We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

11

SIMD Architecture Approach to Artificial
Neural Networks Realisation

Jacek Mazurkiewicz

Institute of Computer Engineering, Control and Robotics
Wroclaw University of Technology

ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, POLAND

1. Introduction

A new methodology for artificial neural networks implementation based on SIMD

architecture is described. The method proposed is based on pipelined systolic arrays. The

partial parallel realisation of learning and retrieving algorithms using unified processing

structure is assumed. The discussion is realized based on operations which create the

following steps of weight tuning and answer generation algorithms. The data which are

transferred among the calculation units are the second criterion of the problem. The results

of discussion show that it is possible to create the universal structure to implement all

algorithms related to Hopfield, Kohonen and Hamming neural networks. Theoretical

foundations for synthesis of digital devices related to neural network algorithms are the

main goal. The number of neurons is unlimited, but necessary calculations can be done

using reduced number of elementary processors. This way the dependability features of the

proposed methodology are focused to Fault Tolerant Computing approach. The evaluation

of efficiency measures related to the proposed structures is the final step of described work.

The elaboration can be divided into following stages:

- accommodation of analysed algorithms to partial parallel realisation in systolic array;

- synthesis of constructional unified systolic structures and data flow description for
analysed algorithms;

- proposals of functions for processing elements;

- evaluation of proposed solutions.

Proposed systolic arrays are based on the set of assumptions:

- results obtained as the output of structures are convergent to theoretical description of
proper algorithms of artificial neural nets;

- proposed structures are realised based on digital elements only;

- number of neurons limits maximum number of elementary processors used in structure.

The proposed solutions are characterised by very universal approach with partial parallel

information processing which reduces calculation time in significant way. The work can be

used as base point both for dedicated circuits to implement artificial neural networks and

for structures which realise the net by ready-to-use elements with point-to-point

communication rules as PLD for example.

www.intechopen.com

160 Computational Intelligence and Modern Heuristics

2. Hopfield neural network algorithms

The binary Hopfield net has a single layer of processing elements, which are fully
interconnected - each neuron is connected to every other unit. Each interconnection has an
associated weight: wj; is the weight to unit j from unit i. In Hopfield network, the weight w;;
and wj; has the same value. Mathematical analysis has shown that when this equality is
true, the network is able to converge. The inputs are assumed to take only two values: 1 and
0. The network has N nodes containing hard limiting nonlinearities. The output of node i is
fed back to node j via connection weight wj;.

2.1 Retrieving phase

During the retrieving algorithm each neuron performs the following two steps
(Mazurkiewicz, 2003b) (Ferrari & Ng, 1992):

- computes the coproduct:

0, (k+1) =X, v, (k) -6, (1)

wy; - weight related to feedback signal, v;(k) - feedback signal, &, - bias
- updates the state:

1 Jfor ¢/:(k+]) >()
v,(k+1) =1y, (k) for @ (k+1) =0 (2)
-1 s @ (k+1) <0

The process is repeated for the next iteration until convergence, which occurs when none of
the elements changes state during any iteration. The initial an the end conditions for the
iteration procedure require the following equations: (Mazurkiewicz, 2004)

¥, kD) =v,(0) 3, ¥, v,(0) =x,)

2.2 Hebbian learning algorithm
The training patterns are presented one by one in a fixed time interval. During this interval,
each input data is communicated to its neighbour N times:

1& o " .
szf »x«/) Jor j *] (4)
0 for i=j

if

M - number of training vectors

2.3 Delta-rule learning algorithm
The weights are calculated in recurrent way including all training patterns, according to the
following matrix equation:

W= W+%[x“) —Wx(”][x(”]r (5)

www.intechopen.com

SIMD Architecture Approach to Atrtificial Neural Networks Realisation 161

n €[0,7, 0,9] - learning rate, N - number of neurons, W - matrix of weights, x - input vector
The learning process stops when the next training step generates the changes of weights
which are less then the established tolerance €.

3. Systolic arrays for Hopfield neural network

Systolic arrays are prepared based on proper Data Dependence Graphs - directed graphs
that specify the data dependencies of algorithms. In a Data Dependence Graph nodes
represent computations and arcs specify the data dependencies between computations.
(Ferrari & Ng, 1992) (Mazurkiewicz, 2004)

3.1 Idea of systolic array for Hebbian learning algorithm

Each node in Data Dependence Graph for Hebbian training algorithm multiplies two of
corresponding input signals x; and obtains this way the weight w;; which is stored in local
memory unit. So it realizes three operations. Each elementary processor is responsible for
these three operations. The input signals x; are passed to the nearest bottom neighbours and
the neighbours on the right hand (Fig.1).

XN
%
Xy
i N/k
XN
%i ™
X4 X
W X
o ek HAW g T
1+ak 1/N Xy N Wian-k I Wienk'j WieN-k N
: /I N I
_ x. T T T 1 JJ
« Wo.rak Aw2+akj ;! w,1| |W" | |W'N|
2+ak >N X, ' : :
1
X

i+ak

1
Wiak] Y AW, .
i+ak] i+ak j +—>
xi+ak O—] /N

[}
1
Wetrakj ¥ Awk—1+akj

X k-1+ak 1/N

H>((i+ak)<>(j+ak) (i+ak)=(j+ak)|
A

Werakj AWk+akj _
Xyrak > 1N a=0,1,..,Nk-1

N/k

Fig. 1. Idea of systolic array for Hebbian learning algorithm

www.intechopen.com

162 Computational Intelligence and Modern Heuristics

3.2 Idea of systolic array for Delta-rule learning algorithm

The Data Dependence Graph for Delta-rule training algorithm we can divide into two parts:
Relation Graph G, and Value Graph G, Each node which belongs to G, multiplies a
corresponding input signal x; and weight value wjj, then it subtracts the multiplication
result from the input signal x;. Each node in the G, part of the Data Dependence Graph is
responsible for three operations. During the first operation the node multiplies the
corresponding result obtained at the end of the calculations related to the G, part of the Data
Dependence Graph and the input signal x. During the second operation each node
multiplies the obtained values and the fraction: learning rate/number of neurons. At the
end the values of weights are upgraded. This way the weights are obtained and next they
are stored in local memory unit. The input signals x; are passed to the nearest bottom
neighbours (Kung, 1993). Operations described by Relation Graph G, and Value Graph Gy
ought to be realized in sequence - so processor executes five basic operations. (Fig. 2).

XN XN
% X
X4 X4
% N/ X Processor realises function
N N described by Relation Graph
X: X.
2l Al -—
X4 X4 Nk ViR T Wian Wien-k N
W1 +ak j AW1 +ak j
X 1+ak R
1+ak | N
Vorak) Y AW, i
x2+ak
R 2+ak 1 n/N

1
Wiakj Y AW,
xi+ak

Risak TN Wian-ic T Wiani] Wienk N

1
Wetsak) X AW, o

Xitsak R
Kk-1+ak| T/N

.cf.'l |I |I |I |I J
Iw | |wii I |wiN|J

i1

Weraki ¥ AW gy
Xivak R
k+ak | N/N
XN X
X; X;))
i i Processor realises function
X4 X, described by Value Graph
xy [V) x
! ;N a=0,1,..,Nk-1
% XJ
X4 X4

Fig. 2. Idea of systolic array for Delta-rule learning algorithm

3.3 Idea of systolic array for retrieving algorithm

Each node in Data Dependence Graph for retrieving algorithm multiplies the input signal x;
or feedback signals v; and corresponding weight w;; which is stored in local memory unit.
The product of multiplication is passed to the nearest neighbour on the right hand (two
basic operations). The ¢; nodes collect the partial products and calculate the global value of
coproduct. The last nodes on the right are the comparators to check if the next iteration is
necessary. (Fig. 3).

www.intechopen.com

SIMD Architecture Approach to Atrtificial Neural Networks Realisation 163

nit

. } N/k

nit Weighted sum
YN MY is calculated

v, v, P

Vi j

v, v, i VN 1 Wien-i] Wien-k N

: : < T T T T

PNk e
N N | I

. : 4 W, e | W e | W

i : _| i1 | ij | iN

Yi Vi
V1 J V.1
\\)
: 1+akj (P1 +ak V
ItT’ — y1+ak
Ol
v1+ak V;\E;Vk 1+ak
W. .
., 2+ak] ¢
nit—— —2%alg \yl2+ak
Ol
v2+ak 1 ng;vk 2+ak
1
\""4 .
. ivakg Y @ V.
nit _>Id —— _ i+ak
o .
i+ak 1 virleav': i+ak
1

wk-1 +ak) ¥ P k-1+ak’

nit—— — T Vit4ak —> N’k/f.-' vhew —q
v"(3|$ « [vnew Y k-1+ak Sl I | i+N-k
-1+al k-1+ak ® i<0 . Vinew =0
W .
. keak @ rak N/K
nit —— —Krals Virak / |
yold v new Y k+ak : -
k+ak k+ak L 5| nit=1 JE—

N/K —
/ '—_| VIV Rk
: } N/k {

nit

Yn nit""=0 [nit=0_}I'—
Vi >
\-I'l v;
: N/K Feedback signals
VN are calculated
\Z N/K - -
g 4 N2 T] VeV R
B =0 | || —Lree sy
0,1,..,Nk-1 nit — e
a=0,1,.., - i -
N N,k//,—_l | Vienk=V ik
it [— Lo v,

Output vector
is calculated

Fig. 3. Idea of systolic array for retrieving algorithm

4. Efficiency of systolic arrays for Hopfield neural network

4.1 Computation time and Block period
This is time between starting the first computation and finishing the last computation of

problem. Given a coprime schedule vector s, the computation time equals (Kung, 1993),
(Zhang, 1999):

T:max{ET(ﬁ—c})}+1 (6)

el

www.intechopen.com

164 Computational Intelligence and Modern Heuristics

L - is the index set of the nodes in the Data Dependence Graph

Block Period is time interval between the initiation of two successive blocks of operations
(Kung, 1993), (Zhang, 1999). In the presented architectures for all algorithms the schedule
vector is defined as: § = [1 , 1]. For Hebbian training implementation - taking number of basic

operations into account - we can calculate the computation time and block period as:

N-1 N1
Tt = 3N(T + IJTM T = 3N[T + 1}[(7)

In fact the Data Dependence Graph for this algorithm is combined by two independent
structures of operations. The computation time for both parts of algorithm isn’t the same
because the number of basic operations is different, number of nodes and the topology of
them is the same. Additionally the estimated computation time ought to be modified by
number of iterations related to single training pattern:

~—

N-1 N-1
T.\'y.\'lol = SN[K + lijﬂ T;ﬂm'k = SN(T + l]Tﬁ (8

7 - processing time for elementary processor, M - number of training patterns,
- number of iterations for single training pattern, K - number of elementary processors.
The retrieving algorithm also requires multiple presentation of each pattern but single

retrieving procedure doesn’t require all patterns at the same time. The computation time we
can describe using the following equations:

systol

N +1 N+1
T = 2N(K +1jTﬂ 7-;7/1)4‘/(= 2N(T+ljf (9)

In all equations we can find parameter denoted as K - the number of elementary processors.
This way the FTC parameter of the structure can be discussed. The definition of SIMD
architecture guarantees the unique construction and function of processors - so if we can
observe the changes of efficiency parameters related to the number of used processors we
can say a lot of the results of the failures. But we have to remember that using only single
processor it is possible to realize the whole calculation process. Of course the efficiency
parameters will be very poor, but the structure is still working.

4.2 Pipelining period
This is the time interval between two successive computations in a processor. As previously
discussed, if both d and § are irreducible, then the pipelining period equals to:

a=s"d (10)

The pipelining period is the same for all algorithms - equals to: & = 1 - is as short as possible
(Kung, 1993) (Ferrari & Ng, 1992) (Shiva, 1996).

www.intechopen.com

SIMD Architecture Approach to Atrtificial Neural Networks Realisation 165

4.3 Speed-up and Utilization rate

Lets define the speed-up factor as the ratio between the sequential computation time T,
and the array computation time Tgyst0r and the utilization rate as the ratio between the
speed-up factor and the number of processors (Kung, 1993).

speed —up
K

9 utilization rate =

speed —up = (11)

systol

Sequential computation time for Hopfield neural network algorithms - taking number of
neurons, number of weights and number of basic operations into account - equals:
- for Hebbian learning:

T, =3N’tM (12)
- for Delta-rule learning;:
T, =5N*tMp (13)
- for retrieving algorithm:
T, =2N(N+2)p (14)

Based on values of array computation time calculated in chapter 4.1. we can evaluate:
- for Hebbian learning:

utilization rate = L (15)
N-1+K N-1+K

speed —up =

- for Delta-rule learning;:

NK
d —up =————— utilization rate = 16
speed —up N1+ K utilization ra N1k ()
- for retrieving algorithm:
N+2)K
speed —up = () utilization rate = e (17)
N+1+K N+1+K

The classical parameters calculated for presented architecture are also related to the number
of active processors. We can model the speed-up and utilization rate in function of not-failed
processors — we can control the efficiency in case of FTC features of proposed architecture.

5. Kohonen neural network algorithms

5.1 Learning algorithm
The learning algorithm is based on the Grossberg rule (Mazurkiewicz, 2005a)
(Mazurkiewicz, 2005b). All weights are modified according to the following equation:

www.intechopen.com

166 Computational Intelligence and Modern Heuristics

Wiy (k+1) = wyy () + 7UOAG™ Y,)0 —wy (k) (18)

k - iteration index, 7 - learning rate function, x; - component of input learning vector, wy; -
weight associated with connection from component of input learning vector x; and neuron
indexed by (i,j), A - neighborhood function, (i# ,j») - indexes related to winner neuron, (i, j) -
indexes related to single neuron from Kohonen map.

The learning rate 7 we assume as a linear decreasing function. Learning rate function is
responsible for the number of iterations - it marks the end of learning process. The presented
solution is based on the following description of the neighborhood function (Asari &
Eswaran, 1992):

1 for r=0
A7) =T re[(),z—”) (19)
ar a

0 Jor other values r

a - neighborhood parameter, r - distance from winner neuron to each single neuron from
Kohonen map, calculated by indexes of neurons as follow:

r=Alr=if + ("= jf (20)

The learning procedure is iterative: weights are initialized by random values; position of
winner neuron for each learning vector is calculated by ordinary Kohonen retrieving
algorithm using random values of weights; weights are modified using Grossberg rule (18);
the learning rate is modified, the neighborhood parameter a (19) is modified and if the
learning rate is greater than zero weights are modified by the next learning vector, else the
learning algorithm stops (Mazurkiewicz, 2003a).

5.2 Retrieving algorithm

During the retrieving phase the Euclidean distance: the weights vector and the output
vector is calculated. The winner neuron is characterized by the shortest distance
(Mazurkiewicz, 2005b) (Mazurkiewicz, 2003a). Each neuron from Kohonen map calculates
the output value according to the classical weighted sum:

Out(i, j) = gx,w,,/ (21)
=0

Out(i, j) - output value calculated by single neuron of Kohonen map indexed by (i, j)

6. Data Dependence Graphs for Kohonen neural network

6.1 Kohonen learning algorithm

For 1-D Kohonen map neurons are placed is single line, each neuron has two neighbors,
excluding neurons at the ends of line. For such topology there are (N x K) weights if we
assumed N-element input vector and K neurons which create the Kohonen map. 1-D
Kohonen map ought to be described by rectangular Data Dependence Graph (Fig. 6.). Each
node of the graph is responsible for single weight calculation. using Grossberg rule (18)

www.intechopen.com

SIMD Architecture Approach to Atrtificial Neural Networks Realisation 167

(Fig. 4.). The current value of the weight is stored in the local memory of each node. The
node decreases the learning rate in automatic way. The size of the graph equals to the size of
the weight matrix. Each node of the graph is loaded by two signals. The neighborhood
function is calculated using sinus function. We propose to place the values of sinus in a table
and store them in a local memory of each node. The neighborhood parameter a (19) is also
stored in the local memory and is sequential reduced by negative counter.

¥ Al)

Fig. 4. Single node of Data Dependence Graph for learning algorithm

6.2 Kohonen retrieving algorithm

1-D Kohonen map is described by rectangular Data Dependence Graph (Fig. 7.). Each node
of the graph calculates the component of the weighted sum (21) (Fig. 5.). The necessary
weight value is stored in a local memory of the node. The size of the graph equals to the size
of the weight matrix.

Out(i,j)

) //'\)

Out(i,j)+xuvy;j

Fig. 5. Single node of Data Dependence Graph for retrieving algorithm

www.intechopen.com

168

Computational Intelligence and Modern Heuristics

AGJ% AW AGJY) AG) l»

n

a
XN é w é w w w
- IN1 y IN2 LNS_ > INK

A gr) A@) ALY AT l?

g a
. R nk
Wiz /Wgs_ > Wik
a_ P a > Wisk
n(k) n(k) n(k) a
’ : T](k)
Wi Wik
L
n(k) n(k) g] ®

Wiss Wisk
53y 1

a a a
:n(k) ! n ! nk)

a a
nk nk nk

Fig. 6. Data Dependence Graph for learning algorithm of Kohonen map

X 4 %
w, w w w
Ml M2 M3 MIK
. 4
... 14 //
s d

Wint

Out(1,1)

- —>
>
Ve

7

w
’ l - MK

/
Wis_ Wik

Wask
Wiz Wik

Wik
Wiss > Wisg

I I
I I
Out(M,K)
Winz ?WLN.L > ?WWK -

Out(1,2) Out(1,3) Out(LK)

Fig. 7. Data Dependence Graph for retrieving algorithm of Kohonen map

www.intechopen.com

SIMD Architecture Approach to Atrtificial Neural Networks Realisation 169

7. Mapping Data Dependence Graphs onto systolic array

The Data Dependence Graphs for retrieving and learning algorithms are local and
composed by the same number of nodes. The single neuron operations are described by the
column of the graph (Mazurkiewicz, 2003a). Multi-dimensional Kohonen map is described
by the set of 1-D Data Dependence Graphs (Fig. 6.) (Fig. 7.). It means that the slabs work in
parallel (Asari & Eswaran, 1992) (Mazurkiewicz, 2003a) (Mazurkiewicz, 2003b). The graphs
can be converted to an universal structure able to implement learning algorithm as well as
retrieving algorithm using processors with switched functions (Fig. 8.) (Kung, 1993) (Asari
& Eswaran, 1992). The systolic arrays are the result of the linear projection of Data
Dependence Graphs onto lattice of points, known as processor space. The elementary
processor combines operations described by nodes taken from single vertical line of the
graph (Zhang, 1999) (Petkov, 1993).

A) AQv,) AGYJY) Al TY)

Wi W12 W-113 Wi-11N
B XN Xa Xz X, Wi-1n Whe V.Vg-1_N; .
' a a a a
. n(k) n(k) nk) k)
COAG V) A) A AGY) '

: Wor1 V_Vo12 W_ 013 W_ 01N
XN X3 Xz X4 N : ; :
W, W, W, W,

'ON1 ON2 ON3. ONN

W TRl A Ak

Fig. 8. Systolic array for learning algorithm of Kohonen neural network

8. Efficiency of approach proposed for Kohonen neural network

An efficiency of proposed approach is estimated using the algorithm proposed by Kung
(Kung, 1993) and modified for MANTRA computer analysis (Zhang, 1999) (Petkov, 1993).
The estimation is based on the dimensions and organization of the Data Dependence
Graphs. A computation time for retrieving algorithm equals to:

T=(N+K-l)r (22)

7 - processing time for elementary processor. The computation time for learning algorithm:

T'=(N+K-1)Mnt (23)

M - number of learning vectors. Speed-up and processor utilization rate are exactly the same
for retrieving and learning algorithms - assuming possible sequential computation time:

K N
speed —up = N utilization rate = (24)
N+K-1 N+K-1

www.intechopen.com

170 Computational Intelligence and Modern Heuristics

9. Hamming net description

The Hamming net implements the optimum minimum error classifier when bit errors are
random and independent. The performance of the Hamming net is proved in problems such
as character recognition, recognition of random patterns and bibliographic retrieval. The
feedforward Hamming net maximum likelihood classifier for binary inputs corrupted by
noise is presented in (Fig. 9). The Lower Sub Net calculates N minus the Hamming distance
to M exemplar patterns, where N is the number of elements in one pattern. The upper sub
net selects that node with the maximum output. All nodes use threshold logic nonlinearities,
where it is assumed that the outputs of these nonlinearities never saturate. Thresholds and
weights in the Maxnet are fixed. All thresholds are set to zero and weights from each node
to itself are 1. Weights between nodes are inhibitory with a value of -5 where & < I/M
(Ferrari & Ng, 1992). The connection weights and offsets of the lower sub net are assigned as
(Kung, 1993):

W= 0, =% (25)

for 0 <i <N-1and 0 <j <M - 1, & - the threshold in that node, wj; - the connection weight
from input i to node j in the lower sub net. The connection weights in the upper sub net
(Maxnet) are fixed as:

L k=1
W’*:{—g if okl (26)

for 0 <1, k <M and & < 1/M, wy- the weight from node k to node [in the upper sub net and all
thresholds in this max net are kept zero. The outputs of the lower sub net are obtained with
unknown input pattern as:

1= 2w,x,-0), 27)

for 0 <i <N -1and 0 <j <M - 1. The inputs of the Maxnet are initialized with threshold
logic nonlinearities:

y,0=flu) (28)

for 0 <j <M - 1. The Maxnet does the maximization:

)
y,_(t+1):f,[y,(t)s;yk(t)J (29)

for 0 <j, k <M. This process is repeated until convergence. (Kung, 1993)

10. Data Dependence Graph for Hamming neural network

Each node in Data Dependence Graph responsible for Lower Sub Net multiplies the input

www.intechopen.com

SIMD Architecture Approach to Atrtificial Neural Networks Realisation 171

signal x; and corresponding weight w;; which is stored in local memory unit. The product of
multiplication is passed to the nearest neighbor on the right hand. The input signals x; are
passed to the nearest bottom neighbors. The x4 nodes collect the partial products and
calculate the global value of coproduct (27). The last N-1 columns of nodes on the right are
responsible for Maxnet. They transmit step by step the partial results among the neurons
which belong to the Maxnet. and they calculate the output value (29) (Mazurkiewicz, 2003b).

*0
)
X1
h ; P Y4
Input
]] |]
Qutput
XN_Z [] [] »
YM-1
XN Lower Sub Net Maxnet

Calculates Matching Scores Picks Maximum

Fig. 9. Hamming neural network

Yo

Y

Yo

y N-1

Fig. 10. Data Dependence Graph for Hamming neural network
11. Systolic realisation of Hamming neural network

The Hamming net algorithm is modified for convenience to implement in a parallel systolic
architecture. For that the following changes are made: the inputs are considered binary - 0

www.intechopen.com

172 Computational Intelligence and Modern Heuristics

and 1 - instead of 1 and -1, the weights are made 1 and O instead of +0,5 and -0,5
corresponding to a pattern. This will avoid the subtraction of the threshold & = 0,5 * N after
the summation. The weights are obtained by the following algorithm.

w.=x/ for 0<i<N-1 and 0<j<M-1 (30)

Ji i

The activation function of the lower sub net is updated as follows:
(k=1)-1 if Ow,|=1
= P wow) 1)
/ Y (k-1) if (x,@w/,)zo

yi=yi(N)for 0 i <N-1and 0 <j <M -1 and 0 <k <N. It is possible to constitute the
maximization network with a layer of up counters, whose outputs are changed with the
following algorithm:

(k-1)+1 if AND 0
y,(k>_{y o 0)] (32)

y - i AND| O} =

O; - the output vector, obtained from the MSBs - sign bits - of these counters

11.1 Elementary processor realization of Hamming neural net

(Fig. 11) presents the parallel implementation of the algorithm for Hamming net using only
digital circuits. The input vector corrupted by noise is applied to the input register when ILP
- Input Load Pulse - is present. The down counter is cleared by this signal. The input data is
applied sequentially to each processing element with the Shift Control Pulse SP’, which is
derived from SP and LCP - Load Counter Pulse: not(LCP) & SP. At the same time the weight
register is also shifted once by the same signal. The content of the down counter is updated
according to the (8) with the presence of the pulse CP’, which is derived from CP and ILP:
not(ILP) & CP.

Input Input

Pattern Register Down Up Output

Counter Counter Register
MSB Vi

ARy, Ay ‘ AL AA

SP’ X LI— CPILP CP'LCP ':])— oLp
>

Fig. 11. Single slab implementation of Hamming network

The data obtained in each register after N steps will be negative. They are transferred to the
up counters when LCP signal is present. LCP signal is applied only after N shift operations
of the input register and weight registers are performed. The MSBs of the register contents
will be the sign bits, which will be 1 for all the data at this stage. The MSBs give the output

www.intechopen.com

SIMD Architecture Approach to Atrtificial Neural Networks Realisation 173

vector O; for 0 <j <M - 1. The up counters constitute the Maxnet, which will count up when
CP’ signal is present. The operation of the up counter is stopped by a control signal OLP -
Output Load Pulse - derived from the output vector O;. When any one of the sign bits of the
registers becomes 0 (its content becomes positive) OLP stops the operation of the up counter
and thereby the neuron with the largest activation function wins the competition. The
output pattern is the inverted output of the vector O; which is obtained when OLP signal is
present.

12. Efficiency of Hamming Net Systolic Implementation

12.1 Computation time
The first part of Data Dependence Graph (Fig. 10) is responsible for Lower Sub Net
calculation. This part is spread on N elements in horizontal point of view. The second part
guarantees the data communication within Maxnet. Here we have N-1 elements in
horizontal axis. The total computation time for retrieving algorithm taking into account the
computation time for Lower Sub Net and the computation time for Maxnet can be
calculated as (7 - processing time for elementary processor):

T, =(4N =3)z (33)

systol

12.2 Processor utilization rate
If we assume that all elementary processors need the same time-period to proceed their
calculations the speed-up and utilization rate factors can be estimated as:

_ 2N -1
M utilization rate = ()

4N -3 4N -3 (34)

speed —up =

13. Conclusion

The comparison of the same criteria for two methods of learning is the most interesting part.
Computation Time - if we assume single presentation of each training vector - is less then
two times longer for Delta-rule learning. Of course such assumption is true for Hebbian
learning but isn’t in general true for Delta-rule. Each next presentation of training set makes
the Computation Time longer and the dependence is directly proportional.

It is very interesting we can observe exactly the same Speed-Up and Processor Utilization
Rate both for Hebbian and Delta-rule learning procedures. The necessary time-period for
calculation of Delta-rule procedure is longer than time-period related to Hebbian learning -
but elementary processors’ using is the same. The results of discussion show that it is
possible to create the universal structure to implement all algorithms related to Hopfield
neural network. This way there are no barriers to tune the Hopfield net to completely new
tasks. The proposed methodology can be used as a basis for VLSI structures which
implement Hopfield net or as a basis for set of general purpose processors - as transputers
or DSP (Shiva, 1996). Proposed methodology for Kohonen neural is based on classical and
not modified algorithms related to Kohonen maps. It is possible to realize the obtained
subtasks by software processes, but also using dedicated neuro-computers like MANTRA
(Zhang, 1999) (Petkov, 1993).

www.intechopen.com

174 Computational Intelligence and Modern Heuristics

The Hamming net algorithm is modified suitably for the systolic implementation. The
systolic algorithm for the computation of the activation values of the lower sub net is
developed. The upper sub net which acts as a maximization network is constructed by using
simple counters. The main advantage of the proposed architecture is that it can be easily
extended to larger networks.

The minimum values of the efficiency parameters are calculated for the proposed structure
with single available (not-failed) processor. The maximum values are related to the optimal
number of used processors. This way it is possible to observe the changes of the values as a
function of ready to use elementary processors. We can model the influence of the decrease
of the number of processors for the global efficiency of the system.

Learning Retrieving
Hebbian rule Delta-rule phase

Computation

time Toystor | 32N 1)z M/3N*M | 5N -1)c Mg/ 5SN*aMp | 22N +1)c B/ 2N(N +2)8
(min)/(max)

Speed-up 1/ N* 1/ _N° 1/ (N+2)N
(min)/ (max) 2N -1 2N -1 2N +1

Utilization N /1 N g N+2 /q

rate 2N -1 2N -1 2N +1

(min)/ (max)

Table 1. Efficiency parameters for ring systolic structure related to Hopfield neural network
algorithms - possible minimum and maximum values

14. References

Asari, K.V. & Eswaran, C. (1992). Systolic Array Implementation of Artificial Neural Networks,
Indian Institute of Technology, Madras

Ferrari, A. & Ng, Y.H. (1992). A Parallel Architecture for Neural Networks, Parallel
Computing’91, pp. 283-290, Elsevier Science Publishers B. V.

Kung, S.Y. (1993). Digital Neural Networks, PTR Prentice Hall

Mazurkiewicz, J. (2004). Feedforward Neural Network Simulation Based on Systolic Array
Approach, NETSS 2004, pp. 17-22, ACTA MOSIS No. 94, MARQ., Ostrava

Mazurkiewicz, J. (2005a). Kohonen Neural Network Learning Algorithm Simulation Based
on Systolic Array Approach, MOSIS'05 Conference Modelling and Simulation of
Systems, pp. 202-207, ACTA MOSIS No. 102, Ostrava

Mazurkiewicz, J. (2005b). Systolic Realization of Kohonen Neural Network, Artificial Neural
Networks: Formal Models and Their Applications - ICANN 2005, pp. 1015-1020, LNCS
3697, Springer-Verlag Berlin Heidelberg

Mazurkiewicz, J. (2003a) Systolic Realisation of Self-Organising Neural Networks, ICSC
2003, pp. 116-123, EPI Kunovice

Mazurkiewicz,]J. (2003b). Systolic Simulation of Hamming Neural Network, Advances in Soft
Computing, pp. 867-872, Physica-Verlag Heidelberg, A Springer-Verlag Company

Petkov, N. (1993). Systolic Parallel Processing, North-Holland

Shiva, S.G. (1996). Pipelined and Parallel Computer Architectures, Harper Collins Publishers

Zhang, D. (1999). Parallel VLSI Neural System Design, Springer-Verlag

www.intechopen.com

, Computational Intelligence and Modern Heuristics
Compulational Intelligence . i
and Modern Heuristics Edited by Al-Dahoud Ali

st e 4

ISBN 978-953-7619-28-2

Hard cover, 348 pages

Publisher InTech

Published online 01, February, 2010
Published in print edition February, 2010

The chapters of this book are collected mainly from the best selected papers that have been published in the
4th International conference on Information Technology ICIT 2009, that has been held in Al-Zaytoonah
University, Jordan in the period 3-5/6/2009. The other chapters have been collected as related works to the
topics of the book.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jacek Mazurkiewicz (2010). SIMD Architecture Approach to Artificial Neural Networks Realisation,
Computational Intelligence and Modern Heuristics, Al-Dahoud Ali (Ed.), ISBN: 978-953-7619-28-2, InTech,
Available from: http://www.intechopen.com/books/computational-intelligence-and-modern-heuristics/simd-
architecture-approach-to-artificial-neural-networks-realisation

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE DEHERFERESS HiBEPR R A IRIE IMAE4058 7T
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed under
the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0
License, which permits use, distribution and reproduction for non-commercial
purposes, provided the original is properly cited and derivative works building
on this content are distributed under the same license.

