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1. Introduction

The theory of the computational complexity is the part of the theory of the computation that
studies the resources required during the calculation to solve a problem (Cook, 1983). The
resources commonly studied are the time (execution number of an algorithm to solve a
problem) and the space (amount of resources to solve a problem). In this area exist problems
classifications that are approached within the theory of the complexity, some definitions of
the complexity classes are related to this investigation:

a. P class.-It is the class of recognizable languages by a determinist Turing Machine of
one tape in polynomial time (Karp, 1972).

b. NP class.-It is the class of recognizable languages by a Non-determinist Turing
Machine of one tape in polynomial time (Karp, 1972).

c. NP-equivalent class.-It is the class of problems that are considered NP-easy and
NP-hard (Jonsson & Béackstrom, 1995).

d. NP-easy class.-It is the class of problems that are recognizable in polynomial time
by a Turing Machine with one Oracle (subroutine). In other words a problem X is
NP-easy if and only if a Y problem exists in NP like X is reducible Turing in
polynomial (Jonsson & Backstrom, 1995).

e. NP-hard class.-A Q problem is NP-hard if each problem in NP is reducible to Q
(Garey & Johnson, 1979; Papadimitriou & Steiglitz, 1982). It is the class of problems
classified as problems of combinatorial optimization at least as complex as NP.

f.  NP-complete class.-A L language is NP-complete if L is in NP, and Satisfiability <,
L (Cormen et al., 2001; Karp, 1972; Cook, 1971). It is the class of problems classified
like decision problems.

A combinatorial optimization problem is either a minimization problem or a maximization
problem and consists of three parts: a) a set of instances, b) candidate solutions for each
instance, c) a solution value (Garey & Johnson, 1979). The combinatorial optimization
problems that was used in this paper: the General Asymmetric Traveling Salesman Problem
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320 Computational Intelligence and Modern Heuristics

(ATSP), JobShop Scheduling Problem (JSSP) and Vehicle Routing Problem with Time
Windows (VRPTW).

The general Asymmetric Traveling Salesman Problem (ATSP), which can be stated as
follows: given a set of nodes and distances for each pair of nodes, find a route of minimal
overall length that visits each of the nodes exactly once (Cormen et al., 2001). The distance of
node i to node j and the distance of node j to node i can be different (equations 1, 2, 3, 4).

m_om

minz(x) =) > dyx, (1)

j=1i=1
j=1x,.j =1 i=1..m;  d;#d; 2)
3 x,.jzl; j=1,..,m; OSx,.jsl (3)

{O,if tour traverses from i to j

X 1, otherwise Vil (4)

The JobShop Scheduling Problem (JSSP) contains a number of machines and a set of Jobs
each one with precedence restrictions, the problem is to solve the question if exist a
scheduling of jobs that help to improve and to efficiency the use of the machines being
eliminated the idle times. It is recognized by that it does not have to be able human nor
machine sufficiently fast that it can obtain the optimal solution for JSSP due to the solutions
space, which cannot be expressed by a polynomial function (deterministic algorithm), the
space of solutions for this kind of problem can be only expressed like an exponential
function. For the problem of JSSP is necessary to diminish makespan (cmax), this can be
formulated as it follows (equations 5, 6, 7, 8):

min ¢, (5)

Cix —t ch,l,j:1,2,...,n hk=1,2,...,m (6)
ch—cik+M(1—xijk)2tjk, i,j=12,.mn k=1,2,.,m 7)
CixrCix 2 0, X = lor0,i=1,2,...,.n k=1,2,...m (8)

The Vehicle Routing Problem with Time Windows (VRPTW) is a combinatorial optimization
problem complex (Toth & Vigo, 2001; Ruiz-Vanoye et al., 2008b; Cruz-Chévez et al., 2008).
The VRPTW (Toth & Vigo, 2001) consists basically of to minimize the costs of subject
transportation to time restrictions of each route and capacity on the cradle of the demand of
each client (equations 9 and 10).

min Z Z c,-]-xl-jk (9)
keK(i,j)eA
a, Z X SWy <, z Xy, VkeK,ie N
)

jea™ (i)

(10)

jeat (i

In this paper, we propose specify the complexity of instances for problems of combinatorial
optimization (ATSP, VRPTW, and JSSP).
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2. Related works

An important measurement of complexity that we can attribute to Shannon (1949), is the
complexity of Boolean circuits. For this measurement he is advisable to assume that f
function at issue transforms finite strings of bits into finite strings of bits, and the complexity
of fis the size of the smaller Boolean circuit than it calculates f for all the inputs of n length.
But, it does not exist a classification of the complexity of instances for combinatorial
optimization problems.

In some combinatorial optimization problems exists diverse types of instances size at the
moment, for example:

REINELT (Reinelt, 1991) mentions that in General Asymmetric Traveling Salesman Problem
(ATSP) instances exist whose size based on the number of cities or nc. See Table 1.
YAMADA (Yamada & Nakano, 1997) mentions that for the problem JobShop Scheduling
Problem (JSSP) the size of the problem is the number of jobs or | and the number of
machines or M. See Table 2.

SOLOMON (Solomon, 1987; Toth & Vigo, 2001) mentions that in the problem Vehicle
Routing Problem with Time Windows (VRPTW) exists classifications of type C for instances
clustered, type RC for instances Random and Clustered, Type R for Random instances and
in addition the instance is determining by the number of clients or CN. See Table 3.

Instances nc

brl7 17
ft53 53
£t70 70
ftv33 33
ftv35 35
ftv38 38
ftvb5 55
ftve4 64
ftv70 70
ftvl70 170
rbg443 443
ry48p 48

Table 1. Number of cities for ATSP instances

Instances M

abz5 10x10
abz6 10x10
abz8 20x15
ft06 6x6

ft10 10x10
ft20 20x5

orb01 10x10
orb02 10x10

ynl 20x20
yn2 20x20
yn3 20x20
yn4 20x20

Table 2. Number of jobs and number of machines for JSSP instances
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Instances | CN
c101 25
c102 25
c205 25
r101 50
r102 50
r201 100
1205 100
rc101 200
rc102 200
rc201 500
rc202 500
rc203 500
rc204 500
rc205 500

Table 3. Client number for VRPTW instances

3. Complexity of Instances for Combinatorial Optimization Problems

In this section, we propose a basic methodology (Fig. 1) for create the metric that permit to
classify or to determine the complexity instances of combinatorial optimization problems.
Step 1. To identify the maximum instance solved of the problem.

Step 2. To identify the instances parameters of the problem.

Step 3. Elaboration of the general metric of instances complexity taking into account
measured of descriptive statistics and the parameters of the problems (equation 11).

InstancesComplexity = (PS +AM+SD+GD+RA)/100 (11)

Where: PS is the instance average size at the rate of the instance maximum solved of the
problem, AM is the sum of the arithmetic mean of each instance parameters (that have
several elements), SD is the sum of the standard deviations of each type of parameter (that
have several elements), GD is the sum of the genetic distances which quantifies the
similarity or differentiates between the populations from the frequencies of the elements
from each parameters (that have several elements) of the problem, RA is the sum of the
existing reasons between the greatest value and the value smaller of each parameter (that
has several elements) of the problem.

Documentary Investigator
investigation
. Metric
M -
Specialized Determination inaijalmn:g , Elaboration of i
literature of the problem comﬂl::;:)y?’?et"c
steps 1 and 2 ”
(step A:) Z?:z:“’-‘ters A1| Complexities of
instances
problem I Statistical
Books measures

Fig. 1. Methodology of complexity instances for computational combinatorial problems
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4. Experimentation

The experimentation was performed on a computer with Celeron processor 1.5GHz, 512 MB
of memory, 80 GB of hard disk.

We use: the ATSP instances obtained of TSPLIB (Reinelt, 1991) benchmark, the JSSP
instances of JSSPLIB (Yamada & Nakano, 1997) benchmark, the VRPTW instances of
Solomon (Solomon, 1987) benchmark, and a genetic algorithm from Heuristics Lab (Wagner
& Affenzeller, 2004) software.

A genetic algorithm (GA) is one of the heuristic methods used to find approximate solutions
to NP-complete problems, GA is inspired by the Darwinian principles of the evolution of the
species, and use own techniques of the genetics, such as: inheritance, mutation, natural
selection and recombination (or crossover). The simplest form of genetic algorithm involves
three types of operators: selection, crossover (single point), and mutation (Holland, 1975;
Mitchell, 1998). Selection, this operator selects chromosomes in the population for
reproduction. The fitter the chromosome, the more times it is likely to be selected to
reproduce. Crossover, this operator randomly chooses a locus and exchanges the
subsequences before and after that locus between two chromosomes to create two offspring.
The crossover operator roughly mimics biological recombination between two single-
chromosome organisms. Mutation, this operator randomly flips some of the bits in a
chromosome. Mutation can occur at each bit position in a string with some probability. The
genetic algorithm (Wagner & Affenzeller, 2004) was used to verify the time and the quality
of instances solution with the purpose of determining if the metric generated classify in
complexity terms. The input parameters were: selection operator = Roulette, crossover
operator = OX, mutation operator = Simple Inversion, generations = 1000, population size =
100, mutation rate = 0.05, replacement strategy = Elitism, crossover rate = 1, n-Elitism =1,
tournament group size = 2.

4.1 Experimentation in ATSP

Using the process contained in the general methodology to ATSP, the steps they would be of
the following way:

Step 1. The maximum instance solved for ATSP is of 1.904.711 cities or World TSP
(Applegate et al., 2006).

Step 2. The instances parameters of general ATSP can be codified in a hypothetical language:
L ="nc, dy, d, ..., d,”. In other words two general parameters nc = number of cities and d.
=distances between the cities.

Step 3. Elaboration of the instances complexity metric for ATSP. In order to create the
complexity general metric, for which it is necessary to determine PS (equation 12), AM
(equation 13), SD (equation 14), GD (equation 15), RA (equation 16) indicators.

PS = nc

(12)

ncmax

Where: PS is the average size of the instance at the rate of the instance maximum solved of
ATSP, nc is the value of the problem to solve and ncmax is the size of greater instance solved.
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AM=3 % (13)

i-1 1C

Where: AM is the sum of the arithmetic mean of each parameter (that has several elements)
of the instance, d; are the elements of the parameter that has several elements called matrix
of cities and nc is the number of cities.

-5 ({4 a9

Where: SD is the sum of the standard deviations of each type of parameter (that has several
elements), d; = Value of distances between cities i, nc = number of cities, AM = index of the
arithmetic mean of distances.

Frequency(d,) > 1, if Frequency(d,) >1 for some i
GD:{Z guency(d,) quency(d,) 15

0, otherwise

Where: GD is the sum of the genetic distances which quantifies the similarity or
differentiates between the populations from the frequencies of the elements from each
parameter of the problem.

_ mind,

RA (16)

maxd,

Where: RA is the sum of the existing reasons between the greatest value and the smallest
value of each parameter (that has several elements) of the NP-hard problem, min d; =
minimal distance between cities, max d; = value of maximum distances between cities.

In Table 4 are the results of applying the instances complexity metric (IC) on ATSP
instances, in addition to the summary of the obtained result to execute algorithm GA with
the ATSP instances.

Instances nc GA PS AM SD RA GD IC
d t
brl7 17 0 0.79 | 0.000008 12.12 1845 0.16 053] 0.31
ft53 53 452 1.72 { 0.000027 283.15 377.02 0.15 0.32] 6.60
ft70 70 28.8 3.68 | 0.000036 721.74 43482 0.27 0.24] 1157
ftv33 33 42 3.21 | 0.000017 88.47 6193 0.26 0.22] 1.50
ftv35 35 26.6 3.22 1 0.000018 139.07 64.33 041 0.36] 2.04
ftv38 38 38.1 3.09 | 0.000019 68.14 62.52 0.20 0261 1.31
ftvd4 44 56.3 3.17 ] 0.000023 70.18 63.31 0.21 030] 1.34
ftv47 47 43.8 3.09 | 0.000024 145.40 65.45 041 0481 211
ftvb5 55 94.0 3.16 | 0.000028 88.99 61.52 0.28 0561 1.51
ftve4 64 75.9 2.91 | 0.000033 21.83 68.26 0.06 0.65] 0.90
ftv70 70 88.1 3.61 | 0.000036 22.39 69.10 0.07 0.71]1 0.92
ftvl70 170 325 3.91 | 0.000089 77.18 69.30 0.21 1.70] 148
rbg443 443 124 6.33 | 0.000232 1.77 827 0.03 894.00] 9.04
ry48p 48 1067 3.04 | 0.000025 26411 578.73 0.96 0.12] 843

Table 4. Results obtained from descriptive statistical measures with the ATSP instances
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Where: d is the difference between best know and the obtained solution, ¢ is the solution time
for the instance on the GA algorithm. In the instance complexity (IC) between ft70 and ftv70
instances exist different values for instances with equal number of cities (ric), indicates that the
ft70 instance is more complex than ftv70 instance and is verified with the obtained solution to
apply the GA algorithm to the instances. In addition to being able to compare between the
ftv70 and ftv64 instances, the ftv70 instance is more complex than ftv64 instance.

4.2 Experimentation in JSSP

Using the methodology with problem JSSP, are the following steps:

Step 1. The maximum instance resolved is of 20 by 20 symmetrical (Yamada & Nakano, 1997).
Step 2. The parameters of the instances of the JSSP can be codified in a hypothetical
language: L = “nj, nm, J1(mo, pto,....Mun1, ptam-1),..., Jnj (Mo, pto, ..., Mum-1, ptum-1). Where nj =
Number of jobs, nm = number of machines, | = Jobs, m = machine and pt = processing time.
Step 3. Elaboration of the complexity metric for JSSP. In order to create the complexity
general metric is used the equation 1, for which it is necessary to determine PS (equation 17),
AM (equation 18), SD (equation 19), DG (equation 20), RA (equation 21) indicators.

pg M] a7)
MAX]SSP

Where: PS is the so large average of the instance at the rate of the maximum instance from
problem JSSP. And MAX]JSSP = the maximum instance solved in literature or MAX(nj * nm).

: , t ot
AM =Y’ il +Y Pl (18)

i1 Moy 121 Puonm)

Where the AM metric is the sum of the arithmetic mean of the m, pt parameters.

SD= \/[2 [AMm—[ o D] + \/{Z [AMpt—{Lf]D (19)
i1 [ i=1 Pl um)

Where the SD metric contains the sum of the standard deviations of the m, pt, | parameters.
And MA is the arithmetic mean of m parameter; MApt is the arithmetic mean of pt parameter.

GD =[Frequency(m) + Frequency(pt)]/100 (20)

Where the GD metric contains the genetic distances between the populations by the
frequencies of the parameters (1, pt).

_ MINm__MIN pt

RA =
MAX m MAX pt

(21)

Where the RA metric contains the sum of the reasons between the minimal and maximuml
values of the m and pt parameters.
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The Table 5 contains the results of applied the complexity metric for JSSP, and the results of
the GA on JSSP instances. This can be observed that in the Instance Complexity (IC) between
la01 and 1a05 instances exist different values with equal Number of Jobs and Number of
Machines, indicates that the 1a01 instance is more complex than the 1a05 instance is verified
with the quality of the obtained solution. Also sample that in between the ynl and yn4
instances, the yn4 instance is more complex that ynl instance. Where: d is the difference
between best know and the obtained solution, ¢ is the solution time for the instance on the
GA algorithm.

Instances | J*M GA TP MA DA RA DG IC
d t
abz5 10x10 | 429 0:55.3 1025 73.64 230269 0505 0.10 23.77
abz6 10x10 | 3.39 1:093 |0.25 5851 1830.02 0.204 0.10 18.89
abz8 20x15| 16.6 2:00.8 |0.75 29.12 224737 0275 0.20 22.77
abz9 20x15| 143 1:465)0.75 29.28 1862.31 0.275 0.02 18.92
ft06 6x6 0 0:085]0.09 725 156.57 0.100 0.06 1.64
ft10 10x10 | 8.06 0:284 1025 51.64 161542 0.020 0.10 16.67
ft20 20x5 | 343 03531025 5116 228033 0.020 0.20 23.31
la01 10x5 0 0:13.7 1012 53.82 1177.07 0.122 0.10 12.31
1a02 10x5 | 015 0:152]012 5024 1098.87 0.121 0.10 11.49
1a03 10x5 | 435 0:043]012 4422  966.58 0.076 0.10 10.11
la04 10x5 | 2.03 0:145]012 46.22 101019 0.051 0.10 10.56
1a05 10x5 0 0:13.5 012 40.06 874.45 0.051 0.10 9.14

1a06 15x5 0 0:223 1018 5178 173097 0.071 0.10 17.83
1a07 15x5 0 0:25410.18 4813 1608.84 0.082 0.10 16.57
1a08 15x5 0 0:25910.18 49.05 1639.64 0.051 0.10 16.88
1a09 15x5 0 0:24.6 1018 54.62 182591 0.070 0.10 18.80

la10 15x5 0 0:23.110.18 5328 1781.12 0.051 0.10 18.34
orb01 10x10 | 5.00 0:28.7 025 5336 1668.86 0.050 0.10 17.22
orb02 10x10 | 596 0:234 025 5091 1591.87 0.060 0.10 16.43
orb03 10x10 | 9.65 0:244]025 5279 1651.21 0.050 0.10 17.04

ynl 20x20 | 0.78 1:158|1.00 36.12 321755 0204 0.25 32.55

yn2 20x20 | 278 1:181|1.00 36.23 3227.61 0204 0.26 32.65

yn3 20x20 | 2.07 1:19.0 {1.00 32.07 3169.99 0204 0.27 32.07

yn4 20x20 ] 0.80 1:25.8|1.00 36.84 3281.54 0.204 0.31 33.19

Table 5. Results obtained by the descriptive statistics with the JSSP instances

4.3 Experimentation in VRPTW

Using the methodology with VRPTW, the following steps are obtained:

Step 1. The maximum instance solved of problem VRP is F-n135-k7, with VN =12, C = 2210,
CN =135 (Toth & Vigo, 2001).

Step 2. The parameters of the instances of problem VRPTW can be codified in a hypothetical
language: L = “VN, C, (CN;, XCOy, YCOy, Dy, RTy, DTy, STy, ..., CN,, XCO,, YCO,, D., RT,
DT, ST.)”. Where VN = Vehicle Number, C = Capacity, CN = Customer Number, XCO = X
Coord., YCO =Y Coord., D = Demand, RT = Ready Time, DT = Due date, ST = Service Time.
Step 3: Elaboration of the complexity metric for problem VRPTW. In order to create the
complexity general metric the equation 1 is used, for which it is necessary to determine PS
(equation 22), AM (equation 23), SD (equation 24), GD (equation 25), RA (equation 26)
indicators.
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_ VN*C*CN,

PS=———=,
VRPTWMAX

VRPTWMAX = MAX(VN *C*CN,) (22)

Where: PS = is the problem size of the instance at the rate of the maximum instance solved
from VRPTW, max(VN * C* CN,,) = the value of the maximum instance solved by literature.

L XCO, ¢YCO, ¢ D, ¢ RT DT & ST,
AM =2, CN. 3 CN. +ZCNZ+ZCNZ +ZCNZ +ZCNZ (23)

i=1 i=1 i=1 i=1 i=1 i=1

Where: In AM contains the sum of the arithmetic mean of the XCO, YCO, D, RT, DT y ST

J[z [AMXCO_[%?D]Z . J[z [AMYCO_[YC?@]]:
(s &) (sleor (5]
& [oor-(BE)] 5 (mer-(35)

Where: SD contains the sum of the standard deviations of the XCO, YCO, D, RT, DTy ST
parameters. AMXCO is the arithmetic mean of XCO parameter, AMYCO is the arithmetic
mean of YCO parameter, AMD is the arithmetic mean of D parameter, AMRT is the
arithmetic mean of RT parameter, AMDT is the arithmetic mean of DT parameter, and
AMST is the arithmetic mean of ST parameter.

GD =[Frequency(XCO) + Frequency(YCO) +
Frequency(D) + Frequency(RT) + (25)
Frequency(DT) + Frequency(ST)]/100

Where: GD contains the genetic distances between populations from the frequencies of each
parameter (XCO, YCO, D, RT, DTy ST).

:(MIN XCO)J{MIN YCO)+

MAX XCO MAX YCO
(MINDJJ{MIN RT)+
MAX D MAX RT

(MIN DTJ_{MIN ST)
MAX DT MAX ST

(26)

Where RA contains the sum of the reasons between the minimal and maximuml values of
the XCO, YCO, D, RT, DT y ST parameters.

In Table 6 are the results of applying the complexity metric on VRPTW instances, in
addition to the summary of the obtained result to execute algorithm GA with the VRPTW
instances. Where: d is the difference between best know and the obtained solution, ¢ is the
solution time for the instance on the GA algorithm, VN = Vehicle Number, C = Capacity,
CN = Customer Number. It can be observer that in the Instance Complexity (IC) between
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c204 and c201 different values for instances with equal Vehicle Number Capacity and
Customer Number exist, this indicates that the instance c204 is more complex than c201 and
is verified with the obtained solution to apply GA to the instances.

It is necessary to mention that the values of complexity of the instances of single VRPTW are
comparable between instances of the same problem.

Instances VN C C GA TP MA DA RA DG IC
N d t
c101 25 200 25 0 0:58 10.034 1143.92 28598 1.017 0.10 297.43
c102 25 200 25| 0.05 1:03 |0.034 1158.68 28967 1.022 0.17 301.26
c103 25 200 25 0 1:00 10.034 1284.92 32123 1.037 0.23 334.09
c104 25 200 25 0 1:01 ]0.034 1303.68 32592 1.037 0.27 338.97
c105 25 200 25 0 1:26 10.034 1151.12 28778 1.060 0.10 299.30
c201 25 1000 25 0 1:35 ]10.122 3657.96 91449 0.894 0.08 951.08
202 25 700 25 0 1:34 10.122 3898.96 97474 0.894 0.15 1013.74
c203 25 700 25 0 2:03 10.122 4032.08 100802 0.897 0.21 1048.35
204 25 700 2501 01 148 |0.122 4081.20 102030 1.263 0.25 1061.12
c205 25 700 25 0 1:44 10.122 3675.56 91889 0.941 0.08 955.65
r101 25 200 25] 0.06 1:40 |0.034 310.36 7759 0.431 0.09 80.69
r102 25 200 25| 137 1:11 |0.034 318.44 7961 0431 0.16 82.80
r103 25 200 25701 112 1:19 |0.034 317.96 7949 0558 0.22 82.67
r104 25 200 25] 016 1:54 |0.034 309.56 7739 0.558 0.26 80.49
r105 25 200 2570 215 1:20 |0.034 310.68 7767 0.484 0.09 80.78
r201 25 700 25| 119 149 |0.174 1058.32 26458 0.458 0.09 27517
1202 25 700 25| 039 209 |0.174 1122.44 28061 0.492 0.16 291.84
r203 25 700 2501 083 205 |0.174 1146.04 28651 0.549 0.22 297.97
r204 25 700 25] 266 204 |0.174 1114.84 27871 0549 0.26 289.86
r205 25 700 25 0 2:00 | 0.174 1057.80 26445 0.509 0.09 275.03
rc101 25 700 25 0 1:22 10.034 326.72 8168 0.329 0.08 84.95
rc102 25 700 25 0 1:17 10.034 327.72 8193 0.329 0.15 85.21
rc103 25 700 25 0 2:09 |0.034 323.36 8084 0.425 0.21 84.08
rc104 25 700 25701 011 1:27 |0.034 313.28 7832 0425 0.25 81.45
rc105 25 700 250 044 1:15 |0.034 335.04 8376 0.383 0.08 87.11
rc201 25 700 25 0 1:42 10.174 1024.00 25600 0.220 0.08 266.24
rc202 25 700 25 0 2:03 10.174 1077.24 26931 0.220 0.15 280.08
rc203 25 700 251 03 2:38 |0.174 1099.20 27480 0.365 0.21 285.79
rc204 25 700 25 0 2:07 10.174 1067.52 26688 0.365 0.25 277.56
rc205 25 700 25 0 2:14 10.174 1044.88 26122 0.333  0.08 271.67

Table 6. Results obtained by metrics descriptive statistics with VRPTW instances

5. Conclusions

We can conclude that the creation of a mathematical expression based on the descriptive
statistics able is possible to measure the complexity the instances of combinatorial
optimization problems, in this paper was demonstrated for ATSP, VRPTW and JSSP. It is
necessary to mention that, the values of instances complexity of ATSP, VRPTW and JSSP
problems are only comparable between instances of the same problem.

The intention of this paper was to classify the complexity of the instances and not therefore
the complexity between problems NP, as future works, we propose to validate the
methodology for other NPs problems.
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