We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

14

Templates for Communicating Information
about Software Requirements
and Software Problems

Mira Kajko-Mattsson

Department of Computer and Systems Sciences,
Stockholm University/Royal Institute of Technology
Sweden

1. Introduction

For years, the need and scope of software system and process documentation has been
heavily debated. Questions that have often been raised are whether one should document,
what one should document, how much and when. This debate has lasted for more than 30
years. Still, however, we do not have any clear answers. What we claim and what we have
always claimed is that both software system and software process documentation are very
important for allowing the software systems to live a long life. (Bauer and Parnas, 1995;
Briand, 2003; Card et. Al. 1987; Carnegie 1994; Clark et.al., 1989; Connwell, 2000; Cook and
Visconti, 1994, El Elman et.al., 1998; Hogan, 2002; Holt, 1993; Kajko-Mattsson, 2005; Kantner,
1997; Kantner, 2002; Martin and McCluer, 1983; Parnas, 2000; Pence and Hon III, 1993;
Rombach and Basili, 1987; Saunders, 1989; van Schouwen and Parnas, 1993, Visaggio, 2001;
Visconti and Cook, 2000; Visconti and Cook, 2002)

Recently, the debate regarding documentation has intensified. This is because “agile” voices
have been raised against extensive documentation (Beck, 2004; Cohn, 2006; Nawrocki, J et.al,
Jasinski, M., 2002). These voices advocate its sparse use and production. According to them,
documentation should be brief, however, precise enough to be useful within software
production. It should be limited to the core parts of the system. In its extreme case, it should
encompass only source code and a set of user stories. The remaining system structure may
be communicated informally, mainly orally. There may be no requirement specifications nor
design documents, or if there are any, then for the purpose of supporting the coding
activity.

The agilists” standpoint with respect to documentation has created confusion within the
software community. Right now, the software community has a problem of determining the
amount and scope of required documentation. Still, it cannot agree on issues such as (1)
what one should document, (2) how much, (3) when, and (4) for what purpose. Today, we
do not have any concrete answers. We only claim that we should document just enough
information for supporting the communication. But, how much enough is enough?

www.intechopen.com

262 Engineering the Computer Science and IT

In this chapter, we present two templates of information required for describing and
managing software requirements and software problems. We call them Software
Requirements Management Template (SRMT) and Problem Management Template (PMT). These
templates record information about the system to be developed or maintained and the
process managing the development or maintenance effort. The templates have been
evaluated within the industry in various parts of the world. Our goal is to establish
information that is needed for communicating information about software requirements and
software problems and the information required for their realization within a software
lifecycle.

The chapter is going to be structured in the following. Section 2 motivates why we need to
document. Section 3 describes the method taken to evaluate the SRMT and PMT templates.
Section 4 presents the SRMT template covering information required for communicating
requirements and their realization. Finally, Section 5 provides concluding remarks.

2. Why Do We Need Document?

Documentation, if correct, complete and consistent, has been regarded as a powerful tool for
software engineers to gain success. Its purpose is to describe software systems and
processes.

Good system documentation thoroughly describes a software system, its components and
relationships. It facilitates the understanding and communication of the software system,
eases the learning and relearning process, makes software systems more maintainable, and
consequently improves the engineer’s productivity and work quality (Bauer, 1995; Briand,
2003; Card, 1987; Conwell, 2000; Parnas 2000, Visconti, 2002).

Poor system documentation, on the other hand, is regarded to be the primary reason for
quick software system quality degradation and aging (Parnas, 2000; Sousa, 1998; Visconti,
2002). It is a major contributor to the high cost of software evolution and maintenance and to
the distaste for software maintenance work. Outdated documentation of a software system
misleads the engineer in her work thus leading to confusion in the already very complex
evolution and maintenance task.

The purpose of documentation however, is not only to describe a software system but also
to record a process. Process documentation is extremely important for achieving (1) insight
and visibility into the processes, (2) meaningful process measurement and thereby (3) high
process maturity. It should be pervasive in and throughout all the types of lifecycle chores.
Proper control and management of development, evolution and maintenance can only be
achieved if we have obtained sufficient visibility into the process, its stages and tasks,
executing roles, their decisions and motivations, and the results of individual process tasks.

Irrespective of whether documentation supports systems or processes, it constitutes a
collective knowledge of the organization. It supports communication and collaboration
amongst various groups within the organization such as project managers, quality
managers, product managers, support technicians, testers, developers, and other roles
(Arthur, 1995). It enhances knowledge transfer, preserves historical information, assists
ongoing product evolution and maintenance, and fulfills regulatory and legal requirements.

www.intechopen.com

Templates for Communicating Information
about Software Requirements and Software Problems 263

It provides an efficient vehicle for communication serving a variety of needs. We distinguish
between two types of documentation:

e Self to self: Software professionals make personal notes. The goal is to remember what
they have done, plan for future actions and analyze the results of their own personal
processes.

e Software professional to software professional: Different roles communicate with one
another, such as developers to developers, developers to testers, developers to
maintainers, developers and/or maintainers to management, management to
developers and/or maintainers, developer and/or maintainer to support personnel,
and the like. The goal is to provide feedback to one another.

3. Method

In this section, we present the method taken to create the PMT and SRMT templates. First, in
Section 3.1, we present our method steps. We then in Section 3.2 present the companies
involved in creating and evaluating the templates.

3.1 Steps

Our work consisted of two major consecutive phases, starting as early as in 1998. These
phases are: (1) Creation and Evaluation of Problem Management Template (PMT) and (2) Creation
and Evaluation of Software Requirements and Management Template (SRMT). Below, we briefly
describe these steps.

In the years of 1998 - 2001, we did research on problem management within corrective
maintenance. This research resulted in a problem management process model, called
Corrective Maintenance Maturity Model (CM3): Problem Management. It covered the process
activities and information required for managing software problems. It is the problem
management information that is put into the PMT template. CM3: Problem Management was
created within ABB (Kajko-Mattsson, 2001). The model and the template were then
evaluated within fifteen software companies.

PMT is a specialized form of SRMT. Problem reports are requirements for change within
corrective maintenance. They are generated due to specific software problems and defects.
For this reason, we decided to adapt it to the SRMT template managing overall software
requirements. The SRMT template was then evaluated in three consecutive different studies.

First, we evaluated the SRMT template within one Canadian company which practiced both
traditional and agile development approach (Kajko-Mattsson, Nyfjord, 2008). We then
continued evaluating it within six Chinese companies (Kajko-Mattsson, 2009). Finally, we
evaluated it within one major Swedish company together with 60 software engineers. The
evaluation was conducted in form of three consecutive workshops.

Due to space restrictions, we cannot describe the evaluation results in this chapter.
However, we cordially invite our readers to study our publications in which we report on

www.intechopen.com

264 Engineering the Computer Science and IT

the documentation status within the industry today (Kajko-Mattsson, 2000; Kajko-Mattsson,
2002, Kajko-Mattsson, 2005, Kajko-Mattsson & Nyfjord, 2008, Kajko-Mattsson, 2009).

3.2 Companies involved in the Evaluation Phase

Two ABB organizations supported us in creating CM3: Problem Management. These were ABB
Automation Products and ABB Robotics. In addition, we received scientific support from ABB
Corporate Research. (ABB, 2009)

Within ABB, we explored the process of problem management within corrective
maintenance and the information managed within this process. Here, we interacted with all
the possible roles involved within the process such as maintainers, team leaders, testers,
support technicians, change control boards, and the like.

CMs3: Problem Management and the PMT were then evaluated within fifteen non-ABB
organisations in 2001. When choosing them, we attempted to cover a wide spectrum of the
today’s IT state. Deliberately, we chose different sizes and different types of software
organisations. Our smallest organisation was a one-person consulting company. Our largest
organisation was one major organization having 14 000 employees. The types of products
maintained by these organisations varied from financial systems, business systems,
embedded real-time systems, consulting services, administrative systems, and different
types of support systems.

Regarding the SRMT, we first evaluated it within one Canadian organization. We did it in
2007. Here, we interviewed one representative (a process owner). The company develops
products ranging from ground stations for satellite radar systems to e-commerce
applications. We studied one small and one middle-sized project evolving data transaction
systems with high quality and performance requirements.

We then continued to evaluate the SRMT template in a Chinese software development
context. When visiting Fudan University as a guest professor in fall 2007, we took the
opportunity to study the requirements management practice within some Chinese
organizations (Kajko-Mattsson, 2009). For this purpose, we used students attending our
course on advanced software engineering. The students chose the organizations according
to the convenience sampling method (Walker, 1985). These companies practiced both
traditional and agile development methods.

Finally, we evaluated the SRMT together with 60 software engineers within one big
software development company. Due to the fact that the company wishes to stay
anonymous, we call it IT Exchange. The evaluation was made in form of three consecutive
workshops. As illustrated in Figure 1, 65,57 % of the workshop participants were involved in
programming activities. The remaining 34,43% were involved in other non-programming
activities.

www.intechopen.com

Templates for Communicating Information
about Software Requirements and Software Problems 265

Otherroles
34,43%

Soloand
combined
programmer roles
65,57%

Fig. 1. Distribution of roles at IT Exchange by programmer and non-programmer roles

Figure 2 shows a more detailed distribution of roles involved. Here, we may see that the
range of roles involved in the three workshops spanned from programmers, to testers,
project managers, technical staff, architects and managers. These individuals were involved
both in traditional and agile development and maintenance.

35
30
25
20
15
m Group 3
10 B Group 2
5 B Groupl
0 —
A A A s & X A A lod W 5 A &
R s MY P Y- R« RO
'f@ <& ,bo'boa & & ?:;(iv:Qﬂ @Qe% <& b‘"é, %(;a% @5.1\ 'S'& o
@é V&S & ‘l@'& c?\'é\ < 6‘5‘ & &
'\;fz (6\0 e;‘_\ ‘ 6}{.. o 59\ _{}Q’ ‘{,@ 6@ ‘é\'z' .;(é& é\b e@(\
A & ORI N\ R S S N
5 & P R SO I R
¢ & @ & 2 &
& kS B & j@ % ©
& I C Y
?.b-l\ o Q(O \6. N

Fig. 2. Roles involved in the workshops at IT Exchange

www.intechopen.com

266 Engineering the Computer Science and IT

4. Templates

This section presents and motivates the SRMT and PMT templates. It first gives an overall
view and motivation of the templates in Section 5.1. It then describes the two templates in
Section 5.2.

4.1 Overall Presentation of the Templates

The SRMT and PMT are similar, however, they vary in their contents. Both describe the
information about either new requirements or software problems and their management
throughout the software lifecycle. However, they require different types of information.
This is because the SRMT describes new functionality that is going to be created whereas the
PMT describes old functionality that is going to be changed.

It is difficult to provide a good and clear description of new requirements and software
problems. They may be described in several ways using different terms. They can be
depicted in different environments and on different system levels (Wedde et.al, 1995).

A proper requirement and problem description is the most important prerequisite for
effective implementation. A poor, sketchy, or misleading description may lead to
misinterpretation, and thereby, to misimplementation (Kajko-Mattsson, 2000). For this
reason, a description of a requirement and a problem should be clear, complete and correct.
It has to be communicated in a structured and disciplined way.

To aid in minimising the reporting time for the submitters and in maximising the quality of
the reported data, the software organisation should give guidance on how to provide and
structure requirement and problem description data. This can be done in form of templates.

The templates should document essential information about all additions and changes made
to a system. Since the templates are used to document and communicate information to a
wide variety of roles, it is important to include enough information to meet the needs of
those roles. At minimum, the information should answer the following questions:

e What is to be implemented /changed?

e Why is it going to be implemented /changed?

e How is it going to be implemented/changed?

e What is the budget?

e Where is it going to be implemented /changed?

e Who is going to make the implementation/change?

e Is the description clear and concise? Are all clues and leads adequately described to
allow impact analysis to begin?

e If not, is the submitter available for clarification?
e What information is extraneous to the request?

www.intechopen.com

Templates for Communicating Information

about Software Requirements and Software Problems 267
Sﬁtqm Documentation Process Documentation
General RBequirement Descriptien; R uf
Requirement |0, Requirement Title, Requiremenis Repoding Date. Originated by, Reparted by,
Requirement Desaription, Requirament R-qu.urnranh U-mlr
Type, IntemallExternal Req., Raticnals, 11
EventiUse Case |0, Related to Prellrrinlly Implem;manm Fun Fullnﬂn:ry outhne of actrities

Reguirementis), Conflicting Reguirements, | {Design, Implementation, Testng, oher), Change Acthdties, Planned
Non-functionad requirements. Constraints and Actual Activitiesis) |Activily Descnplion, Sctivity Stan Date, Activity
{Solution, Technical, Budget, Regource), End Date, Expectedidotual Resul of Astivity Take, dctivily Conducted
Infended User, Specific user who stated the By Aclwa‘.y-!mmud By, Eﬂwrw O ﬂ:ﬂri}r Coast of Action)

req., Customer Salistaction, Cuslomer ! : y
Dizsatisfaction, Assumptions, Referance quuremml Hmn;ummt Sta‘ﬁus Requlremm Mngmit Slatus Date,

dncumtn!! Requirement Age. Requirement Changes

Bul:n-eu 'u';]ue ﬂlhﬂ' wlue l?aqu-mmanl:: Actual Complation Date, Planned Completion Date, Relation To Tasts,
Prioety (Rank), Sccepiance Critena, Fil Raleasad in, Requirements Completion Approved By, Signed O Dale,
Critoria. Risk Signed Off By, Eslimated Total Effort, Actual Total Effort, Estmated Tols
Stfver Description Data Cost, Actual Total Cost

System Data (System |0, Sub-System ID. | Fost lmplementation Data

Compomant D), Adjasentiinterfacing Analysis of the Requirements Implementation Process. Lessons
Systems 10, Emdronment lemrned

Fig. 3. Software Requirement Management Template

System Documentation Process Documentation

thlmllﬂ-, Frnbltm'ﬂui Fn:i:lﬂnm:m;ullm, Prélisminary Redolution Plan, Preliminary outlins of actidlies
Internal/Extemal Problem., Related to {Design, iImplemantation, Testing, other), Change A cthitles,
Problemiz). Problem Effects and Planmed and Actenl Astivities(s) (Astivity Desenption. Activity
Consequences, Problem Symploms, Problem Start Dafe, Activily End Date, Expectedidstual Result of
Conditions, Problem Reproducibility, Mchivity Take, Activiy Conduched By, Activify dpproved By,
Altermathve Executlon Paths. Assumphions, Emsm Ch'ﬁ.ﬂ:t.lu.iy, Eﬁﬂdﬁmr

Referance documeanis. : :

Prnblum Hlﬂqumurﬂsrlm: F"ruhl-um Mingmil Status Date,

Problem Pricrity (Rank), Problen) Se'verity, Problem Age

Flisk Eroblem Completion Data

Dihar Dogcription Dats Actuasl Completion Date, Flanned Completion Date. Relation
System Data (System 1D, Sub-System 1D, To Tests. Released In, Requirements Completion Approved
Component 1D}, Adjacentinterfacing Systems By, Signed Cif Date, Signed Off By, Estimaled Total Effort,

10, Ervviranmant, Aciual Total ENad. Estimated Total Cost, Actual Tetal Cost
Problem Reporting Dot Eost implementation Datg

Problem Repeitng Date, Originated by, Analysis of the Problem Resclution Process, Lessons learmned

Reported by, Problem Cravner

Fig? 4. Problem Management Template -

The SRMT and PMT consist of two main sections; one dedicated to system documentation
and the other one dedicated to process documentation. As listed in Figure 3 and Figure 4,
each section covers a set of attributes bearing on coherent information. The attributes
concerning the system documentation are (1) General Requirement/Problem Description, (2)
Requirement/Problem Evaluation Data, and (3) Other Description Data. The attributes
concerning the process documentation are (1) Requirement/Problem Reporting Data, (2)
Requirement/Problem Management Data, (3) Requirement/Problem Management Progress, (4)
Requirement/Problem Completion Data, and (5) Post Implementation Data.

4.2 System Documentation
In this section, we describe the tree clusters used for documenting the system. Just because
the descriptions of new requirements and problems somewhat differ, we first describe and

www.intechopen.com

268 Engineering the Computer Science and IT

explain the attributes used for describing the new requirements in the SRMT template. For
each of the clusters in the SRMT, we then describe their correspondences in the PMT
template.

General Requirement/Problem Description

The General Requirement Description describes basic requirement information needed for
identifying, understanding, and classifying requirements (Atlantic, 2007; Higgins, 2002). It
covers the following attributes:

e Requirement ID: Each requirement should be uniquely identified. This allows the
requirement to be traced throughout the whole lifecycle process. Usually, its ID
corresponds to a numerical value. Some of the requirements may however be identified
with an alphanumerical value.

e Requirement Title: A title is a short name of a requirement. However, it is not an
identifier. It rather corresponds to a mnemonic problem identification. It usually consists
of several keywords. It is very helpful in communicating on requirements and in doing
manual searches in the tool recording the requirements. It allows one to quickly browse
through a requirements list without having to read the whole requirement description.

e Requirement Desciption: General information describing the requirement in free text. The
requirement orginator describes his own needs and motivates them. This description
may be quite comprehensive. Usually, there is no space limit for this field.

e Requirement Type: Specification of whether the requirement concerns some new or some
existing behavior of the system or whether it concerns some non-functional requirement
specifying the characteristics of some functinality.

o Internal/External Requirement: Specification of whether the requiement was requested
externally by the customer or internally within the development organization. This
specification enables priority assignement to the software requirement. Usually, all
external requests get higher priority than the internal ones.

e Rationale: Motivation of the requirement d'étre, that is, the rationale behind the
requirement to help the developers understand the requirement and the reason behind
it. This helps the developer understand the application domain. Rationale is of great
importance in monitoring requirement’s evolution during its lifecycle. It disambiguates
unclear requirements, and thereby, it prevents from changes leading to unexpected
effects.

e Event/Use Case ID: List of events and/or use cases descripting the requirement. The use
cases, if any, should always be identified. They provide a basis for specifying the
requirements.

e Related To Requirement(s): Link to other requirements related to the requirement at hand.
By following this link, one may achieve an overall picture of groups of requirements and
their relationships. In this way, one may discover inconsistencies and duplications
among the requirements. One may also record the hierarchies among the major and
minor requirements, like the ones presented in Figure 5.

www.intechopen.com

Templates for Communicating Information
about Software Requirements and Software Problems 269

High-level Parent
Requirement

\ \ \ Children
Low-level Low-level Low-level
Requirement Requirement Requirement
Complex Parent
Problem
‘ ‘ ‘ ‘ Children
Problem Problem Problem

Fig. 5. Hierarchies among the requirements and problems

e Conflicting Requirements: Links to conflicting requirements. This information is used for
future measures such as negotiations with the customers or provision of extra resources
to create an appropriate design that matches these requirements.

e Non-Functional Requirement(s): A link to non-functional requirements specifying the
criteria to be used when developing the requirement.

e Constraints: List of restrictions imposed on resources, budget, technical or solution
constraints. These restrictions may lead to a modification of a requirement, and thereby,
limit the range of its solutions.

e Intended User: Identification of all types of users of the requirement.

e Customer Satisfaction: Specification of the degree of satisfaction of how the requirement
will meet the customer’s needs and expectations.

e Customer Dissatisfaction: Degree of customer dissatisfaction, if the requirement is not
successfully implemented.

e Assumptions: The software system is intrinsically incomplete. The gap between the
system and its operational domain is bridged by assumptions, explicit and implicit
(Lehman, 2000). These assumptions fill in the gaps between the system and the
documented and validated requirements of the operational domain.

e Reference Document(s): Links to the documentation further describing the requirements.

In the General Problem Description cluster, the attributes ProblemID, ProblemTitle,
ProblemDescription, Problem Type, Internal/External Problem, Related to Problem(s), and Reference
Documents have their correspondences in Requirements ID, Requirements Title, Requirements

www.intechopen.com

270 Engineering the Computer Science and IT

Description, Requirements Type, Internal/External Requirement and Related Requirements,
respectively. Except for Problem Type and Requirement Type, these attributes connote the
same meaning. While Requirement Type implies either functional or non-functional
requirement, Problem Type refers to a specific type of a problem, such as design problem,
problem with manuals, and the like.

In addition to the above-mentioned information, one needs to record information that is

specific to problem management. This concerns the following attributes:

e Problem Effect(s) and Consequence(s): Description of the effects and consequences of the
problem. This information is pivotal for assessing the severity and priority of a software
problem. Problems implying severe consequences should be attended to as soon as
possible.

e Problem Symptom(s): A description of an observed manifestation of a problem.
Compared to a consequence of a software problem, a symptom may merely indicate a
minor system misbehaviour. It does not always directly lead to system failure. This
information may greatly help maintenance engineers understand the software problem
and localise its cause.

e Problem Conditions: Descriptions of the conditions under which a software problem has
been encountered. This information must be specified, if deemed relevant. Otherwise,
the maintainer will not be able to reproduce the problem.

e Problem Reproducibility: a clear description of how to get a software program into a
particular erroneous state. It specifies a series of steps that can be taken to make the
problem occur. This greatly facilitates the problem investigation process.

o Alternative Execution Paths: An identification of all the paths leading to the reproduction
of the software problem. This information is pivotal for understanding and resolving
the problem.

Requirement/Problem Evaluation Data

The Requirement Evaluation Data cluster describes the data essential for evaluating and

prioritizing the requirements. It covers the following attributes:

e Business Value: Business value is defined for the purpose of meeting some business
objectives by implementing the requirement. It is used for prioritizing the requirements.

e Other Value: Other values may be specified. Among them are the values of stepping into
a new market, attracting new customers, and other opportunities.

e Requirement Priority: Evaluation of the urgency of implementing the requirement.
Usually, the budget does not allow the companies to implement all requirements.
Hence, one needs to prioritize them. The higher the priority, the more urgent it is to
implement the requirement.

e Fit Criterion/Criteria: A fit criterion describes a condition that a software product must
fulfill in order to meet the requirement (Sampayo do Prado Leite 2009). Its purpose is to
provide a contextual information so that the requirement will be testable.

e Risk(s): Identification of risks related to the requirement. Requirements risks may have
major impacts on the success of software projects (Appukkutty et.al, 2005). They may
drown the software projects, if they are not properly managed,

www.intechopen.com

Templates for Communicating Information
about Software Requirements and Software Problems 271

In the Problem Evaluation Data cluster, the value of Problem Priority and Risk(s) connotes the
same meaning as Requirements Priority and Risk(s) in the Requireents Evaluation cluster.
Regarding the attributes such as Business Value, Acceptance Criteria and Fit Criteria, they are
not relevant in the context of problem management. In addition, a new value is added. It is
Problem Severity measuring the effect of the disruption caused by a software problem.

Other Description Data

The Other Description Data cluster provides the context of the requirement and the problem.
It covers the attributes identifying the system(s) and its(their) environment and the like. It
includes the following attributes:

e System Data: To avoid confusion where the requirement/problem must be
implemented/resolved, one needs to identify the system, subsystem and component. It
is especially imperative in cases when the organizations manage several products with
similar functionality.

e Interfacing System ID: Identification of the adjacent systems that are or may be impacted
by the requirement/problem at hand.

e Environment: Specification of the environment in which the requirement/problem will
be implemented/resolved. They concern hardware, software, and data environments in
which the requirement must function.

4.3 Process Documentation

In this section, we describe the clusters used for documenting the system. Just because the
information describing the management of new requirements and software problems does
not differ much, we describe and explain the SRMT and PMT together.

Requirement/Problem Reporting Data

The Requirement/Problem Reporting Data cluster records when and by whom the requirement
or software problem has been identified and to whom it has been assigned (Kajko-Mattsson,
2001). It covers the following attributes:

e Requirement/Problem Reporting Date: The date when the requirement or problem was
stated/reported. This date is used for determining the age of a requirement or software
problem. In the context of a requirement, a high age is an indicator that the requirement
must be revisited so that it does not imply risks to the project. In the context of a
software problem, a high age indicates that the software organization has probably
neglected its resolution.

e Requirement/Problem Originator: The originator of the requirement or problem must be
identified. This information is needed for tracking and clarification purposes.

e Reported By: Name of the role who reported on the requirement or problem. This
individual may be some engineer who reported on the requirement or problem on the
Requirement/Problem Originator’s account.

www.intechopen.com

272 Engineering the Computer Science and IT

e Requirement/Problem Owner: Role or group of roles (team) responsible for managing the
requirement or solving the software problem. The owner makes decisions on the
requirement implementation or problem resolution throughout the whole
implementation/resolution process. Usually, the owner is the role who originally
entered the requirement.

e Date required: Date when the requirement must be implemented or the software
problem must be resolved.

Requirement/Problem Management Data

The Requirement Management Data cluster communicates information about the requirement
or problem management process. It covers both planned and actual actions taken to
implement the requirement or to resolve the problem, identifies the roles involved in these
actions, records the effort required for implementing the requirement or resolvning the
problem, and the effectiveness of the implementation activities (Higgins, 2002). The cluster
covers the following attributes:

e [mplementation Plan: The preliminary outline of the activities to be taken to implement
the requirement or to resolve the problem.

o Planned and actual activities: The activities and their estimated/actual effort and cost. It
covers the following information:

Activity Description: Identification and description of the activity.

Activity Start Date: Date when the activity started.

Activity End Date: Date when the activity ended.

Expected/Actual Result: Description of the expected/actual results of the activity.
Activity Conducted By: Name of the role responsible for performing the activity.
Activity Approved By: Name of the role who approved the activity and its results.
Effort Spent on Activity: Estimated/actual effort spend on the activity.

Cost of Activity: Estimated /actual cost of the activity.

Requirement/Problem Management Progress

The Requirement Management Progress cluster tracks the status of the requirement
implementation or problem resolution process. This status is essential for monitoring and
controlling the requirement or problem. It records the status value, the date when the
requirement/problem changed status values, the overall requirement implementation or
problem resolution progress, and the requirement/problem age. The following attributes
are suggested for descring the progress:

e Requirement/Problem Management Status: Status value indicating the progress of
implementing the requirement or resolving the problem.

e Requirement/Problem Management Status Date: Date when the requirement/problem
stepped into the particular status state.

www.intechopen.com

Templates for Communicating Information
about Software Requirements and Software Problems 273

e Requirement/Problem Age: Time period elapsed from the date when the
requirement/ problem was recognized and reported. This value is used for assuring that
high priority requirements/problems get attended to as soon as possible.

e Requirement/Problem Change(s): Link to change requests concerning the
requirement/ problem at hand.

Requirements Completion Data

The Requirement Completion Data cluster covers information about the completion of the

requirement implementation or problem resolution process. It records planned and actual

completion date, roles involved in approving and signing off the completion, and the total

effort spent on requirement implementation or problem resolution. The cluster includes the

following attributes:

e Planned/Actual Completion Date: Date when the requirement/problem was or was
planned to be completed and tested.

e Relation to Test(s): Identification of tests to be used for testing the requirement or
problem solution.

® Released In: Identification of the release(s) in which the requirement/problem was
implemented /resolved.

e Requirement Completion Approved By: Name of the role who approved the requirement
implementation or problem resolution. Usually, it is the owner.

e Sign Off Date: Date when the requirement/problem was signed off by the
organizational authority.

e Signed Off By: Identification of the roles involved in signing off the
requirement/ problem completion.

e Estimated/Actual Total Effort: Total effort spent/to be spent on implementing/resolving
the requirement/ problem.

e Estimated/Actual Total Cost: Total cost spent/to be spent on implementing/resolving the
requirement/ problem.

Post-Implementation Data

The Post Implementation Data cluster holds the information about the post-mortem analysis

of the requirement implementation or problem resolution process. The analysis results

should provide an important feedback for improving the future requirements management

or problem resolution. The attributes belonging to this cluster are the following:

e Analysis of the Requirement/Problem Implementation/Resolution Process: Evaluation of the
process used for implementing the requirement.

e Lessons Learned: List of experiences as encountered during the implementation/
resolution of the requirement/problem.

5. Final Conclusions

In this chapter, we have presented two templates: the SRMT template used for
communicating software requirements within development and evolution and the PMT

www.intechopen.com

274 Engineering the Computer Science and IT

template used for communication software problems within corrective maintenance. We
then evaluated these two templates within more than 20 software organizations. Due to
space restrictions, we cannot describe the evaluation results. However, we cordially invite
our readers to study (Kajko-Mattson, 2000; Kajko-Mattson, 2001; Kajko-Mattson, 2002;
Kajko-Mattson, 2005; Kajko-Mattson & Nyfjord, 2008; Kajko-Mattson, 2009).

The attributes as suggested in both templates are highly relevant both within heavyweight
and lightweight software development. Many of them however, are not explicitly
documented. They may however be communicated in an oral form. The rigidity of the
documentation is dependent on the type of software systems being developed or
maintained. In cases when the software system is not a safety critical or business critical and
it is not expected to live a long life, one may compromise on the amount and scope of the
information to be documented in favor of oral communication. In case of critical systems,
one should not compromise on even one single attribute in both the SRMT and PMT
template. For instance, the engineers within IT Exchange claim that they would not be able to
survive for long without the information that is listed in the two templates.

So far, very little research has been done on documentation. To our knowledge, there are
only a few publications reporting on this subject. Hence, we claim that this domain is
strongly under-explored. More research is required for agreeing upon the scope and extent
of documentation so that the short-term and long-term benefits may be gained in both the
heavyweight and lightweight contexts.

6. References

ABB. (2009) ABB Group Sweden, http://www.abb.com/secrc, Accessed in July 2009.

Atlantic Systems Guild. (2007). Volare Requirements Specification Template, available at:
http:/ /www.systemsguild.com/GuildSite/Robs/Template.html, = Accessed in
December 2007.

Antoniol, G.; Canfora, G.; Casazza, G.; De Lucia. A,. (2000). Information Retrieval models for
Recovering Traceability links between code and documentation, Proceedings of IEEE
International Conference on Software Maintenance, pp. 40-49.

Appukkutty, K,; Ammar, H.H.; Popstajanova, K.G. (2005). Software requirement risk
assessment using UML, Proceedings of International Conference on Computer Systems
and Applications, p. 112.

Arthur, L.J. (1995). Software Evolution: The Software Maintenance Challenge, John Wiley &
Sons.

Bauer, B.J. & Parnas, D.L. (1995). Applying mathematical software documentation: An
Experience Report, Proceedings of 10t Annual Conference on Computer Assurance, pp.
273-284.

Beck K. (2004). Extreme Programming Explained: Embrace Change, 2nd Edition. Upper Sadle
River, NJ, Addison-Wesley.

Boehm, B.W. (1981). Software Engineering Economics, Prentice-Hall.

Briand, L.C. (2003). Software Documentation: How Much is Enough?, Proceedings of IEEE
International Conference on Software Maintenance and Reengineering, pp. 13-15.

www.intechopen.com

Templates for Communicating Information
about Software Requirements and Software Problems 275

Card, D.; McGarry, F.; Page, G. (1987). Evaluating Software Engineering Technologies,
Journal of IEEE Transactions on Software Engineering, Vol. 13, No. 7, pp. 845-851.

Carnegie Mellon University and Software Engineering Institute. (1994). The Capability
Maturity Model: Guidelines for Improving the Software Process, Addison-Wesley.

Chapin, N. (1985). Software maintenance: a different view, Proceedings of National Computer
Conference, AFIPS Press, Reston, Virginia, Volume 54, pp. 508-513.

Clark, P.G.; Lobsitz, R.M.; Shields, J.D. (1989). Documenting the Evolution of an Information
System, Proceedings of IEEE National Aerospace and Electronic Conference, pp. 1819-
1826.

Cohn M. (2006). Agile Estimating and Planning, Pearson Education, Upper Saddle River, NJ.

Conwell, C. L. (2000). Capability maturity models support of modeling and simulation
verification, validation, and accreditation. Proceedings of IEEE Winter Simulation
Conference, pp. 819- 828.

Cook, C. & Visconti, M. (1994), Documentation Is Important, Journal of CrossTalk, Vol. 7, No.
11, pp. 26-30.

Delanghe, S. (2000), Using Learning Styles in Software Documentation, Proceedings of IEEE,
Transactions of Professional Communication, pp. 201-205.

Higgins S.A et. al, (2002). Managing Product Requirements for Medical IT Products.
Proceedings of Joint International Conference on Requirements Engineering, pp 341-349.

Hofmann, P. (1998). Away with Words! How to create Wordless Documentation, Proceedings
of IEEE International Professional Communication Conference, pp. 437-438.

Holt, P.O. (1993). System Documentation and System Design: A Good Reason for Designing
the Manual First, Proceedings of IEEE Colloquium on Issues in Computer Support for
Documentation and Manuals, pp. 1/1-1/3.

IEEE Standards Collection. (1999). Software Engineering, The Institute of Electrical and
Electronics Engineers, Inc.

Kajko-Mattsson, M.; Forssander, S.; Andersson, G. (2000). Software Problem Reporting and
Resolution Process at ABB Robotics AB: State of Practice, Journal of Software
Maintenance and Evolution, Research and Practice, Vol. 12, No. 5, pp. 255-285.

Kajko-Mattsson, M. (2001). Corrective Maintenance Maturity Model: Problem Management,
(2001). PhD thesis, ISBN Nr 91-7265-311-6, ISSN 1101-8526, ISRN SU-KTH/DSV/R-
-01/15, Department of Computer and Systems Sciences (DSV), Stockholm
University and Royal Institute of Technology.

Kajko-Mattsson M. (2002). Evaluating CM3: Problem Management, (2002). Lecture Notes in
Computer Science, Proceedings of Conference on Software Advanced Information Systems
Engineering, Springer-Verlag, Volume 2348, pp. 436-451.

Kajko-Mattsson, M. (2005). A Survey of Documentation Practice within Corrective
Maintenance, Journal of Empirical Software Engineering Journal, Kluwer, Volume 10,
Issue 1, January, pp. 31 - 55.

Kajko-Mattsson M. & Nyfjord, J., (2008). A Template for Communicating Information about
Requirements and their Realization, Proceedings of IAENG International Conference on
Software Engineering, BrownWalker Press: Boca Raton, USA.

Kajko-Mattsson, M. (2009). Status of Requirements Management in Six Chinese Software
Companies, Proceedings of International Conference on Industrial Engineering, IAENG
International Conference on Software Engineering, BrownWalker Press: Boca Raton,
USA.

www.intechopen.com

276 Engineering the Computer Science and IT

Kantner, L., etal., (1997). The Best of Both Worlds: Combining Usability Testing and
Documentation Projects, Proceedings of IEEE International Professional Communication
Conference, pp. 355-363.

Kantner, L., etal., (2002). Structured Heuristic Evaluation of Online Documentation,
Proceedings of IEEE International Professional Communication Conference, pp. 331-342.

Lepasaar, M.; Varkoi, T.; Jaakkola, H. (2001). Documentation as a Software Process
Capability Indicator, Proceedings of IEEE International Conference on Management of
Engineering and Technology, Vol. 1, p. 436.

Malcolm, A. (2001). Writing for the Disadvanteged Reader, Proceedings of IEEE International
Conference on Professional Communication, pp. 95-100.

Nawrocki, J.; Jasinski, M.; Walter, B.; Wojciechowski, A. (2002). Extreme Programming
Modified: Embrace Requirements Engineering Practicies, (2002). Proceedings of IEEE
Joint International Conference on Requirements Engineering (RE'02), pp. 303-310.

Norman, R.L & Holloran, RW. (1991). How to simplify the structure of administrative
procedures to make them easier to write, review, produce, and use, Proceedings of
International Conference on Professional Communication, Vol.2 pp. 447 - 450.

Parnas, D. L. & Clements, P.C. (1993). A Rational Design Process: How and Why to Fake it,
Journal of IEEE Transactions on Software Engineering, Vol. SE-12, No. 2.

Parnas, D. L. (1995). Software Aging, Proceedings of 16t International Conference on Software
Engineering, pp. 279-287.

Parnas, D. L. (2000). Requirements documentation: why a formal basis is essential,
Proceedings of IEEE 4 International Conference on Requirements Engineering, pp. 81-82.

Pigoski, TM. (1997). Practical Software Maintenance, John Wiley & Sons.

Ramsay, J. (1997). Corporate Downsizing: Opportunity for a New Partnership between
Engineers and Technical Writers, Proceedings of IEEE International Professional
Communication Conference, pp. 399-403.

Sampayo do Prado Leite J.C. & Doorn, J.H. (2009). Perspectives on Software Requirements,
Kluwer Academic Publishers.

Saunders, P.M. (1989). Communication, Semiotics and the Mediating Role of the Technical
Writer, Proceedings of IEEE International Professional Communication Conference, pp.
102-105.

Sousa, M. & Mendes Moreira, H. (1998). A survey of the software maintenance process.
Proceedings of IEEE International Conference on Software Maintenance, pp. 265- 272.

van Schouwen, A.J.; Parnas, D.L.; Madey, J. (1993). Documentation of Requirements for
Computer Systems, Proceedings of IEEE International Symposium on Requirements
Engineering, pp. 198-207.

Visconti, M. & Cook, C.R. (2000). An Overview of Industrial Software Documentation Practices,
Technical Report 00-60-06, Computer Science Department, Oregon State University,
April.

Visconti, M. & Cook, C.R. (2002). An overview of Industrial Software Documentation
Practice, Proceedings of 12t IEEE International Conference of the Chilean Computer
Science Society, pp. 179-186.

Walker, R. (1985). Applied Qualitative Research, Gower Publishing Company Ltd.

Wedde, K. J.; Stalhane, T.; Nordbo, I.; (1995). A Case Study of a Maintenance Support
System, Proceedings of IEEE International Conference on Software Maintenance,
pp. 32-41.

www.intechopen.com

7 Engineering the Computer Science and IT
Engineering the
Compuler Setence andil Edited by Safeeullah Soomro

ISBN 978-953-307-012-4

Hard cover, 506 pages

Publisher InTech

Published online 01, October, 2009
Published in print edition October, 2009

It has been many decades, since Computer Science has been able to achieve tremendous recognition and
has been applied in various fields, mainly computer programming and software engineering. Many efforts have
been taken to improve knowledge of researchers, educationists and others in the field of computer science
and engineering. This book provides a further insight in this direction. It provides innovative ideas in the field of
computer science and engineering with a view to face new challenges of the current and future centuries. This
book comprises of 25 chapters focusing on the basic and applied research in the field of computer science and
information technology. It increases knowledge in the topics such as web programming, logic programming,
software debugging, real-time systems, statistical modeling, networking, program analysis, mathematical
models and natural language processing.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Mira Kajko-Mattsson (2009). Templates for Communicating Information about Software Requirements and
Software Problems, Engineering the Computer Science and IT, Safeeullah Soomro (Ed.), ISBN: 978-953-307-
012-4, InTech, Available from: http://www.intechopen.com/books/engineering-the-computer-science-and-
it/templates-for-communicating-information-about-software-requirements-and-software-problems

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE B ERFEE6SS LEBEPR SR AIRE A 4058 7T
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed under
the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0
License, which permits use, distribution and reproduction for non-commercial
purposes, provided the original is properly cited and derivative works building
on this content are distributed under the same license.

