between two successive ISR routine starts, and its jitter. When the incoming
interrupt rate is boosted, the time between two successive ISR routine starts decreases, until
the saturation point is reached. Then, the minimum time between two successive ISR starts
equals to the interrupt latency. It consists of latency times caused both by hardware and
software resources. Since the saturation presents the maximum IRQ rate load on the
measured system that it is capable to accept, the method is expected to provide comparable
results across various hardware platforms.

l#"l f —

4 l"?l--

AT 8 drman

Fig. 4. ISR latency saturation method
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3.3 RT-golem development and evaluation
The model architecture design and development process had been iterative, and the model
had been verified after each step had been finished. Analyzing the verification results, it has
been recognized, that a measurement tool, which encompasses the whole range of typical
RTLinux resources and provides a deeper insight, is needed. Based on the RTLinux analysis,
the following important RTLinux characteristics have been identified:

* scheduler precision (measured as task starting time jitter),

* interrupt latency time,

* execution time of typically used API services,

*  pipe write and read operations,

* shared memory write and read operations,

e thread switching time, and

* I/O port read and write access time.
(The I/O access is included here, as it presents the basic (and sometimes the only) method of
communication with many I/O cards. Nonetheless, it shall be avoided as possible, as it
bypasses the operating system, which causes a potential for significant problems.) During
the iterative design and development process, the RT-golem has been evolved from a mere
data acquisition task to an advanced measurement tool. The advanced version of RT-golem
consists of a periodic task, and an interrupt service routine. The periodic task includes two
threads. It is possible to set priority and period of both threads, as well as to disable one or
more parts of the task. This way, it is possible to balance the workload that the RT-golem
causes inside of the model architecture.

4. Experimental setup

A set of measurements has been designed and performed. The periodic task starting time
and finishing time jitters have been measured, under different system workload conditions:

* Dbasic load (operating system kernel, standard daemons, RT-golem test task),

* Dbasic load and additional non-real-time load (routine that copies short files),

* Dbasic load and additional real-time load (additional 15 RT-golem tasks).
on two test systems (see tab. 2) :

e PCDell GX 280,

* PCnoname.
The source code of the RTLinux scheduler contains a comment suggesting that this
scheduler should not be used for scheduling more than 10 tasks. For the verification of the
scheduler behavior, an experiment was designed, where the system is heavily loaded with
additional 15 RT-golem workload tasks, and the RT-golem test task jitter is measured. The
additional 15 RT-golem tasks have been configured that way, they have created maximum
acceptable load for the system, that is, the highest load at which the Linux kernel yet does
not report lost timer interrupts.

Experimental results are given and discussed in details later (see section 6, Experimental
results discussion, and section 9, Conclusion and future work). Briefly, they have shown,
that:
* The implemented simple RTLinux scheduler manages to handle more tasks than it
was suggested by its authors.
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* The Linux kernel operation increases the amount of internal RTLinux microkernel
signals, which in turn increases the RTLinux microkernel latency. This influence is
measurable and significant.

* The influence of the hardware on the real-time characteristics of the operating
system virtual resources is measurable and significant.

*  Thejitter values can be sorted by their amplitude into classes (Proctor, 2001).

Operating system
Linux kernel v.2.2.19
RTLinux microkernel |RTLinux Freev. 3.1

Hardware

PC DELL GX 280
CPU Intel P4 at 3.0 GHz, 1 MB of L2 cache
RAM 1024 MB (only 64 MB used by Linux)
HDD SAMSUNG SV0842D, 75 GB,SATA

WDC WD800JD-75]NCO0, 8 GB, ATA-66

PC no name

CPU Intel P4 at 2.4 GHz, 32 K of L1 cache

mainboard MSI 865 PE Neo2-P

RAM 256 MB (only 64 MB used by Linux)

HDD Seagate Barracuda ST3800114A, 80 GB, ATA-100

Maxtor WDC WD100EB-00BHFO0, 10 GB, ATA-66

Table 2. Test systems details

5. Win-golem, a RT-golem port to MS-Windows

After the RT-golem method has been evaluated by experiments, it has been required to port
it to another target environment, based on Microsoft Windows and RTX for Microsoft
Windows Real-time Extension, and to perform comparison of both real-time environments
(RTLinux and RTX for Microsoft Windows).
First, the new intended target platform had been analyzed. The RTX microkernel is similar
to the RTLinux microkernel in functionality, but different in realization. RTX is a proprietary
solution, hence we have to rely on its description supplied by the vendor (Cherepov, 2002).
The RTX microkernel supports real-time tasks, which are called RTSS (real-time subsystem)
threads. It is interconnected with the Windows kernel via two access paths. The first access
path is created in the Windows HAL, and the second one is the interface for connecting
device drivers. Basically, it is necessary to modify the Windows HAL, because:

* interrupt isolation between the Windows kernel and the RTSS threads has to be

added,

* high-speed clocks and timers need to be supported,

e shutdown handlers need to be provided.
The two interconnection points between Windows kernel and RTX microkernel mentioned
above make possible to realize connection between the RTX microkernel and the Windows
kernel, providing the same functionality as the interface between the RTLinux microkernel
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and the Linux kernel (compare fig. 4, fig. 5). The communication interface between
Windows and the RTX kernel implements a low-latency client-server mechanism, which
includes both buffers and Service Request Interrupts (SRI). Due to the communication
interface, a subset of Windows application programming interfaces (API) services is callable
from within a RTSS thread. It includes APIs for storing data to file, thus real-time pipes are
neither needed nor available in the API services set. However, we can reasonably suppose,
that similar IPC mechanisms are necessary to provide similar functionality, no matter
whether they are hidden for the programmer. Some of the Windows APIs available from the
RTSS threads are listed as non-deterministic, i.e. they can cause significant jitter when called
from a RTSS thread. High-speed (and high resolution) clocks are needed for realization of
precise real-time timers. Within a RTSS thread, time is recognized with 100 ns step and
resolution. Shutdown handler is a mechanism delivering more robustness to the real-time
RTSS subsystem when the Windows subsystem is crashed or regularly shut down.
It can be summarized, that following significant differences from RTLinux exist:
* no real-time pipes or their equivalents are available in the API service set,
* it is possible to call a subset of Windows API services directly from a RTX (RTSS)
real-time task,
* time is recognized with 100 ns resolution,
*  Windows-controlled interrupts are masked while the RTX (RTSS) real-time task
runs,
* a real-time interrupt routine has two mandatory parts, which can be seen as the
upper and bottom ISR part,
* itis possible to implement a shutdown handler as the last resort resource.

Real-thme task space Non-real thme task space
Win-golem Win-golem
ISR periodic task
1 | .
: ; acheduler
Windlows Kernel | A
o .
RTX |Resbtime — oo o~ ¥ Windows
HAL | Extenslon | soliedilor J Hardware Abstraction Layer
a4 inberrupl " Hardware __f'li.-i-;‘_ [
v request o z |

Fig. 5. Win-golem architecture

As the RTLinux and RTX operating environments are functionally similar and their key
resources are almost the same, it can be supposed, that the RT-golem architecture design can
be adapted for the jitter measurement in the RTX operating environment as well. After the
target environment analysis had been performed, the realization issues have been
approached. The RT-golem is written in C language, thus it should be easily portable.
Nonetheless, both the environments contain many non-portable extensions, and as a result,
the design had to be partially re-written. The RT-golem task re-written for the RTX
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environment is called Win-golem. For the RTX environment properties evaluation, it has
been used the same experimental setup as described in section 4 (Experimental setup).

6. Experimental results

Experimental results are given below. For the evaluation, hundreds of data sets and graphs
have been used, but here only a handful of them, which contains typical or interesting cases,
is meaningful to be presented. The graphs are often arranged in pairs for easy comparison.
(In the pair, the left graph is referred to as fig. x a, while the right graph is referred to as fig.
x b.) There are presented relative starting time (RST) graphs, relative finishing time (RFT)
graphs, and statistical evaluation graphs. Relative starting time is the time when the given
instance of a periodic task starts, measured from the previous instance starting time.
Because of the relative starting time definition given above, the relative starting time jitter
graph consists of spikes oscillating up and down around the nominal value (fig.6, fig. 7).

¥ 3
I --------- >
1 | I 1 i
- et 41—" — = -
RET, HAT, RET, R5T,

T - period (relative starting time (RST) nominal value
RST1,..RSTn - relative starting time of the 1-st,..n-th instance

Fig. 6. Relative starting time measurement

The instance's relative finishing time is measured from this instance's relative starting time. The
statistical evaluation graphs present statistical measures comparison bar graphs, showing mean
vs. median comparisons, and standard deviation vs. interquartile range (IQR) comparisons. The
graphs provide useful information on typical values as well as outlying values importance in the
sample, but further statistical evaluation could be needed (see section 7.2).

7. Experimental results evaluation

7.1 Intuitive evaluation

It can be concluded from the presented experimental results, that the benchmark periodic
task relative starting time jitter (kernel latency jitter) is significantly lesser on the RTX-based
measurement architectures, than on the RTLinux Free-based architectures (fig. 7, 9, 13). The
median of the task finishing time is approximately the same within the applied range of test
architectures and workloads. Under RTLinux Free, the port write time median value is ca.
15% less than the port read time median value, but under RTX both medians are the same
(fig. 11). Similarly to the task starting time, task finishing time shows lesser jitter on the RTX-
based architectures (fig. 8, 10, 14). Evaluating the RTLinux Free-based measurement
architecture, it has been observed on the graphs presented above, that most of the jitter
instances are near the best-case values, but sometimes significantly higher spikes occur.
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Fig. 7. RT-golem and Wm—golem results comparison: periodic task starting time, PC Dell,
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Fig. 8. RT-golem and Win-golem results comparison: periodic task finishing time, PC Dell,
basic workload only
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Fig. 9. RT-golem and Win-golem results comparison: periodic task starting time, PC Dell,
basic and additional workload (copying files)
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Fig. 10. RT-golem and Win-golem results comparison: periodic task finishing time, PC Dell,
basic and additional workload (copying files)
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Fig. 11. RT-golem and Win-golem results comparison: execution time means vs. medians,
PC Dell, basic and additional workload (copying files)
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Fig. 12. RT-golem and Win-golem results comparison: execution time standard deviations
vs. interquartile ranges, PC Dell, basic and additional workload (copying files)
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Fig. 13. RT-golem and Win-golem results comparison: periodic task starting time, PC no
name, basic and additional workload (copying files)
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These spikes can form typical patterns (relative starting time measurement, fig. 7a, 13a), or
can be observed randomly (fig. 10a, fig 14a), but in any case their amplitude is typical for the
underlying system layers. Evaluating the RTX and Windows-based architecture,
significantly less spikes have been found (fig. 7b compared to fig. 7a, fig. 13b compared to
fig. 13a), or none at all.

Last but not least, interrupt latency measurements have been evaluated (see fig. 15). On the
left frame (fig. 15 a) can be seen the ISR starting time jitter at input signal frequency of
10kHz, while the right frame (fig. 15 b) provides the ISR starting time graph at input signal
frequency of 650 kHz, when the saturation condition is reached. In both cases, the same
hardware (PC Dell) as well as the same operating system (RTLinux) has been used.
Apparently, the load conditions are very different, but the observed spikes have the same
amplitude of ca. 25 msecs. It can be concluded, the spikes are independent on the workload,
and they characterize the measurement architecture.

7.2 Statistical evaluation

Background

All task jitter instances that occurred or will occur in given measurement architecture under
given load are considered a population, and measured task jitter instances represent a
known sample drawn from this population. It can be formulated a null hypothesis about the
population, that the population can be described with given distribution, as well as the
alternative hypothesis to the aforementioned null hypothesis. Then, it can be tested, whether
it is reasonable to reject the alternative hypothesis in favor of the null hypothesis. If it has
been not possible to reject the alternative hypothesis, it could be expected, that the null
hypothesis is valid and true, but it is not possible to be ever sure of that, because of type I
and type II errors existence. The type I error (a, significance level) means the probability that
the true null hypothesis is rejected in favor of the false alternative hypothesis, while the type
IT error (B) means the probability that the false null hypothesis is not rejected in favor of the
true alternative hypothesis. Unfortunately, it is not possible to minimize both the type I and
type Il errors simultaneously. In engineering applications, usually it is chosen a=0.05. When
the resulting  value is not sufficiently low, it can be lowered by changing the test statistic
used, or by drawing larger sample from the population.

Application

The instances of a real-time task shall be started in intervals specified by the task period, and
not affected by previous system state or by previous system activity. Thus, they shall be
independent to each other. If they can be described with Poisson distribution, they are
sufficiently independent to each other. It has been formulated the hypothesis, that the task
instance starting times follow Poisson distribution, and the hypothesis has been tested using
x? test. Results are given in table 3.
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workload applied X2 test result
basic load and additional RT load Ha rejected in favor to H,

basic load and additional non-RT load  [Ha not rejected

Ho : The task instance starting times follow Poisson distribution.
Ha : The task instance starting times do not follow Poisson distribution.
Significance level: a=0.05.
Measurement architecture: PC Dell GX 280 (see tab 2.), RT Linux
Table 3. x2 test results

8. Feasibility Study

Based on the outcomes, it has been designed and realized a data acquisition system for
physical model of a steel flow in an interladle.

flow pressure
SENSOr SENsor £as in

— T e

Steel Mow
Simulation Device

measuremenl  vizuahization
RT-Lanux

Fig. 16. Steel flow model

In the model, the steel flow is simulated by a gas flow in a liquid environment. The data
acquisition system consists of

=  pressure and flow rate sensors,
. measurement subsystem,
*  control and visualization subsystem.

It is required by the end-user, that both the gas flow and the gas pressure are acquired once
per two microseconds, with maximum tolerance of +/- 100 psecs. The control and
visualization subsystem shall provide:
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=  control of the measurement subsystem via rcmd utility,

* graphical presentation of currently measured values,

» graphical presentation of previously acquired values stored in database.
At the beginning of the design process, it has been intended, that the measurement sub-
system will be built using industrial PC (Pentium P2 Celeron 333 MHz), and ICP-DAS 823
A/D card, which were available.
Most of the design and verification effort has been concentrated on the measurement
subsystem, as the subsystem contains the core of the design, and has to meet relatively strict
deadlines. At early design stages, it has been concentrated on the question, whether the
intended hardware will fit the deadline specifications. Series of simulations have been
performed using the RT-golem architecture ported on the target hardware. The task has
been configured as close to the intended target design as possible, and various workload
conditions have been used to get the possibly most adverse results (see fig. 17, the blue, red
and yellow curves). It is commonly supposed, that the worst jitter is produced when the
system is heavily loaded, but due to cache loading and flushing effects, the system behavior
under lower workloads needs to be examined too (Proctor, 2001).

Relative Task Starting Time
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b restance
blue - RT-golem, basic workload only

red - RT-golem, basic and real-time workload

yellow - RT-golem, basic and non-real-time workload
cyan - Steel flow model realization, real workload

Fig. 17. Steel flow model: measurement task relative starting time jitter, simulation vs.
realization

The control of the measurement system is realized using the rcmd protocol, as both the
computers are connected with a cross-wired Ethernet cable in secure environment. The
measured data messages delivery is realized using the Microsoft Server Message Block
(SMB) protocol.

The control and visualization subsystem ensures experiment control and supplies results
visualization. Its typical latency has been stipulated to meet a common human reaction time
(which is not less than 200 msecs). The visualization subsystem displays flow vs. time and
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pressure vs. time online graphs. Its design consists of two periodic threads, the first one
timed at sample rate, and the second one timed at display rate. It is necessary to adjust both
the sample and display rates on the given hardware to achieve optimum performance. On
the used Dell notebook (Pentium 4 Celeron at 2.4 GHz), the sample rate has been set to 10
msecs, while the display rate has been set to 100 msecs.

During the commissioning process, ca. 100 measurements were made under various
possible working conditions specified, and the measurement and visualization system has
been found meeting the requirements (see fig. 17, the cyan curve).

9. Conclusion. Future work

9.1 Results discussion

It can be supposed, that the significant worst-case jitter spikes observed in the experiments
with RTLinux Free are caused by cache writing and flushing effects. (Proctor, 2001)
suggested the same conclusion, what can be seen as another argument supporting this
opinion. But, as the measurements are performed on the top of the hardware and software
stack, and the virtual resources presented to the measurement task by the operating system
API services are quite distant to the resources presented to the operating system by the
hardware (more precisely, by the part of the operating system realized in hardware), it is not
possible to validate such hypothesis by methods described here. The mere absence of this
phenomenon on both test architectures using the RTX operating system can imply, that the
RTX microkernel prevents the hardware from flushing the cache arbitrarily. Moreover, some
further tracks can be given. (Cherepov, 2004) notes that video drivers are the most cache
demanding part of the Windows operating system, and in the RTX platform evaluation Kkit,
video is used as a workload. Video is a real-time task as well as a RTX microkernel (RTSS)
task. Thus, the conflict between a video and a real-time RTSS task can be seen as the conflict
between two real-time cache-demanding tasks, which can lead to swapping the RTSS task
code out of the cache. Unfortunately, the RTX microkernel source code is not freely
available, and therefore it is not possible to verify the tracks given above with the code
analysis. However, the aforementioned discussion can suggest, that the mechanism of
locking the real-time code in the hardware cache is worthy to be studied and implemented.

9.2 Applicability in engineering practice

In most today applications, it is used a PLC for technology control or data acquisition, and a
PC with the Microsoft Windows for data visualization. However, a fully PC-based
technology control and visualization system can be considered as well. In the present time,
RTLinux and RTX-based control system solutions are yet recognized by business vendors
(e.g. Siemens WinAC platform). The published method of jitter measurement in
multipurpose real-time systems has been successfully applied, and it is ready to be used in
similar designs.

9.3 Vision. Future work

The outcomes of the published work are going to be used in Experimental real-time
database testing system (see Acknowledgement below). The proposed benchmark methods
yet have been used to evaluate possible platforms for the real-time database realization, and
two more applications are intended:
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*  RT-golem port on QNX,
* design and realization of a communication architecture, which makes possible to
measure time needed for various TCP/IP communication steps and phases.
It can be suggested, that real-time databases will present an interesting field of study.
Applications in flight supporting devices, mobile communication devices, speech
recognition systems, and many other areas can be foreseen.
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