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1. Introduction

The accuracy modelling of parallel-type robot structures is based on finding out the position and
orientation errors of the end-effector in relation with the modelled error-sources. In the case of small
(infinitesimal) deviations, the error model is expressed through a linear function using special
matrices called error Jacobeans (Neagoe, 2001). Hence, the main objective of accuracy modelling is to
express the error Jacobeans.

The accuracy modelling of the parallel robots represents a real challenge for the researchers, due to

the high level difficulties implied in the direct modelling of the errors and, as a result, in the error-

Jacobean description. Unlike the case of the serial robots, the analytical expression of the direct

error-Jacobean for parallel structures is generally inaccessible or very complex; contrary, the inverse

Jacobean can be obtained without major difficulties.

The studies referring to the precision modelling of parallel structures are scarcely found in

literature, the most of the papers dealing especially with the inverse kinematics problem of parallel

structures. There can not be found important results concerning the direct Jacobean modelling,
neither a generalization of modelling, due to the severe difficulties of modelling. Many papers
present specific solutions for different specific parallel structures: Tau parallel robot (Cui et al.,

2008), six-dof parallel kinematic machine Linapod (Pott & Hiller, 2008), a 4-DOF parallel

manipulator H4 (Wu & Yin, 2008), 3-DOF planar parallel robots (Briot and Bonev, 2008), etc.

Currently, the problem of the parallel robots kinematics is reduced to the expression of the inverse

kinematic Jacobean.

Three representative methods applied in kinematic modelling of parallel robots were identified:

1. The partial derivatives method, which consists firstly in identifying the geometric relations
for the modelled parallel structure and, than, the partial derivation relative to the
independent parameters (Merlet, 1990; Merlet & Gosselin, 1991). Generally, the obtained
model can be expressed by the relation A-dq =B-dX, used for the joint velocities dq/dt

calculus in relation with the operational velocities dX/dt. In this case, the inverse matrix A-1is
easily obtained, A being a square matrix for Stewart platforms. On the other hand, to express
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76 Computational Intelligence and Modern Heuristics

the operational deviations dX and, implicitly, the direct Jacobean assumes to inverse the
matrix B, which has the dimension equal to the number of independent modelling
parameters.

2. The vectorial method, which expresses the articular velocities through the vectorial relations of the
kinematic modelling of velocities (Benea, 1996; Merlet, 1990).

3. The kinematic screws method, which obtains the kinematic model by vectorial transformations
applied to the pliickerien coordinates of a line in space (Ficher, 1986; Lee et al., 1999; Toyama &
Hatae, 1989).

Starting from the previous revealed aspects, the authors propose in the paper a general

method, based on the use of homogenous operators, useful for accuracy modelling of

parallel structures with any configuration and complexity, with application for a Stewart-

Deltalab parallel platform.

The chapter is structured in four main sections. The first section introduces the theoretical

background on the proposed method meant for accuracy modelling of parallel robots and

presents the steps and mathematical support of a general algorithm derived from this
method.

In the second part, the proposed modelling is concretely applied to derive the accuracy

model of the Stewart-Deltalab platform, considering the independent kinematic parameters

(independent joint variables) as error-sources. Numerical examples will be presented, based

on the analytical closed-form accuracy model previously obtained.

The third section will contains the authors’ contribution to the modelling of the Stewart-

Deltalab platform accuracy, applying the same proposed modelling method and algorithm,

considering a set of geometric parameters as error-sources. Also, numerical examples will

be done.

In the last section, relevant aspects regarding the experimental testing of the error models used

in accuracy studies of spatial parallel-structures will be presented. The theoretical accuracy

models of the Stewart-Deltalab platform are verified by experimental testing, in conformity
with a concrete experimental research program and a specific mathematical support.

2. Theoretical background

The method proposed for parallel robot accuracy modelling includes three main steps:

1. Breaking of parallel structure into open kinematic chains (OKC) and description of the error models
for the obtained OKC, considered as independent chains, by applying the specific error modelling
of serial robots (Gogu, 1995; Gogu et al., 1997).

2. Recovering the parallel structure by assembling the error models of OKC and finally expressing
the dependent errors.

3. Description of the end-effector errors related to the independent errors, by replacing the dependent
errors in the error model derived for one of the OKC (step 1) with their corresponding
expressions (identified at step 2).

Explanatory notes:

— Structurally, a parallel robot includes:

e Active (actuated) joints; the relative displacements in the actuated joints are the robot
generalized variables (independent joint variable) of the structure. Thus, the deviations
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of these variables become input errors (independent errors) in the accuracy
modelling.

e Passive (non-actuated) joints; these joints are included in any parallel structure in
order to obtain parallel-type links. The relative displacements in passive joints are
functions of independent joint variables and, hence, displacement errors in passive
joints, called dependent errors, depend on the independent errors.

— Modelling the influence of geometrical parameters on the end-effector accuracy is done
on an equivalent structure, obtained from the initial structure by associating fictive joints to
the geometrical parameters affected by errors: a prismatic joint is introduced for each
linear error and a revolute joint - for each angular error.

— The proposed modelling requires only the inverse geometrical model of the parallel
structure and the direct geometrical models of OKC. All these models are expressed,
generally, without significant difficulty.

The general case of a parallel robot structure (Fig. 1,a) is considered; it consists of a mobile

platform (m) connected to the fixed one (f) by p kinematic chains (legs) A;B;, in a parallel

layout. The spatial guiding of the mobile platform is obtained by actuating n joints
nominated as active joints. In practice, generally p = n, each leg including only one active
joint. For the sake of clarity, the following explanations have to be mentioned:

— For the simplicity, but without reducing the generality, Figure 1 shows only
symmetrical legs in a parallel layout and their connecting joints to the base and moving
platforms. In a general case, the robot legs can have different structures and usually
include intermediate joints.

— The breakage of the parallel structure can be done in different ways: to the characteristic

point of the end-effector, to the base joints or to any intermediate joints.

Mobile
platform

(m)

Armi

Base (fixed)
platform (f)

Fig. 1. Parallel robot structure in a general configuration (a), and the open chain i obtained
by "disassembling" the parallel structure (b)
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— In the following modelling, the independent parameters will be designated by notation pja,
while the dependent parameters by pay; pi, and pf,L,p designate independent parameters

and respectively dependent parameters for the leg k (OKC k) of the parallel structure.

—  The independent parameters pina designate active joint variables, in the case of joint error
modelling, or geometrical parameters when the error model for geometrical deviations
has to be established. In the global error modelling, both types of kinematic and
geometrical parameters are considered independent.

— The end-effector errors can be reduced in the base, end-effector or other intermediate
reference frame. In order to simplify the notations, the reference frame where the errors
are reduced is not specified.

The proposed modelling begins with a preliminary step: breaking the parallel structure into

open kinematic chains (OKC); there are many splitting variants that can be applied, each of

them giving specific features to the modelling algorithm (Neagoe, 2001). The variant used in

the paper is based on breaking the parallel structure in the origin O,, of the mobile frame R,

obtaining the open chains O/A;B;O,, i =1..p (Fig. 1,b); all the open chains have the mobile

platform (end-effector) as the final element. The obtained p independent OKC have the same
property: their extremity points are permanently coincident and, consequently, the end-effector’s
errors for all the p OKC are identically!

Further on, the steps of the proposed modelling algorithm and its specific mathematical

aspects are briefly presented.

Step I: deriving the end-effector errors for the p OKC

By applying the well known relations for open kinematic chains accuracy modelling (Gogu,
1995; Gogu et al., 1997 ; Paul, 1981), in the case of OKC i will be obtained:

l—d_

d
& e I 0 e, ) )
)
)

where J;, is the error Jacobean for the independent errors and ];L,p - the error Jacobean for the

dependent errors of the parallel structure, i = 1..p. In this step, having only independent open
kinematic chain (OKC), all the modelling parameters are characterized by independent errors.

Step II: identification of the dependent errors

In the parallel structure, the end-effector’s errors are the same for all the p OKC (the existence
condition of a parallel structure). As a result, the following p-1 independent matrix equations
are obtained:

[, aps i Vaws, J= s ] lawt )+ s, s, ) = @)
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Without reducing generality, the following assumptions can be accepted: j =1 and k =2..p or
j =1.p-1and k = j+1. Grouping together only the dependent terms from the left member of
the equation (2), the relation (3) will be obtained:

b, e, J- s, aws, ) = O D lapt, -] lapl . 3)

The p-1 equations (3) are grouped into a matrix system (4):

0., s |= 0] p, ] (4)
where:
Jio ~Jipy O - 0 ~Joa Tow O 0 0
L O A I R
Jip O U —i3,,d 6 6 Vi

[dpm,p]= [dpiw dp, - dpi;,p]r lap,..]= lapt, dp?, - app.].

Finally, the dependent errors can be expressed through the following relation:
[dpdcp ] = []dcp }1 ' Dind ] [dpind ] = []:h’p ] [dpind] N (5)

The central problem of this modelling is to reverse the matrix Ju,. For kinematically
determinate structures, matrix Js, is always a square matrix of sxs dimension; s is equal to
the number of dependent parameters and does not depend on the number of independent
parameters considered in modelling. For the structures with a reduced complexity, the
reversion can be obtained analytically; for the other cases, a numerical approach is
recommended.

Step 1II: end-effector errors establishment

The end-effector errors can be expressed by introducing the dependent error expressions
(rel. 5) into (rel. 1), particularised for each arm. Considering the chain i, the end-effector
errors become:

d
d
ZZ = [] ;nd] [dpjnd]+ [] fz’ep] [] fit.ﬁ:l [dpind] = [] ][dpind] . ©)
)
)

Introducing the notation

*

| o T S s o ?)
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the error-Jacobean J of the parallel structure can be described as:

LI N S e o 8)

The Jacobean matrix J given by relation (8) describes the linear transformation of independent
errors into operational errors associated to the end-effector. The complexity of the Jacobean J
depends on the reference frame used for reducing the errors. Most frequently in practice, the
Jacobean ] is reduced in the final reference frame %R, or in the fixed frame Ry (Fig. 1).

3. The Stewart platform presentation

The Stewart DELTALAB platform (Fig. 2) is a parallel manipulator, composed by a moving
platform connected to the base through 6 telescopic legs (of variable length). The links
between the six legs and the two platforms are materialized by spherical joints.

The parallel structure geometry is completely defined by the coordinates of the points A; si B; (the
centres of spherical joints, Fig. 3), which can be established by means of parameters ry= 270 mm;
=195 mm; o = 4.25°%; 3 = 5.885° (Fig. 2).

As a result, the analyzed Stewart platform can be geometrically defined as follows (Fig. 2):

The fixed platform:

— The fixed coordinate system attached to the fixed platform: R{Omxsyzy), is placed in the
plate’s centre (the centre of the circle of radius 1y).

— The centres of the spherical joints, formed of the six cylinders (legs) with the fixed
platform, are placed in points A;, distributed on the circle of radius ry.

— The points A; are organized in equidistant groups formed of two appropriate adjacent
points separated by the angle 2o

The moving platform:

— The mobile coordinate system: R,,(OnXnymzn), placed in the plate’s centre (the centre of
the circle of radius r,,).

— The centre points B; of the spherical joints, distributed on a circle of radius 1.

— The points B; are also organized in equidistant groups with the centre angle 2f.

The platform initial position (at minimum high) is characterized through the position of
point O, in Rf (see Fig. 2), the moving platform being parallel to the base. The distance
between O,,; and Oy in this position is defined by the parameter i1 = O0,, = 326.679 mm, for
which the minimum length of the cylinders (active joints) is L;= A;B; = 387 mm.

The spatial guidance of the mobile platform related to the fixed one, is described by a set of 6
parameters:

e 3 position (displacement) parameters, given by the coordinates of the point O, in
relation to the reference frame R, attached to the moving platform, expressed in the fixed
reference frame Ry,

—_—

Orn‘om = xmif + y”’jf + kaf ’ (9)

e 3 orienting parameters: the angles 04, 02 si 63, which characterize the reference frame R,
orienting in relation to the reference frame R,,; the associated rotational matrix is described
by the following relation:
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The moving —
platform

Ll

The fixed
platform

Fig. 2. The structure of the Stewart-DELTALAB platform (a) and of the leg i (b)

%Z m

,\.\. $ym | B

(Pzi, (pyi, (Pxi

Vxi, Yyi i

Fig. 3. Decomposition of the parallel structure in open chains and their parameterization
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c0,c0, —s0,50,50, —s0,c0, 0,50, +50,50,c0,
R, =R.(0,)-R,(6,)R,(6,)=|50,c0, +c6,50,50, ¢6,c0, 50,50, —c0,50,c0, |, (10)
—0,50, s0, c0,c0,

where ¢6; = cos(6;) and s0; = sin(6;).

The position of the points A; in the fixed reference frame Ry is defined through a set of
spherical coordinates (a5, ouf, 1), and of the points B; through coordinates (B.mi, Bymi, Tmi)
defined in R, (Fig. 3). The relative angular displacements from joints A; are modelled by
means of angles y,; and y, (Fig. 3,b) and the displacements from the spherical joints B; by
means of angles (¢zi, Pyi, Pui).

4. Direct error modelling

The objective of the direct error modelling is to establish the operational errors of the
end-effector related to the values of the source errors; in the paper both active joint variable
errors and geometric errors are considered.

4.1 Joint variable errors modelling

In this section, the error sources considered in the accuracy modelling are nominated by the
relative displacements from the active joints (the prismatic joints C;, Fig. 2,b). In the
infinitesimal errors hypothesis, the error model becomes a linear model, where an error
Jacobean Ji describes the influence of the independent kinematical parameters (Li,..., Ls) on
the end-effector accuracy. This modelling is based on the following assumptions: a) the
modelling of I order errors is used; b) the geometrical parameters of both moving and fixed
platforms have no errors (ideal geometry); c) the passive joints (joints A; and B; ) are ideal
joints; d) the error model expresses the end-effector errors for the characteristic point P
(Fig. 3,a); e) The errors are reduced in the end-effector reference frame %,.

In these assumptions, the linear error model is expressed by the following relation:

(], =[], (a1, (11)

where [dX]} :[dx d d 3§, 39, SZ]; is the 6 dimensions vector of the operational errors of

the end-effector, for point P, reduced in R, while[dL] =[dl1 dL, dL, dIL, dL d[s]T is the
vector of the active joint variable errors.

According to the error model (rel. 11), the central objective of this modelling is to establish the error
Jacobean Ji (through a similar approach, the error Jacobean Ji can be expressed also in any other
frame).

In order to describe the Jacobean Ji, the former algorithm (section 2) is proposed further on.

Step 1. Description of the end-effector errors for the six open chains (OKC)

Due to the fact that the effector errors are described in the reference frame R,, the direct
kinematic modelling for finite displacements of OKC must be done with the homogenous
operators of D-F type (type K) (Gogu, 1995; Gogu et al., 1997). The kinematic model will also
include, in this step, the relative displacements from the passive joints A; and B; as independent
parameters.
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The operational errors of each OKC can be now described easily by applying the
well-known relations for open chains (Gogu, 1995; Gogu et al., 1997):

I_dxi_ _SYXi_

d;/,' &/yi

d,. dL, _

L b e g ] is e &
Xi (pzi

63/1 S(P.‘/i

_821‘_13 _8(pxi_

where the column vectors from matrix J; describe the influence of the errors of the modelling
parameters.

Step 2.Identification of dependent errors

By splitting the parallel structure into open chains, the passive joints A;and B; became fictively
actuated and, so, the displacements errors from these joints became independent too. In the
parallel structure, all these errors are dependent of the independent error sources L; That's
why, to express the dependent errors related to the independent ones represents the
objective of this step; this desideratum becomes possible by modelling the recovering of the
parallel connections of the Stewart platform, for which the following condition is used: the
effector errors are the same for all the six OKC; analytically, the condition is expressed through
the following equalities:

d, 87 | 87,6 |

d.t/i &/Jﬂ 67}/6

d, =[] ] dL, =--~=[J ] dL, , (13)
3, | 8o, Y 8.

S, 5¢,, 5(py6

_Szi_p _S(Pn_ _S(Pxé_

which lead to 5 independent matrix equations. Applying separation of dependent terms
from the independent ones, the following relation is obtained:

_SYxl ] i SYXk
SYyl SYyk
]Yn ]yvl ]q):] ]“Pyl ]q)v‘1 ] 8('p21 - I:]y\A ]y”A ]LD:L ]guvA ](P;k ] 8('ka = ]L‘ de - ]L1 dLl 4 (14)
5, %0,
_6(‘px1 ] _6(pxk _
fork=2.6.
The systems (14) are assembled into one matrix equation:
i} o)<l ] [, (15)
where [30]= [SYﬂ 8, 08¢, d¢, 080, - 39, 8(px6] "is  the global vector of

dependent errors, while
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_](bl _J(I)Z 0 0 0 0 __]Ll ]L2 0 0 0 0
](bl 0 _](l>3 0 0 0 _]Ll O ]L3 0 0 0
Dol={Je 0 0 -3 0 o |, [il=|-Jn 0 0 J, 0 0], (6
](Dl 0 0 0 - ](I)S 0 - ]Ll 0 0 0 ]L5 0
_](Dl 0 0 0 0 _]cbé_ __]Ll 0 0 0 0 ]L6_
Y=l T T T, )| k=1.6and [aL)=[or, dr, - dL].
Finally, the dependent errors can be expressed with relation (17):
sol=[r, '] faL)=[r Hav). (17)

The main problem for expressing analytically the error model consists in reversing the

square matrix []q,] of 30%30 dimension. In the case of Stewart platform, the reverse matrix

[]:D] was obtained numerically.

Step 3.Establishment of the and-effector errors

For each open kinematic chain, a set of 5 dependent parameters was used in modelling; in
matrix J* (relations 17), for each set correspond 5 lines: the first 5 for leg 1, the following 5 for
leg 2 a.s.o.

The operational errors of the end-effector can be expressed by replacing the dependent
errors expressions (rel. 17) into (rel. 12), with particularization for one of legs. Considering
the chain 1, the end-effector errors expressed in the frame %, become:

75 oy ] L] I I I ]yLz ] ]
d}, 5ny dL, ]v.:, ]v./zl y; ]v:l ]v:K ]Y:l
KR ST TP o S S A
35, 3¢, dL, 0t 0.1 0.1 0 o Jon
3, 50, dL, Too Too o T To
5],  [80. dL, o Te Te T To Ta ]

where ] is an element of matrix J* (relations 17) and represent the influence factor of

deviation dL; on the dependent parameter t;.
By generalizing the relations 18, the error Jacobean for deviations of active joint variables
can be expressed through any of the following relations:

[JL]:[L][J:m]:[Jz][]:bz]:"':[Js][];é] : (19)

4.2 Geometrical parameter errors modelling

The influence of deviations of the parameters which define the parallel structure geometry on the end-
effector errors is described through a linear model, where the error Jacobean J represents the
system matrix:
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[, =[1c}, {ac, (20)
where [dX]p =[dx d, d, 3 3§, SZE is the 6 dimensions vector of the operational errors of the

end-effector, corresponding to the characteristic point P (Fig. 3), reduced in R;;
T .
(dG|=loot, 8o, dr, dr, o, OB, -Sa, o, di, dr, 8, 8] is the vector of

geometric errors.

This modelling is based on the following assumptions:

e  Platform’s command is considered to be ideal and so the joint errors dL are null.

e  Structure geometry is affected by known and constant in time errors.

In this case, the parallel structure is fictitious splitted into 6 open kinematic chains (OKC), one
for each leg: O/ABO,,P (see Fig. 3). Further on, the following algorithm, consisting of three
main steps, is applied.

Step 1. Description of the end-effector errors for the 6 OKC

In order to model the influence of the geometrical deviations, in the proposed method is
used an equivalent structure, in which for each geometrical modelling parameter is associated
one degree of freedom fictitious joint (prismatic or revolute). Each OKC associated to the
Stewart platform becomes a serial structure with 12 one degree of freedom joints (therefore
12 independent parameters - see. Fig. 2): RRTRRTRRRTRR. Because the end-effector errors
will be expressed in the final frame %R,, the direct kinematical modelling for finite
displacements of OKC will be done with the following homogenous operators of D-F type
(type K) (Gogu, 1995; Gogu et al., 1997):

Ap = Rz(azi)/' Ap = Ry(ayi); Az = Tx(rﬁ); Azs= Rx(Yxi); Ays = Ry('Yyi)' Tz(Li); Ase= Rz((Pzi);
Ag7= Ry(¢yi); Azs = Ru(@i); Aso = Tx(-7mi); Ao 10 = Ry(-Byi); A10_11= Ra(-Bzi) - To(Himp).

The operational errors for each OKC are described using the general relations for open
chains:

T T
b, d, a5, 5, o) =Dl da, dr Sy, &, So, o, Se, dr, B, ]

. (21)
0lec], BFD b L g T d Je T B i-Ls,

where the column vectors from matrix J; describe the influence of the modelling parameters
errors, used in kinematical description of OKC.

Step 2. Identification of dependent errors

Even if there are considered independent in the equivalent structure, the relative
displacements from the joints which are not commanded A; and B; are dependent
displacements and, thus, the displacements errors are also dependent; there expressions can
be identified by remodelling the parallel structure through the following condition: the
effector errors are identical for all the 6 OKC:

b, 4, a, s, 5, 5] -0]EG]-=D.]lG,]. (22)
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Five independent matrix equations are derived from (rel. 22); separating the dependent
terms from the independent ones, it results:

—SYxl_ _Syxk—
6’\/}/] 8Y}/k
[]v” ]vv. LP:. ]qa,. ]w\v.] 5([)21 _[]m ]m ]% ]m./k ]svﬂ] &sz =
%9,, 5¢,,
_S(Px]_ _6(pxk_
So | [ Sa, |
304, 304,
O T A S S A S S S A A A SR IS
Oy Oty T Tk By B dr;nk (e Oy 1 T By By d;;.ﬂ] 4
6Byk 6By1
Ssz_ 8[321
The five systems (23) are assembled into one matrix equation:
0, }se)=[:] [ac], (24)

where [Sd)]:[Syﬂ 87, 8¢, 08¢, 8¢, -+ 00, 6(px6JTis the global vector of

dependent errors and

]cm _](DZ 0 0 0 0 __]Gl IGZ 0 0 0 0
]cm 0 _]<b3 0 0 0 _]Gl 0 ]GS 0 0 0
[];]: Jou 0 0 ~Jou 0 | [JZ;]: —Ja 0 0 Jou 0 0 ,(25)
Jor O 0 0 —Jos O Je 00 0 Jo O
_]m 0 0 0 0 _]me_ __](31 0 0 0 0 ]Gé_

Vo=l 1. To T Tl Ya=l 1.0 TL T L] k=16 ()

v

Finally, the dependent errors expressions can be expressed by relation:
Ji
N * * .
ol ] be] -lecl=[r]lac], [r]-| ¢ |. (27)
Jo
The matrix []q,] is a square matrix, of 30%30 dimension, and, therefore, reversible.

Step 3. Establishment of effector errors
Matrix J* (relations 27) has the dimension 30x36 and it can be split into 6 submatrix J; of 5

lines, representing the error Jacobean of the dependent deviations from leg i related to
deviations dG. Particularized for one of the chains, for instance OKC 1, the end-effector
errors expressed in R, become:
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T T
d, d, d, 5, 5, 5] =DJoo, Say, dr, Sy, ov. S0, do, S, dr, B, OB, -

= [J1 ] []cm] [dG], (28)
1 0 0 0 0 0 0 0 |

0 1 0 0 0 o --- 0 0
0 0 1 0 0 0 0 0
D S KA KA Y ENSREN A
D A MU K A LSS G

119 LSS IS A IO (S (SRR (o S P (29)
S S A Y (A (S SEUY [ o
LS D LA I A [
0 0 0 1 0 o --- 0 0
0 0 0 0 1 o --- 0 0
0 0 0 0 0 1 - 0 0

where ]! represents the influence factor of deviation dp; on the dependent parameter t

which is a component part of matrix J* (rel. 27).
Generalizing, the error Jacobean for the deviations of joint variables can be expressed
through any of the following relations:

DG]:[J]][]:DI]Z[JZ][];Z]:.“:[JG»][];)6] : (30)

4.3 The error model for geometrical and kinematical parameters deviations

The complete kinematical error model, which includes both the influences of the active joint
variables L; and of the geometrical parameters can be deduced through a similar approach;
the only changing in the modelling prerequisites is referring to the fact that the
displacements deviations from the commanded joints have to be included between the error
sources of Stewart platform. Therefore, the number of error source parameters is changing
from 36 to 42.

In the first step of the modelling algorithm is included also deviation dL; generated when
the relative displacements from the actuated joints C; are commanded. In step 2 the 30
dependent deviations are identified in relations with the 42 independent variables. In this
case is also necessary to reverse the matrix of 30%30 dimension.

Finally, the end-effector errors expressed in reference frame R, can be deduced by replacing
the expressions of the dependent errors in the error model of one of the OKC.

In conclusion, the complete error model can be obtained by assembling the previous partial
models:

U
2
QU
QU
o2
o2
=
o2}
o
L —
|

p [ch] []:mc] [dG]"' Du] []:mL] [dL] = DG] [dG]+ [JL] [dL] : (31)
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5. Accuracy numerical simulations

The numerical simulation of the error model for Stewart-DELTALAB platform had the
following objectives:

1. Validation of the error model by verifying the results obtained in the numerical and graphical
simulation. Thus, for a set of representative configurations of Stewart platform were applied
the known deviations of source-parameters and the end-effector errors were calculated
(rel. 18). The configurations tested with error, were generated with a graphical tool (in this
case AutoCAD) and were established the effective values of the modeling independent and
dependent parameters, using specific functions. In all the tested variants, the simulation
showed the correctness of the elaborated models.

2. Identification of the end-effector errors on a given trajectory, for specified values of the
source errors. Using numerical simulation, the global effect of error sources and the
importance of each error parameter on the positioning and orienting precision of
end-effector can be calculated. In this way, can be identified the factors with a
maximum influence and thus recommendations for constructive and functional design
can be elaborated.

The results of numerical simulation of the precision model for the case of a linear trajectory,

given through the start configuration (Xu, ym, Zm, 01, 02, 03) = (-100mm, 100mm, 100mm,

0°,0°,0°) and -final (100mm, -100mm, 200mm, 45°, 30°, -30°), are presented in Figure 4. The
represented end-effector errors were generated considering that all active joint errors

AL; =1 mm. Thus, the positioning on axe z is achieved with the biggest deviations (Fig. 4,a),

while the maximum angular deviations are registered on axis y (Fig. 4,b).
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Fig. 4. Numerical simulation of the joint error model: end-effector positioning errors (a)

and orienting errors (b) obtained for joint errors AL; = Imm

The objective of the numerical simulation of the geometric error model was to identify the
end-effector errors on a given trajectory, for the specified values of source errors (Fig. 5).
Thus, it can be established both the global effect of all the error sources and the importance
of each error parameter on the positioning and orienting precision of the end-effector;
therefore, the factors with a maximum influence can be identified and the recommendations
for constructive and functional design can be elaborated.

Considering the former trajectory, the end-effector errors were generated in the assumption
that all the linear geometrical parameters have 1 mm deviations, while the angular ones

www.intechopen.com



On the Accuracy of a Stewart Platform: Modelling and Experimental Validation 89

have 1° deviation. The following conclusions and recommendations can be formulated

analyzing the graphical representations of the end-effector errors (Fig. 5):

e Referring to the positioning precision it can be noticed the superior influence of the
parameters o, (Fig. 5,a) and B, (Fig. 5,b) similar to the relatively reduced effects of
parameters 15 (Fig. 5,c) and r; (Fig. 5,d).

e  The orienting precision depends in a small measure of the deviations of parameters 5
(Fig. 5,e) and r; (Fig. 5,f). On the other hand, the orienting precision is more dependent
on the deviations of parameters o.,; and B.i.
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Fig. 5. The influence of some geometric parameter errors on the trajectory end-effector errors

e From the numerical study of the precision of Stewart platform on the mentioned
trajectory, it can be formulated the recommendation that the maximum precision for the
angular parameters (o, Byi, 0.2, Bzi) has to be assured.
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6. Accuracy experimental validation

Concerning the Stewart DELTALAB platform error modelling, some explanatory notes and

the necessary notations in the experimental testing are presented further on:

—two categories of reference frames are associated to the tested platform: theoretical reference

frames (used in the platform command program) - associated to the theoretical plane given

by centres of the spherical joints of mobile platform (points B;), and measure frames (used in

the measure process) - associated to a real surface of the mobile platform;

—the taken measurements were of relative type, in relation to a reference frame defined by the 3D

measurerrtent machine, on the base of the measure frame for the reference position of the platform;
R \O o™

z . . . .
mexp™ mexp Y mesp "’eXp) — the theoretic frame associated to the mobile platform in an

experimentally specified position;

RO, X, Z . . .

. rref ( pref X pres Y et Zpres ) — the measurement frame associated to the mobile platform in a
reference position;
SRex( exxexyexzex) . . :

J peplTpepTrepdpertrer/ — the measurement frame associated to the mobile platform in an

experimentally established position.
In order to become possible and to offer complete data on the accuracy, a first step in
experimental testing is to identify the constructive elements of the platform and the
accessories. In this context, the following explanatory notes are made:

Working plane Theoretical plane

Fig. 6. Theoretical and working planes of Stewart platform

1°. Plane x,,Opyw of frame R, is identical to points B; plane; being a fictive plane, in experimental
research was used frame R, for which plane x,0,y, is materialized by a plane finished surface
(working plane - see Fig. 6). The frame R, is parallel to R,, and is obtained through a translation
with the distance 5, = 0,0, = 40.55 mm on the Oz, axis.
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2°. The Stewart platform includes, as additional accessories, two cylindrical finished bolts,

assembled on the working plate in point O, and, respectively, in a point on the axis Oyx,

(Fig. 3 and 4). In this way, frame ‘R, is materialized as follows:

— axis Opz, through the normal to the working plane;

— the origin O, as the intersection point of working plane and the axis of the bolt which is
assembled in this point;

— axis Opx, as the line described by 2 points: O, and the intersection point of the second
bolt axis and the working plane;

—

— axis Opy, with, implicitly, the unit vector J,= l;p X fp /

6.1 The 3D measurement machine TEMPO

The Tri-Mesures machine (Fig. 7) is metrology equipment with high performances. From the
structural point of view, the machine is assimilated to an orthogonal robot of portal type, with
three independent axes. The final element, which performs a translation on vertical (z axle),
has an orientation measurement head at it extremity, that has a sensing head system (Fig. 7).
The machine is characterized by a high rigidity, its mobile parts moving on an aerostatic
cushion and a high geometrical precision.

The logistic administration of measurement machine functioning is obtained through the
program METROSOFT 3D. The program allows to measure parts with plane, spherical,
cylindrical or conical surfaces. The program is handling almost exclusively through a
control desk, with specialized keys for different categories and command types.

Stewart Platform

Fig. 7. The 3D Measurement TEMPO machine and the Stewart-DELTALAB platform

www.intechopen.com



92 Computational Intelligence and Modern Heuristics

6.2 The experimental research program

The experimental research had in view to fulfil a program based on the following objectives:
1. Establishment of Stewart platform repeatability.

2. Establishment of absolute precision (accuracy).

3. The experimental testing for proposed precision models validation.

The experimental testing was preceded by identification of a minimum number of

parameters (points and vectors) which have to be measured and which allow the analytical

establishment of real position of mobile platform (of the reference frame R)).

Starting from the experimental and command values, the actual operational errors of the

Stewart platform are established, with their help being quantified the accuracy and

repeatability.

Therefore, the main steps in the measurement process of Stewart platform accuracy are

presented:

1. The Stewart platform is placed on the measurement machine working table and runs
the platform command program.

2. The platform is put under tension and is commanded to move to the initial position
(zero position).

3. After starting up the measurement machine, the necessary configuration of the
measurement head is calibrated through filling a standard sphere and their
memorization.

4. A frame part is defined, materializing the reference frame R,. This is achieved in 3
phases:

a. Establishment of a primary direction, which gives one of the frame part axes.

b. Establishment of a secondary direction, which materializes the second axle of the part
frame.

c.  Specification of the origin of the frame part.

5. The platform is moved in the testing pose.

6. Are taken measurements in order to establish the frame Ry, position (Fig. 8):

a. Measurement of working plane. The procedure imposes a plane command selection
and filing of 4 points (4 is the implicit value, which can be modified and represents
the minimum accepted number of points). There are supplied to the user the
components of the unit vector normal to the plane.

b. Fulfil of the two cylinders, placed in the two points P; and P, through cylinder
command initialization and fulfil of minimum 9 points per cylinder. These
cylinders were materialized through calibrated bolts with ¥8x25 dimensions.

c. The two points P; and P, are obtained as intersections of the two cylinders with
working plane. The coordinates of the two points are displayed in the part system
declared active.

d. Identification of Ox axle as a line which passes through points P; and P. It is used the
connex command and it is given the axle by the unit vector.
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working plane

Fig. 8. Geometric elements used in the experimental research

Explanatory notes:

e  The machine can report measured values and can make calculus both in the machine frame
and in the frame defined by the user. The machine reference frame is defined with the axis
parallel to the displacement directions of mobile elements (x axle - the longitudinal axle, y -
transversal and z - vertical, see Fig. 7) and the origin in the standard sphere centre. A user
frame is defined in accordance to point 4 and is associated to the geometrical form of a part;
this will be named further on as frame part.

e At the intersection of a plane with a cylinder, the machine program obtains a point and
not an ellipse (circle), considering the intersection between the plane and the cylinder
axle.

The algorithm for actual operational errors calculus, corresponding to the relative
measurements, is based on scheme from Figure 9.

The final purpose of the mathematical processing of experimental values is to identify the 6

dimensions vector of the actual operational errors as a measure of the difference between

the real position (experimentally established) and the commanded one (theoretical). So, first
are established the expression of the homogenous operator A,_.pexp for each measurement; in

phase 2 are identified the real errors A,_pexp, related to frame R,.
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Apperp=?
Am’ap’ A

pref—op
&RPL’XP
R
m
mmexp
A,
Apmfapexp P
R
Amref—»m Am’ap’
“Rmref
R p' Am '—mref
Am’—»p’

"Rm’
Fig. 9. Reference frames associates to the Stewart platform

The selection of frame R, as a reference frame (and not of R,) is justified through the

physical existence of working plane (as a measurement plane); this interferes as a location

element in the Stewart platform tasks, unlike frame R,,, which is fictive.

In the relative measurements case, the measured values are reported to a part frame defined

in a reference position Ry

—  There are known (Fig. 9):

@) Am’—>p' , Ao §1 Am’—>mref}

o Ap'—>pref = (Am'—>p')'1 'Am'—>mref ) Am'—>p’}

0 Apref—pexp, established by means of experimental values, related to Ry

—  There is identified the homogenous operator A,y from the following equality (see
Fig. 9):

Apref—pexp = Apref—p * Appexp < Appexp = (Aprerp)™ * Aprefpexps
where Am'—»p’ ’ Apref—»p = Amref—>m ) Am'—»p’ = Apref—»p = (Am’—>p’)'1 'Amref—>m ’ Am'—»p',

Amref—»m = (Am’—>mref )_1 “Amm.
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6.3 The experimental validation of the error models

The accuracy model represents the mathematical expression of the dependencies between the

operational errors and the source-errors. From the tests on Stewart platform it was pursued

the accuracy model validation, considering as source deviations the relative displacements

from the actuated joints.

Validation of the precision model consists of:

— The platform is moved in the tested reference positions;

— A part frame is defined in R (the relative measurements case);

— The platform is moved in adjacent positions, by commanding displacements L; bordered to
those corresponding to Ry

— The real position of the platform is measured and identified;

— The theoretical and real deviations are established (with the precision model).

For the experimental validation of precision model were selected several representative test-

configurations. For one of them, the expression of the error Jacobean, in accordance to (rel. 19), is:

-.08237 05989 -5176 6115 6305 - 5668
215 - 7201 -3781 4234 - 2856 2718
15945 1698 2631 1183 1485 2468

/= - 0002606 0002155 002222 001055 -001426  -001923

- 001862 -001%20 0007583 001220 001377 0006450
001861 -001%10 001614  -001863 001675  -001583

As it can be seen in Figure 10, there is a good concordance between the values given by the
precision model and the finite displacements, established on the theoretical model (by
numerical simulation) and the experimental values.

The deviations from Figure 10 have the following meanings:

e the "exact" deviations were established with the direct kinematical model for finite
displacements, in which were included the final values (corrected) of the kinematical
variables L; = Li,s + AL;. The "exact" deviations are theoretical deviations, defined by
finite displacements from the reference-test configuration R,.s to the commanded
configuration with errors R,;

e the experimental deviations express the difference between the measured configuration
Rypexp and the reference one Ry

e the calculated deviations are obtained applying the linear error model, in which the error
Jacobean ] corresponds to the test-configuration R,.r.

The differences between the results obtained through the proposed model and the “exact”

model are explained by the linear nature of the precision model (the infinitesimal

displacements are level 1 approximations of the finite displacements); these differences tend
to zero only for the small values (infinitesimal) of input parameters (source errors) and,
respectively, increase for values from the finite domain of inputs in the model.

7. Conclusion

— The proposed modelling method allows deriving the error model through a systemic
and algorithmic approach and it is applied for parallel structures of any complexity.

— The analytical error model of Stewart-DELTALAB platform has a relatively high
complexity, due to the fact that a matrix of 30x30 dimension has to be reversed; the
problem was solved numerically.
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— The Jacobean Ji can be numerically expressed. Numerical simulation was used for
checking the correctness of the algorithm and of modeling. The error model was also
verified through graphical simulation, using AutoCAD.

— The relations for the Jacobean Jg were used, through numerical simulation, to verify the
correctness of the algorithm and of the modelling.

— The results, offered by the precision models are in a good concordance both with the
values given by numerical simulation and, also, with the experimental values (Fig. 10).
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Fig. 10. Experimental validation of theoretical models
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— The differences between the results obtained with the proposed model and the
experimental values are relatively small (of 10! mm, respectively of 101 degrees) and
are enclosed in the error limit given by the accuracy error of tested Stewart platform.

— The experimental testing validates the precision models; the conclusion is that the
proposed models are correct and the algorithm and the numerical implementation of
the models are, also, correct.
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