We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

24

Portable ID Management Framework for Security
Enhancement of Virtual Machine Monitors

Manabu Hirano?, Takeshi Okuda?, Eiji Kawai?,

Takahiro Shinagawa?, Hideki Eiraku?, Kouichi Tanimoto?,
Shoichi Hasegawa?, Takashi Horie?, Seiji Mune?, Kazumasa Omote?,
Kenichi Kourai®, Yoshihiro Oyama¢), Kenji Kono?”, Shigeru Chiba?¥,
Yasushi Shinjo?, Kazuhiko Kato?, and Suguru Yamaguchi?

) Toyota National College of Technology,

2 Nara Institute of Science and Technology (NAIST),

3) University of Tsukuba, ¥ Japan Institute of Science and Technology (JAIST),
5 Kyusyu Institute of Technology, © The University of Electro-communications,
7) Keio University, 8 Tokyo Institute of Technology,

9 National Institute of Information and Communications Technology

Japan

1. Introduction

Most governmental and commercial organizations are processing a massive amount of data
everyday. In such organizations, end-users' computers are physically distributed and they
can be moved outside of organizations. Therefore, it is difficult to monitor, and enforce
security policies to these distributed end-users’” computers. Although a security
administrator in organizations can install monitoring software, an end-user can remove and
bypass this kind of software on conventional operating systems. Most existing commercial
operating systems cannot enforce a mandatory security policy to end-users. This chapter
shows a security policy enforcement mechanism based on a virtual machine monitor
(VMM).

A VMM is a technology to encapsulate an operating system, which was originally
developed for mainframe computers like IBM VM/370 (Seawright & MacKinnon, 1979).
Original VMM mechanism was intended to support legacy software of mainframe
computers in new hardware. An ideal VMM technology provides complete isolation of
virtual machines (VMs) (Madnick & Donovan, 1973). This feature enables us to separate
domains with different security levels in a same physical machine. A layer of a VMM can,
without modifying a guest operating system, provide useful and strong security functions
transparently for client and server computers. We call this kind of VMM system ““a secure
VMM'". A concept of a secure VMM is useful to insert a security layer without modifying
existing operating systems. In this chapter, we use terms, both VMM and hypervisor, to

www.intechopen.com

478 Engineering the Computer Science and IT

express this mediation software. In particular, a hypervisor means a bare-metal VMM which
does not need a host operating system.

In recent research, some VMM systems designed for security-purposes have been proposed
as follows.

sHype. sHype (Secure Hypervisor) (Sailer et al., 2005) is developed by IBM Research. The
purpose of the sHype project is to construct a secure foundation for server platforms. sHype
provides an access control and an isolation mechanism of virtual resources in hypervisor
software. sHype is intended to provide a mandatory access control (MAC) for inter-VM
communication of server VM coalitions. sHype is implemented on Xen hypervisor and
rHype (Research Hypervisor). sHype implementation supports some major security policy
mechanisms such as Chinese wall policy and the simple Type Enforcement (TE) policy.
Main components of sHype are an access control module for virtual resources and inter-VM
communication, hypervisor mediation hooks, callback functions and a policy management
VM.

NetTop. NetTop is designed by NSA (Meushaw & Simard, 2000). NetTop is constructed
with commercial off-the-shelf technology, VMware products and SELinux as a host
operating system. NetTop provides security mechanisms using isolation of VMs, and it is
based on reliability of a host operating system and VMM software. NetTop project also
states the importance of trusted BIOS because all host platform security is dependent on an
initial boot-up process. NetTop can provide a transparent VPN VM and a Filtering VM to
protect and filter communication channels of end-users’” OS like Microsoft Windows.
NetTop is intended to be deployed in a governmental environment. NetTop also provides a
secure data transfer mechanism, called the “Regrade” server protocol, between two VMs
with different security levels. The regrade server achieves data transfer based on a token-
based user identity and a regrade policy. It can also check and sanitize malicious content,
and record audit logs. NetTop also provides a transparent storage encryption service.

Terra. Terra architecture provides a trusted virtual machine monitor (TVMM) that isolates
and protects each virtual machine (Garfinkel et al., 2003). Terra architecture is designed to
construct a trusted computing platform based on a VMM technology. Terra architecture
supports a remote attestation mechanism to establish a trusted path. The trusted path is
achieved by attestation certificate chains for BIOS, a boot loader and a VM image. Terra also
supports an encrypted disk and an integrity-checked disk in the VMM layer. A prototype
implementation of Terra architecture employs the VMware ESX server product and python
scripts.

BitVisor. We are developing novel secure VMM software called BitVisor (Shinagawa et al.,
2009). The first version of BitVisor has been released to the public in March 2008. BitVisor
has been developed by 6 universities and college, companies with the help of NISC
(National Information Security Center), Japan. BitVisor can be downloaded as complete
source codes. Developers can download and extend source codes of this novel security
software. BitVisor provides transparent security functions like a built-in IPsec-VPN module
with IKEv1 (RFC4301 and RFC2409) and a storage encryption module based on XTS-AES
algorithm (IEEE1619 standard) in the VMM layer. The IPsec-VPN module enables users to
establish VPN without modifying guest operating systems. The IPsec-VPN module provides

www.intechopen.com

Portable ID Management Framework for Security Enhancement of Virtual Machine Monitors 479

encrypted communication and mutual authentication functions between distributed end-
point computers and a VPN gateway. The transparent storage encryption function can force
the use of encrypted storages (ex. ATA hard disk drives and USB thumb drives) in end-
point computers to prevent information leak cases.

As described above, there are many secure VMM systems. This chapter presents a portable
ID management framework for secure VMM systems. The proposed ID management
framework provides useful services to VMM software. For instance, the proposed portable
ID management framework provides a user authentication function using PKI-based ID
cards and a user ID based authorization function for transparent security services in a VMM
layer.

In the following sections, we first describe a basic concept of a secure VMM. Then, we show
a design and a prototype implementation of the proposed portable ID management
framework for secure VMM systems. Then, we present our novel secure VMM software
called BitVisor and its integration with the proposed portable ID management framework.

2. Overview of Secure VMM Systems

Security frameworks using a VMM technology are based on an isolation mechanism of that
technology. Each VM works on same VMM cannot influence the other VMs. For this
mechanism, we can separate the purpose of each isolated VM. For example, one VM can
connect to the Internet, but another VM can restrict network connections except for intranet
accesses. NetTop takes this approach to reduce the number of physical machines for
different purposes and different security levels in a governmental environment. We can
construct isolated domains with different security levels as different VMs using the VMM
technology.

NetTop and Terra support a transparent storage encryption mechanism. The advantage of
this mechanism is that it does not require modifying the guest operating system. The secure
VMM layer can provide storage encryption and decryption automatically. Even a guest
operating system is attacked; an encryption key is not leaked - on the assumption that a
secure VMM layer is strongly protected from untrusted guest operating systems and other
malicious actions. NetTop also provides a transparent VPN function for guest operating
systems using a VPN gateway VM. It has the same effect as two physical separated
machines, an end-user machine and an administrator-controlled VPN gateway server
machine.

Figure 1 illustrates a basic concept of a secure VMM architecture. Secure VMM systems have
the following features: (1) thin, light-weight, and minimum overhead for security processing
with high performance and high testability; (2) a trusted bootstrap architecture and an
attestation mechanism for each component (e.g. BIOS codes, a boot-loader, VMM software
and VM images). We need a measured launch mechanism using Intel’s TXT (Trusted
Execution Technology) hardware, formerly known as LaGrande, and TPM (Trusted
Platform Module) chip to check software integrity at the boot time; (3) a strong isolation
mechanism for each VM; (4) a mandatory access control (MAC) function based on an access
control list (ACL) or a security policy (e.g. the Chinese wall policy and the Type

www.intechopen.com

480 Engineering the Computer Science and IT

Enforcement policy). The MAC function basically consists of a policy decision point (PDP), a
policy enforcement point (PEP; i.e. hook points for virtual/physical resources), and a policy
management function to update distributed policy files; (5) transparent security functions
like automatic storage encryption and encrypted communication channel using a VPN
function; and (6) a protection mechanism against run-time attacks to VMM software.

(3) Strong isolation of VMs
(6) Protection

mechanisms
Guest OS #1 Guest OS #1 Guest OS #1 against run-time
attacks
| VM #1 | VM #1 | VM #1 y
| *_I (2) Trusted bootstrap
v v __ VMM architecture
VMM core functions (measured launch
(resource mediation mechanisms for multiple VMs) mechanism)
v - <
(5) Transparent Hook points for | Policy manager | €
security > virtual/physical
functions resources [Policy decision point |
v
(4) MAC [Policy enforcement point
(1) Thin and light weight VMM | Accesses for physical TPM chip
vy hardware resources
Physical hardware Intel’s TXT hardware

Fig. 1. Basic concept of a secure VMM architecture

A key component of secure VMM systems is MAC functions. The secure VMM software can
control virtual/physical resources of each VM. In this chapter, the word resource refers to
devices like a NIC which handles network packets and a USB thumb drive which holds a
user’s data. As shown in Figure 1, secure VMM systems hooks 1/O data of these devices and
they enforce security policies in the PEP. The policy manager updates and validates a
security policy which is distributed by a central policy distribution server in an organization.
The PDP processes an authorization decision for VM operations and sends the result to the
PEP. Finally, the PEP enforces security policies based on retrieved authorization result.

The foundation of a MAC function is dependent on there being only one administrator that
can access a management function of a secure VMM system. We have to prevent that an
end-user cannot bypass the administrator-controlled secure VMM layer. Secure VMM
systems provides a policy enforcement mechanism for end-users” computers based on above
methods.

3. ID Management Problems in a VMM Layer

In existing secure VMM systems, a VM entity is identified by VMM software, and a secure
VMM enforces a security policy based on the each VM identity (VM ID). However, to
deploy a secure VMM system as a policy enforcement mechanism, we need to manage a
user-identity in a secure VMM system. Figure 2 shows access control models of a secure
VMM system. The figure (A) shows an access control model based on a VM ID only. The
figure (B) shows an access control model based on both a VM ID and a user identity (User

www.intechopen.com

Portable ID Management Framework for Security Enhancement of Virtual Machine Monitors 481

ID). In the latter case, secure VMM software first authenticates a user and identified her or
his user ID. Then, secure VMM software enforces a security policy using the user ID.

In the conventional system like the figure (A), a user authentication mechanism is still
dependent on a guest operating system (e.g. Windows Logon and UNIX-like OS’s password
mechanism). Conventional secure VMM systems cannot handle the mapping between a VM
ID and a user ID of a guest OS. From the usability and the security, ID management
mechanisms on multiple guest operating systems on multiple VMs are not efficient, because
the administrator have to maintain multiple user IDs on multiple guest operating systems
on each VM.

VM #1 VM #2 VM #1 VM #2
Accesses for virtual resources Accesses for virtual resources
Secure VMM Secure VMM
N N4
R O >
PEP Acizsssezlotl)'xntrol PEP / Secure VMM authenticates users
a VM ID only Access control based on
both a user ID and a VM ID
Accesses for physical resources Accesses for physical resources
A4 A4
(a) Access control based on a VM ID (b) Access control based on

a user ID and a VM ID
Fig. 2. Access control models of a secure VMM system

Secure VMM layer can provide many security functions transparently to upper guest
operating systems. Employing user identification and authentication in a VMM layer has
many advantages. First, a secure VMM will be able to control many VMM functions based
on a user ID, like a VM boot operation and disk encryption. Furthermore, access control of
virtual/ physical devices will be effective using an authenticated user ID because a security
administrator in most organizations prefers a user ID-based authorization, instead of a VM
ID-based authorization only. The user ID-based authorization also enables a secure VMM to
record audit logs based on the user ID. An audit log is an essential component of security
systems. Audit logs also achieve non-repudiation of users’ actions on an administrator-
controlled secure VMM system. In the following sections, we describe a method to integrate
a proposed portable ID management framework based on a PKI-based smart card (ID card)
into secure VMM systems.

4. Portable ID Management Framework for Secure VMM Systems

Figure 3 shows a design of the proposed portable ID management framework for secure
VMM systems. We assume that each employees of an organization has their PKI-based ID
cards. We mainly employ PKI technology to manage an employee’s identity of an
organization. For instance, governments in Belgium, France and many countries are
considering a national ID card system based on PKI to authenticate citizens’ identities. ID
management based on a PKI technology is growing in the public sector world wide. We

www.intechopen.com

482 Engineering the Computer Science and IT

show a method to integrate PKI-based authentication and authorization mechanisms into
secure VMM systems to enforce security policies for distributed end-users’ computers.

Our proposed smart card stores the secure VMM application we developed. Middleware
layers in a secure VMM system support PKCS#11 APIs, PC/SC (Personal Computer/Smart
Card) APIs, and the minimum cryptographic APIs. The proposed portable ID management
framework libraries also include a USB CCID (Chip/smart Card Interface Devices) device
driver for generic smart card readers. The secure VMM ID management library provides
user authentication functions based on PKI-based ID card and authorization functions based
on a security policy. The proposed ID management framework libraries also provide a
standard ID/password authentication API. These functions can be used to authorize VM
operations based on an authenticated user ID.

I:l ID management framework libraries
VM
VM boot management Data area to be protected
/] VMM Secure VMM Smart card
operations
pep N
(Security hooks User 1D hased N User ID based authorization t
for 1/0 devices) authorization Secure VMM .
- - / ID management library w PKCuser PrivateKeyuser
Security policy p
enforcement and Pﬁ)cs #11 < PKCsv z g
access control LOEALY E :
v ncryptionKeys AuthKeys
for I/0 devices PC/SC @
library v
$torag§ USB CCID CRLsvm Secure VMM
e\%??&f&;:s smart card driver application
A\

Smart card communication channel via a smart card reader (APDU exchange)

Fig. 3. Design of the portable ID management framework for secure VMM systems

In addition, the secure VMM software can enforce storage encryption/decryption services
to guest operating systems transparently. An encryption key (EncryptionKeyusgr) is stored
in the user’s smart card. Secure VMM software encrypts and decrypts storages using the
encryption keys. Each encryption key is associated with the user’s identity. Therefore, an
attacker without a valid smart card cannot decrypt a user’s storage. Secure VMM software
also provides a VPN service in hook points of a physical NIC device. PKI-based
authentication functions can be used for the initial user authentication between a user’s
machine and a VPN gateway machine.

Figure 4 shows the details of user authentication of the proposed ID management
framework. The user authentication function employs a simple challenge and response
mechanism. First, a user inputs a PIN number of her or his smart card, and the smart card
authenticates the user. Then, authentication data are exchanged between the smart card and
the ID management framework libraries in secure VMM software. Secure VMM software
sends a challenge as R, and the smart card then returns the user’s Public Key Certificate
(PKCuser) and the signature of R ({R}user) generated by the user’s private key
(PrivateKeyusgr). The ID management framework libraries validate retrieved PKCysgr using

www.intechopen.com

Portable ID Management Framework for Security Enhancement of Virtual Machine Monitors 483

a trust anchor certificate for a secure VMM (PKCsym). The ID management framework
libraries check certificate revocation status by a Certificate Revocation List (CRLgywm). If the
authentication is successful, then a secure VMM will be able to enforce security policy based
on a user ID in the secure VMM layer. As a result, administrator-controlled secure VMM
software with the ID management framework libraries provides the fundamental part of an
end-point policy enforcement mechanism in an organization.

ID management
framework libraries Smart card User
in secure VMM software

PIN authentication

sends a challenge, R -

A\

N

PKCsvm
returns a signature {R}user PKCuser
and PKCuser

CRLsvm N z

PrivateKeyuser

returns an authentication result

\ 4

Access control

based on User operations over the secure VMM software

an authenticated
user ID

N

Fig. 4. User authentication between the ID management framework libraries and a user

5. Implementation of the Portable ID Management Framework Libraries

We have implemented the portable ID management framework libraries shown in Figure 3.
Table 1 shows the hardware and software environment for the implementation. Because the
portable ID management framework libraries have middleware software and device drivers
completely, the libraries can run on the hardware directly without the help of operating
systems and specific external libraries. As a result, we can integrate our portable ID
management framework libraries into any VMM and hypervisor software. We employ
eLWISE smart card manufactured by NTT Communications. The eLWISE smart cards are
employed as Japanese national ID cards (i.e. the Basic Resident Register system in Japan).
We have implemented secure VMM libraries compatible with PKCS#11 interfaces. We have
merged our portable ID management framework libraries with BitVisor.

6. BitVisor

In section 1, we have described BitVisor briefly. BitVisor is a bare metal hypervisor. In the
following sections, we use not VMM but hypervisor because BitVisor does not need host
operating system. For the same reason, we also use not secure VMM but secure hypervisor in
the following sections. BitVisor employs CPUs and chipsets supporting Intel Virtualization
Technology (Intel VT) or AMD-V. We have presented a detailed design and implementation
of BitVisor in the previous paper (Shinagawa et al., 2009). BitVisor supports both 32 bit and
64 bit mode. Current version of BitVisor can run Windows XP/Vista, Linux, and FreeBSD as
a guest OS. BitVisor can run only one guest OS at the same time. However, BitVisor achieves
very small code sizes and light weight performance. These characteristics are suitable for a

www.intechopen.com

484 Engineering the Computer Science and IT

foundation of security policy enforcement. This section shows highlights of BitVisor
architecture.

Smart card NTT Communications eLWISE
(ISO/IEC 14443 and 7816)
Smart card reader Axalto Reflex USB v3
(ISO/IEC 7816)
PC Intel VT or AMD-V support
Hypervisor BitVisor
Compiler gcc

Table 1. Software and hardware used in the implementation

First, why do we need to develop a novel hypervisor for security purpose? The purpose of
BitVisor is to provide a foundation of security policy enforcement for end-point client
computers. There are several implementations of general-purpose hypervisors like Xen and
VMware. Although these hypervisors provide general purpose and stable VM execution
environments, they are not specialized for security purpose. BitVisor is originally designed
for security purpose. If a hypervisor has vulnerabilities, attackers compromise the
hypervisor and gain the control of the secure hypervisor software. Therefore, we have to
prevent attacks to hypervisors. In general, the large code size of hypervisor causes poor
testability and much vulnerability. For instance, VMKernel of VMware ESX server has 200
KLOC (Kilo-lines of codes) (VMware, 2005) and Xen hypervisor has 100 KLOC (Murray et
al., 2008). BitVisor (version 0.8) has only 30 KLOC. BitVisor employs a two-step execution
mechanism to reduce the code size of core hypervisor (Hirano et al., 2009). Thin hypervisors
like BitVisor provide the low risk of vulnerabilities and high testability.

-=%» Pass-through I/O

Guest OS — Intercepted I/O
Device drivers
i
T TE
' Datal/Oand BitVisor
: Control I/0 Policy enforcement based
| v on each security policy and |
: Parapass an authenticated user ID. [Security
H tht*.ough € services
' drivers
' e o
' —
)
1
|
v v
| Hardware |

Fig. 5. Parapass-through architecture of BitVisor

Figure 5 shows basic architecture of BitVisor. BitVisor employs parapass-through
architecture to process I/O devices. In this architecture, most accesses from a guest OS are
passed through BitVisor simply. Therefore, it can provide high performance like native
hardware. Some I/O data from specific devices are intercepted by parapass-through drivers.
BitVisor can hook I/O data and apply security policies in conjunction with the parapass-
through drivers. BitVisor can enforce security services like a storage encryption function and
a VPN function based on each security policy. Intercepted I/O are divided into data I/O

www.intechopen.com

Portable ID Management Framework for Security Enhancement of Virtual Machine Monitors 485

and control I/O. BitVisor can intercept control I/O and record it to audit logs in the
hypervisor layer. BitVisor can intercept data I/ O to inspect and encrypt them.

A parapass-through driver of BitVisor has essential codes only to enforce security services.
A device driver on the guest OS executes most tasks other than security processing.
Therefore, a parapass-through driver can keep the small code size. To employ a new device
to monitor and encrypt, BitVisor needs this small parapass-through driver and its security
service library only. Other general purpose hypervisors need much larger code sizes of the
new device because of its architecture.

BitVisor also intercepts memory accesses using shadow paging to isolate memory area o f
each device. BitVisor employs a novel scheme called shadow DMA (Direct Memory Access)
descriptors. Shadow DMA descriptors enable us to intercept data transferred by a DMA
mechanism. By employing shadow DMA descriptors, we can prevent attacks using a DMA
mechanism from guest OSs.

shtab=Bx1d {398

Fig. 6. Start screen of BitVisor

Figure 6 shows a start screen of BitVisor. BitVisor has been developed by 6 universities and
college, and many companies with the help of NISC (National Information Security Center),
Japan. BitVisor can be downloaded from http:/ /sourceforge.net/projects/bitvisor/.

7. Integration of Portable ID Management Framework and BitVisor

We have integrated the proposed portable ID management framework libraries to BitVisor.
The portable ID management framework libraries are not dependent on other external
libraries and system calls of host operating systems. Therefore, we can integrate the ID
management framework libraries into BitVisor directly. The libraries can run with bare
metal hypervisors on the hardware directly without the help of host operating systems.

Figure 7 shows the relation between the proposed portable ID management framework
libraries and security services of BitVisor. The proposed ID management framework
provides the following functions to BitVisor: (1) a PKI-based user authentication function

www.intechopen.com

486 Engineering the Computer Science and IT

using smart card to start a BitVisor system (a simple ID/password authentication function is
also provided), (2) a storage function of encryption keys in smart cards (BitVisor provides an
XTS-AES storage encryption service), (3) a PKl-based user authentication function using
smart cards for IPsec-VPN/IKEv1 service, and (4) a periodical checking mechanism to verify
user’s presence. The final feature can be used to detect illegal physical access to the end-
point computers. If a user removes her or his smart card from the smart card reader,
BitVisor detects it and immediately shuts down the BitVisor system.

The portable ID management framework libraries support both contact and contact-less
smart cards (ISO/IEC 7816 and 14443) for BitVisor. As shown in Figure 3, the portable ID
management framework libraries are constructed as layered libraries. If other service
provider needs to handle other smart card and reader products, the provider has to develop
a new CCID driver. If a provider needs to customize partitions of smart cards, the provider
also has to develop customized PKCS#11 libraries.

Intel Pro/1000 NIC
parapass-through
driver

USB UHCI and MSDs
parapass-through
driver

ATA
parapass-through
driver

! vy |

Security service | Security service #2 | Security service #3
#1 IPsec-VPN with | XTS-AES storage ID management
IKEV1 encryption framework
[[L
. Other security services:
Core hypervisor M boot rmenagement,
policy enforocement, etc

Fig. 7. Portable ID management framework libraries and security services of BitVisor

8. Two-step Execution Mechanism for Thin Secure Hypervisors

This section shows a method to minimize the core portion of BitVisor software. A trusted
computing base (TCB) is a component to enhance the security of existing operating systems.
We employ hypervisors to construct a TCB. In general, the complexity of hypervisors is not
preferable to construct a TCB. Some researchers have proposed tiny hypervisors specialized
for security-purpose. Murray et al. propose a mechanism to reduce the complexity of Xen
hypervisor to construct a TCB (Murray et al.,, 2008). SecVisor is developed as a tiny
hypervisor that ensures code integrity for commodity OS kernels (Seshadri et al., 2007).
SecVisor has small code size, only 1,112 LOC (Lines of code), for the run-time portion using
CPU-supported virtualization. Xia et al. shows a small hypervisor called Palacious VMM
(Xia et al., 2008). Palacious VMM hooks I/O operations between device drivers on a guest
OS and physical hardware. The core of Palacious VMM has 20 KLOC and the additional
part to hook I/O operations has 10 KLOC. As described above, the code size of a TCB is one
of the important aspects to evaluate whether reliable security mechanisms or not.

We have proposed the two-step execution mechanism in the previous paper (Hirano et al.,
2009). Figure 8 shows the flow of the proposed two-step execution mechanism. Our
proposal is intended to reduce the code sizes of the run-time portion of BitVisor as possible.
Basic idea is simple, we separate a conventional hypervisor-based TCB into the following
two parts: (1) a thin hypervisor with minimum security services and (2) a special guest OS

www.intechopen.com

Portable ID Management Framework for Security Enhancement of Virtual Machine Monitors 487

for security preprocessing. Thus, we introduce an additional TCB domain for security
preprocessing as the special guest OS runs on a hypervisor.

We can move the many tasks from BitVisor to the special guest OS. For example, the special
guest OS can execute the following tasks before booting a target guest OS to be protected: (a)
a PKl-based user authentication function using a PKl-based smart card for VM boot
operations, and (b) an acquisition function of encryption keys for future encryption services
from a smart card, and (c) an acquisition function of user certificates for VPN services from a
smart card. We have also designed a data passing part between the special guest OS and
BitVisor using kexec system call of Linux OS. By employing the proposed two-step execution
mechanism, we have reduced approximately 8.5 % of LOC in run-time portion of BitVisor in
total. Especially, we have reduced 24.5 % of LOC of ID management framework libraries.

J— This line indicates entire TCB components

A special guest OS shuts down Guest 0S
for security preprocessing $| and boots to be
_ guest OS protected
[init program H A
| Linux kernel and RAM disk | Data Accesses via
assin parapass-through
T permits smart card P g drivers
reader connection only
boot N v
loader q Thin secure hypervisor (BitVisor with minimum security services) |
| |
| Hardware |
Timeline Step 1 | Step 2 ~
1 1 e

Fig. 8. Flow of the proposed two-step execution mechanism for thin secure hypervisors

To guarantee the authenticity of the special guest OS (the special guest OS consists of the
minimum Linux kernel, initial RAM disk and init program only), we can introduce a
measured launch mechanism based on a TCG extended boot loader (Sailer et al., 2004) like
TrustedGrub. We can also guarantee the authenticity of BIOS codes and the first part of TCG
extended boot loader using Intel TXT (Trusted Execution Technology) hardware and TPM
chip.

9. Future Direction

We have described a basic concept of BitVisor and its portable ID management framework.
From the perspective of IT resource management, these basic TCB components can be used
as a policy enforcement mechanism for distributed end-point computers in organizations.
Current version of BitVisor provides an XTS-AES storage encryption function and an IPsec-
VPN function to prevent information leak cases. We must consider further security services
to prevent information leak cases via other I/O devices. Policy management problem and
certificate management problem are also important to deploy the proposal to real
governmental and commercial organizations. Moreover, we need further on-site
verifications of the prototype implementation. We have to improve the source codes
continuously to prevent attacks to their potential vulnerabilities and increase the usability.

www.intechopen.com

488 Engineering the Computer Science and IT

10. Conclusion

This chapter has shown the portable ID management framework for secure hypervisors. We
have introduced an architectural overview of the novel secure hypervisor software called
BitVisor. We have shown the design and the prototype implementation of the portable ID
management framework libraries and BitVisor. The source codes of BitVisor including the
portable ID management framework libraries can be downloaded from the following web
sites, http:/ /sourceforge.net/ projects/bitvisor/ .

11. References

Garfinkel, T.; Pfaff, B, Chow, J.; Rosenblum, M. & Boneh, D. (2003). Terra: a virtual
machine-based platform for trusted computing, Proceedings of the ACM Symposium
on Operating Systems Principles, pp. 193-206

Hirano, M.; Okuda, T.; Kawai, E. & Yamaguchi, S. (2007). Design and Implementation of a
Portable ID Management Framework for a Secure Virtual Machine Monitor, Journal
of Information Assurance and Security, Vol.2, No.3, pp.211-216

Hirano, M.; Shinagawa, T.; Eiraku, H.; Hasegawa, S.; Omote, K.; Tanimoto, K.; Horie, T.;
Mune, S.; Kato, K.; Okuda, T.; Kawai, E. and Yamaguchi, S. (2009). A Two-step
Execution Mechanism for Thin Secure Hypervisors, In Proceedings of the 3rd
International Conference on Emerging Security Information, Systems and Technologies

Madnick, S. & Donovan,]J. (1973). Application and analysis of the virtual machine approach
to information system security and isolation, Proceedings of the workshop on virtual
computer systems, pp.210-224, ACM Press

Meushaw, R. & Simard, D. (2000). NetTop: Commercial Technology in High Assurance
Applications, National Security Agency Tech Trend Notes, pp. 3-9

Murray, D. G.; Milos, G. and Hand, S. (2008). Improving Xen security through
disaggregation. In Proceedings of the Fourth ACM SIGPLAN/SIGOPS international
Conference on Virtual Execution Environments, pp.151-160

Sailer, R.; Zhang, X.; Jaeger, T. and Doorn, L. V. (2004). Design and Implementation of a
TCG-based Integrity Measurement Architecture, In Proceedings of thirteenth USENIX
Security Symposium, pp.223-238

Sailer, R.; Jaeger, T.; Valdez, E.; Caceres, R.; Perez, R.,; Berger, S.; Griffin,]J. & Doorn, L.
(2005). Building a MAC-Based Security Architecture for the Xen Open-Source
Hypervisor, Proceedings of ACSAC 2005, IEEE CS, pp. 276-285

Seawright, L. & MacKinnon, R. (1979). VM/370 - a study of multiplicity and usefulness, IBM
Systems journal, pp.4-17

Seshadri, A.; Luk, M.; Qu, N. and Perrig, A. (2007). SecVisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes. In Proceedings of Twenty-First
ACM SIGOPS Symposium on Operating Systems Principles, pp.335-350

Shinagawa, T.; Eiraku, H.; Tanimoto, K.; Omote, K.; Hasegawa, S.; Horie, T.; Hirano, M.;
Kourai, K.; Oyama, Y.; Kawai, E.; Kono, K.; Chiba, S.; Shinjo, Y. & Kato, K. (2009).
BitVisor: A Thin Hypervisor for Enforcing I/O Device Security, Proceedings of the
2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
sEnvironments, pp.121-130

Xia, L.; Lange J. and Dinda, P. A. (2008). Towards Virtual Passthrough I/O on Commodity
Devices., USENIX Workshop on I/O Virtualization

www.intechopen.com

s Engineering the Computer Science and IT
Engineering the
Compuler Setence andil Edited by Safeeullah Soomro

ISBN 978-953-307-012-4

Hard cover, 506 pages

Publisher InTech

Published online 01, October, 2009
Published in print edition October, 2009

It has been many decades, since Computer Science has been able to achieve tremendous recognition and
has been applied in various fields, mainly computer programming and software engineering. Many efforts have
been taken to improve knowledge of researchers, educationists and others in the field of computer science
and engineering. This book provides a further insight in this direction. It provides innovative ideas in the field of
computer science and engineering with a view to face new challenges of the current and future centuries. This
book comprises of 25 chapters focusing on the basic and applied research in the field of computer science and
information technology. It increases knowledge in the topics such as web programming, logic programming,
software debugging, real-time systems, statistical modeling, networking, program analysis, mathematical
models and natural language processing.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Manabu Hirano, Takeshi Okuda, Eiji Kawai, Takahiro Shinagawa, Hideki Eiraku, Kouichi Tanimoto, Shoichi
Hasegawa, Takashi Horie, Seiji Mune, Kazumasa Omote, Kenichi Kourai, Yoshihiro Oyama, Kenji Kono,
Shigeru Chiba, Yasushi Shinjo, Kazuhiko Kato and Suguru Yamaguchi (2009). Portable ID Management
Framework for Security Enhancement of Virtual Machine Monitors, Engineering the Computer Science and IT,
Safeeullah Soomro (Ed.), ISBN: 978-953-307-012-4, InTech, Available from:
http://www.intechopen.com/books/engineering-the-computer-science-and-it/portable-id-management-
framework-for-security-enhancement-of-virtual-machine-monitors

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE BT ER G5 LiBEFFSRE KRS M AE4058 5T
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed under
the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0
License, which permits use, distribution and reproduction for non-commercial
purposes, provided the original is properly cited and derivative works building
on this content are distributed under the same license.

