We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Modelling Access Control with
Dynamic Role Binding

Al-Dahoud! Ali and Dr.K.Chitra2

1Al-Zaytoonah University, Jordan, 2Department of Computer Applications,
Thiagarajar School of Management Madurai, Tamil Nadu, India
aldahoud@alzaytoonah.edu.jo, chitra@tsm.ac.in

Abstract

To achieve the goal of realizing object adaptation to environments, we model the object with
its role using parameterized UML models. An environment is defined as a field of
collaboration between roles and an object adapts to the environment assuming one of the
roles. Objects can freely enter or leave environments and belong to multiple environments at
a time so that dynamic adaptation or evolution of objects is realized. Organizations use
Role-Based Access Control to protect computer-based resources from unauthorized access.
This paper describes a method for modeling access control for dynamic role binding using
parameterized UML design models. Reusable parameterized UML models are specified as
patterns and are expressed using UML template diagrams. Developers can use the models
to identify their policy violations. The method is illustrated using a small banking
application.

Key Words: Parameterized UML, Object adaptation, Evolution, Reusable.

1. Introduction

Objects represent things or concepts of the real world and it is this representation feature
that gives the object-oriented technology the high modeling capability. Objects in the real
world exist in various environments. If an object permanently resides in a fixed
environment, the structure and behavior of the object can possibly stay unchanged over
time. However, environments surrounding objects may not be stable due to various reasons.
If objects are humans or manufacturing equipment, their environment changes periodically
between the day and the night and between the weekdays and the weekend. When an object
moves, the surrounding environment naturally changes. Even if an object stays at the same
place for a certain period of time, the environment itself may dynamically change.
Corresponding to such environmental change, objects adaptively change themselves.
Conversely, objects may spontaneously evolve, causing change in their relation to the
environment and that in turn may trigger change in the environment. Moreover, there
generally exist multiple environments around an object and the object may selectively

www.intechopen.com

62 Computational Intelligence and Modern Heuristics

belong to a subset of them at a time and the selection of environments may also change
dynamically.

How is such adaptation or evolution of objects handled in the world of object-oriented
modeling and programming? As many researchers have pointed out, current widely-used
object-oriented modeling and programming languages do not conveniently support such
flexibility. Motivation of our research is to build a parameterized UML model that is flexible
enough to cope with future changes but simple enough to describe and reason about the
design validity.

The model to be described in the succeeding sections has the following features.

1. Objects can freely enter or leave environments and belong to multiple environments at a
time so that dynamic adaptation or evolution of objects is realized.

2. Environments and roles are the first class constructs at model description time so that
separation of concerns is not only materialized as a static structure but also observed as
behaviors.

3. Environments are independent reuse components to be deployed separately from objects
that participate in them.

2. Access Control for Dynamic Role Binding (DRBAC)

Roles are considered for listing up functions or behaviors of an object to define a clear
boundary of the object, thus their granularity is smaller than objects and conceptually
comparable to the level of methods. However, the major motivation of this paper is to
design access control for object adaptation to environments using parameterized UML. An
environment in the context of role model is regarded as a collaboration field and in order to
realize adaptation, objects should be allowed to enter collaboration environments by
assuming roles and to leave from environments by discarding roles dynamically.

Dynamic Role Binding Access Control (DRBAC) constraints can be organized as follows:
Core DRBAC, Hierarchical DRBAC, Static Separation of Duty Relations, and Dynamic
Separation of Duty Relations.

The Core DRBAC requires that users (i.e. Objects) be assigned to environment, users be
assigned to roles (job function) corresponding to that environment, roles be associated with
permissions (approval to perform an operation on a database), and users acquire
permissions by being assigned to roles. The Core DRBAC places a constraint on the
cardinalities of the user-role assignment relation that when a user enters an environment he
is assigned a role when he/she leaves that environment he/she discards that role. The Core
DRBAC does not place any constraint on the cardinalities of the permission-role association.
Core DRBAC also includes the notion of user environments. A user enters an environment
during which he activates a subset of the roles assigned to him. Each user may belong to
multiple environments; however, each environment is associated with only one user. The
operations that a user can perform in an environment depend on the roles activated in that
environment and the permissions associated with those roles.

www.intechopen.com

Modelling Access Control with Dynamic Role Binding 63

Hierarchical DRBAC adds features supporting role hierarchies (RH). Hierarchies are used to
describe a structure of roles in an organization. Role hierarchies define an inheritance
relation among the roles. Role rl inherits from role r2 only if all permissions of r2 are also
permissions of rl and all users of rl are also users of r2. The inheritance relationship is
reflexive, transitive and anti-symmetric.

Static Separation of Duty (SSD) relations are necessary to prevent conflict of interests that
arise when a user gains permissions associated with conflicting roles (roles that cannot be
assigned to the same user). SSD relations are specified for any pair of roles that conflict. The
SSD relation places a constraint on the assignment of users to roles, that is, assignment to a
role that takes part in an SSD relation prevents the user from being assigned to the related
conflicting role. The SSD relationship is symmetric, but it is neither reflexive nor transitive.
SSD may exist in the absence of role hierarchies (referred to as SSD DRBAC), or in the
presence of role hierarchies (referred to as hierarchical SSD DRBAC). The presence of role
hierarchies complicates the enforcement of the SSD relations: before assigning users to roles
not only should one check the direct user assignments but also the indirect user assignments
that occur due to the presence of the role hierarchies.

Dynamic Separation of Duty (DSD) relations aim to prevent conflict of interests as well. The
DSD relations place constraints on the roles that can be activated in a user’s environment. If
one role that takes part in a DSD relation is activated, the user cannot activate the related
(conflicting) role in the same session. A model of DRBAC is shown in Fig. 1.

RH

PERM

ermission

Enters/ Assignment
Exits K)
& Session
OB]J Assignment
Obje
Sessions

Fig. 1. Access Control in Dynamic Role Binding

The DRBAC in Fig. 1 consists of: 1) a set of objects (OBJ) where an object is an intelligent
autonomous agent, 2) a set of environments (ENV) where an object enters or leaves 2) a set

www.intechopen.com

64 Computational Intelligence and Modern Heuristics

of roles (ROLE) where a role is a job function which is assigned to the object when it enters
an environment and is discarded when it exits the environment, 3) the database (DB) where
DB is an entity that contains or receives information, 4) a set of operations (OPER) where an
operation is an executable image of a program, and 5) a set of permissions (PERM) where a
permission is an approval to perform an operation on database. The cardinalities of the
relationships are indicated by the absence (denoting one)

or presence of arrows (denoting many) on the corresponding associations.

For example, the association of an object to an environment and the association of an object
to role are one-to-many. All other associations shown in the figure are many-to-many. The
association labeled Role Hierarchy (RH) defines the inheritance relationship among roles. The
association labeled SSD specifies the roles that conflict with each other. The association labeled
DSD specifies the roles that cannot be activated within an environment by the same user.

3. A Reusable DRBAC Model

In this section a DRBAC pattern is described as a UML template class diagram. A class
diagram is obtained from a template diagram by binding the parameters to values. Fig. 2
shows a class diagram template describing hierarchical DRBAC with SSD and DSD. The
symbol “|” is used to indicate parameters.

The class diagram template shown in Fig. 2 consists of class and association templates. A
class template is a class descriptor with parameters. Class templates are associated with
attribute templates (e.g., |Name : String in Role) and operation templates (e.g.,
| grantPermission in Role). Association templates (e.g., |UserAssignment) consist of
parameters for association names and association-end multiplicities. The OCL constraints in
Fig. 2 restrict the values that can be bound to association-end multiplicity parameters. The
multiplicity “1” on the UserSessions association-end attached to Object is strict: a session can
only be associated with one user.

The User Object class template defines classes that describe Objects. When a user enters an
environment, he is assigned a role (assignRole). Then he creates a new session
(createSession), delete a session (deleteSession). When he exits that environment, his role is
discarded (deassignRole). A UserSessions link (i.e., an instance of an association obtained by
binding the parameters of UserSessions to values) is created by a createSession operation
(i.e., an operation obtained by binding the operation template parameters to values) and
deleted by a deleteSession operation. The operation assignRole creates a RoleAssignment
link; the deassignRole removes a RoleAssignment link.

The class template Role is used to produce classes representing roles with behavior that (1)
associates a new permission with the role (grantPermission), (2) deletes an existing
permission associated with the role (revokePermission), (3) adds an immediate inheriting
role (addInheritance), (4) deletes an immediate inheriting role (deleteInheritance), (5) adds a
role to the set of conflicting roles (addSSDRole), (6) deletes a role from the existing set of
conflicting roles (deleteSSDRole), (7) checks whether the role is in an SSD relationship with a
given role in the presence of hierarchies (checkSSD), (8) checks whether the role has a given
permission (checkAccess), (9) checks whether the role is in a DSD relation with a given role
(checkDSD), (10) deletes a DSD relation between the role and a given role (deleteDSDRole),
and (11) adds a DSD relation with a given role (addDSDRole).

www.intechopen.com

Modelling Access Control with Dynamic Role Binding 65

IS
[BassigrRole(|r: |Fole) B T7 or
Mdeassigroe(r |Re) || \ s
A Role |Rdle ior
Aesi [Narre:: Sting *

grantPermission(|p : |Permission)
revokePermission(|p : [Pemission)
chedAooess(|db: [DB |op : |Qperation) : |[Boolean
[User) chedkSSD(r :|Rdle) : [Boolean

. |UedAsigmet | §eessoRoe(r: Roke)
aeaeSession(): |s:[Session 2ddSSDRole(|r : [Role)
deleteSession(js : [Session) addinheritance(|r : |Rdle)

1 deletelnheritanoe(]r : |Role)

chedkDSD(|r : |[Role) : [Bodlean

|k Sessians deleteDSDROe(|r : [Role)
* 1§ addDSDRole(r :[Role)
o bind|u': [User)
[SessionAssignment | [§unBind(|u : [User)
* * | jssion
|Sessian Assi‘
addAdiveRole()r : [Role) |Pemrission
dropAdiveRole((r : [Role)
chedkAaess(|db: DB, fop : [CQperation) : [Bodlean [MichedkAacess(|db : |DB, |op : [Qperation) : [Bodlean
P8 [Oparation

Fig. 2. A DRBAC Class Diagram Template

The class template Session is associated with the template operations: addActiveRole
(activates a role in a session), dropActiveRole (deactivates a role in a session), and
checkAccess (checks whether the role has the permission to perform an operation on the
database).

The class template Permission is associated with an operation template, checkAccess, that
checks whether the role has the permission to perform the operation on the database. Each
operation template is associated with an OCL template expression that produces OCL pre-
and post-conditions when the template parameters are bound to values.

Pre- and post-condition templates associated with the createSession and grantPermission
operation templates are given below:

context | User::| createSession():(| s: | Session)

post: result = |s and

| s.ocllsNew() = true and self. | Session = includes(|s)

context |Role: | grantPermission (|p: | Permission)
post: self. | Permission includes(| p)

www.intechopen.com

66 Computational Intelligence and Modern Heuristics

We express DRBAC constraints that restrict SSD and DSD relationships as OCL template
expressions. Examples of these constraints are given below:

- SSD constraint. A user cannot be assigned to two roles that are involved in an SSD
relation.
context | User inv:
self. |Role = forAll(r1, 12 | r1.| SSD > excludes(r2))
- Hierarchical SSD constraint. There cannot be roles in an SSD relation which have
the same senior role.
context _ Role inv:
let allSenior(rl) = rl.senior -> union(rl.senior -> collect(r2 | allSenior(r2)))
in
self. |SSD -> forAll(r1 | allSenior(rl) -> excludesAll(allSenior(self))
- DSD constraint. A user cannot activate two roles in DSD relation within a session.
context | User inv:
| self. |Session. | Activates -> forAll(r1, r2 |rl. | DSD -> excludes(r2))

4. DRBAC Model on Banking Application

To illustrate this approach we use a simple banking application taken from [5]. The
application is used by various bank officers to perform transactions on customer deposit
accounts, customer loan accounts, ledger posting rules, and general ledger reports. The
transactions include 1) create, delete, or modify customer deposit accounts, 2) create, delete,
or modify customer loan accounts, 3) modify the ledger posting rules, and 4) create general
ledger report. When a user enters Bank environment, he is assigned a BANKROLE when he
exits bank environment he is assigned another role according to the environment he enters
and assigned permissions depending on the role he is assigned. Fig. 3 shows DRBAC class
diagram for the bank environment.

5. DRBAC Policies applied using Object Diagrams

DRBAC policies when applied to a role in an environment constrain how system users
access system resources. They determine 1) the assignment of roles to system users, 2) the
permissions associated with roles in the environment, 3) the inheritance relationships
between roles, and 4) the SSD and DSD relationships between roles. In this section we
illustrate how DRBAC policies can be described by object diagrams when the user is
assigned a ROLE.

The DRBAC model supports the specification of four types of policies: 1) core policies that
conform to core DRBAC, that is, policies that determine user-role and role-permission
assignments, 2) hierarchical policies that conform to hierarchical DRBAC, that is, policies
that determine inheritance relationships between roles, 3) SSD policies that conform to SSD
DRBAUC, that is, policies that determine what roles are conflicting, and 4) DSD policies that
conform to DSD DRBAC, that is, policies that determine what roles to be activated in a
session. A set of DRBAC policies for the banking system is given below:

www.intechopen.com

Modelling Access Control with Dynamic Role Binding

67

Environment

lassignRole(r : BankRole)
deas signRole(r : BankRole)

1.7

Enters/Exits

1
BankUser

ion() :s:BankSession

B
[Mdelet ion(s : BankSession)

UsenSessions

=y

Role
Assignl t

User Assignment

DSD
SsD RH
N . Jul fior

*

BankRole

[gName : String

[MgrantPermission(p : Permission)
[MrevokePermission(p : Permission)
[MicheckAccess(db : BankDB, op : Transaction) : Boolean
[MicheckSSD(r : BankRole) : Boolean
[MdeleteSSDRole(r : BankRole)

BankSession

laddActiveRole(r : BankRole)
dropActiveRole(r : BankRole)

checkAccess(db : BankDB, op : Transaction) : Boolean

BankDB

1..%[MaddSSDRole(r : BankRole)

[MaddInheritance(r : BankRole)
.delete[nheritance(r : BankRole)
.checkDSD(r : BankRole) : Boolean
*|MdeleteDSDRole(r : BankRole)
[MaddDSDRole(r : BankRole)
[Mbind(u : BankUser)

\[MunBind(u : BankUser)

1.%
Permission
Assignment
1.4
Permis sion
(from)

.checkAccess(db : DB, op : Operation) : Boolean
1.* L

1*
Transaction

‘ ‘ ‘ . islnputOf
‘ Account ‘ LedgerPostingRule ‘ GeneralLedgerReport ‘
= T T e
regulatesPostingOf

Fig. 3. A DRBAC Class Diagram for a Banking Application

Core policies: The roles of the banking system (instances of BankRole) are teller,
customerServiceRep, accountant, accountingManager and loanOfficer. The permissions
assigned to these roles are given below:

P1 A teller can modify customer deposit accounts.

P2 A customer service representative can create or delete customer deposit accounts.

P3 An accountant can create general ledger reports.
P4 An accounting manager can modify ledger-posting rules.
P5 A loan officer can create and modify loan accounts.

Fig. 4. Shows the object diagrams describing policies P1 to P5 respectively.

www.intechopen.com

68

Computational Intelligence and Modern Heuristics

teller : Fole

Permission

Modify customerserviceRep : Role

/ “Create
Pemmission

‘CustorerDepositdccount

\ Delete

‘CustomerDeposit Account

F1

P2

accountant : Fola

— -Permussion

‘Create accountmzhianazer : Fole Permission Modify

‘GeneralLedzerFepont

P

Lea

loanOfficer

- Role Permission

:Loanfccount

P35

Fig. 4. Object Diagrams for Policies P1 to P5

-‘-‘-‘-H-""‘"--._._H‘

‘LadgerPostingFule

P4

Modifyr

Hierarchical policies: A role hierarchy defines inheritance relationships between roles.
Through the inheritance relationship, a senior role inherits the permissions of its junior roles
and any user assigned to the senior role is also assigned to the junior roles. The hierarchical
policies in the banking application are stated below:
H1 Customer service representative role is senior to the teller role.
H2 Accounting manager role is senior to the accountant role.
Fig. 5(a),(b) describe policies H1 and H2 respectively.

Fig. 5(a), (b) Object Diagrams for Policies H1 and H2

www.intechopen

customerServiceFep : Fole

accountingManager - Bols

semor senmor
FeolsHisrarchy FoleHisrarchy
Junior Junior
teller - Faale accovutant - Rols
(a) ()

.com

Modelling Access Control with Dynamic Role Binding 69

SSD policies: SSD policies prevent a user from being assigned to two conflicting roles. For
the banking system the following pairs of roles are conflicting;:

{(teller, accountant), (teller, loanOfficer),

(loanOfficer, accountant), (loanOfficer, accountingManager),

(customerServiceRep, accountingManager)}

The object diagram in Fig. 6 describes the SSD RBAC policies.

55D

customer ServiceRep - Role 55D accountingManager - Rols

55D loanOfficer : Role 55D

teller : Bola 55D acconntant ; Faole

Fig. 6. Object Diagram for SSD Policies

DSD policies: DSD policies prevent a user from playing a role in a session, if another role in
a DSD relation has been activated. For the banking system the following pair of roles are in
DSD relation:

{(customerServiceRep, loanOfficer)} The object diagram in Fig. 7 describes the DSD DRBAC

policy.

customerSarmiceRep - Rols

DsD

loanCHficer : Role

Fig. 7. Object Diagram for DSD Policy

6. Identifying Conflicts in Application-Specific DRBAC Policies

In this section we show how DRBAC violation patterns expressed as object diagram
templates can be used to identify conflicts. If a violation pattern exists in an object diagram
describing a policy, then a conflict exists. Fig. 8 shows object diagram templates that when
instantiated produce object structures that violate DRBAC constraints. Fig. 8(a) describes
structures in which a user is assigned to roles in an SSD relationship (violation of the SSD
constraint). Fig. 8(b) describes structures in which two roles in an SSD relationship have a

www.intechopen.com

70

Computational Intelligence and Modern Heuristics

common senior role and structures in which a senior role is in an SSD relationship with a
junior role (both are violations of the hierarchical SSD constraint). Fig. 8(c) describes
structures in which a user in a session activates two roles that are in a DSD relationship (a
violation of the DSD constraint). Formally, an object diagram has the violation described by
a violation pattern if there exists a binding that produces an object structure contained in the

object diagram.

<erimyalid=
w: [Usar
UserAssimmst TsarAssiznment
55D
r2 . Fole rl . Bols
Fig. 8. (a) Violation of SSD Constraint
< ipwalidc “eimalidsc
SENLOT sapior
rl : Fala .
— Tl - |Funle
FuoleHisrarchy FuoleHierarchy -
- SEN0r
Jumior jumicr ssn
- Junior
r2 ; Fala 5D ri: [Fola
1l - |Faole
Fig. 8. (b) Violations of Hierarchial SSD Constraint
<< jmyvalid=s
Activates
LserAssiznmant 11 - Role
_ serSaszion
5 - | Session 1 [User DsD
. . 12 : Faola
UlserAssiznment
Activates

Fig. 8. (c) Violation of DSD Constraint

www.intechopen.com

Modelling Access Control with Dynamic Role Binding 71

7. Related Work

Tidswell and Jaeger [21] propose an approach to visualizing access control constraints. They
point out the need for visualizing constraints and the limitations of previous work on
expressing constraints. A drawback of their work is that they created a new notation for
specifying constraints and it is not clear how the new notation can be integrated with other
widely-used design notations.

Aspect-oriented programming with Aspect] has a feature of adding aspects dynamically as
well as statically [14]. The main objective of writing aspects is to deal with cross-cutting
concerns. It implies that there already exists some structure of module decomposition but in
adding a new type of concern, related pieces of code are distributed among modules, cross-
cutting the existing structure.

Although there have been efforts of designing software from the beginning based on the
AOP method under the name of “early aspects”[20], the normal framework of mind for
thinking aspects assumes the existing program code as a target of inserting advices to join
points.

A large volume of research (e.g., see [2-4, 6, 7, 11, 12, 14] exists in the area of access control
policy specification. Formal logic-based techniques (e.g., see [2-4, 6, 11, 14]) are often used to
specify security policies. The use of mathematical concepts and notation that are not familiar
to software developers makes them difficult to use and understand. Other researchers have
used high-level languages to specify policies [12, 13, 19, 20]. Although high-level languages
are easier to understand than formal logic-based approaches, they are not analyzable.

Some work has been done on modeling system security using UML. Jurjens [15] proposes
UMLsec, a UML profile for modeling and evaluating security aspects based on the multi-
level security model. Lodderstedt et al. propose SecureUML [17], an extension of the UML
that defines security concepts. These approaches mainly focus on extending the UML
notation to better reflect security concerns.

8. Conclusion

The work described in this paper focuses on specifying the dynamic role binding and access
control when a role is assigned to an Object. Checking for the presence of a pattern in an
object diagram specifying a set of policies is essentially a search for a sub graph in an object
diagram. The approach of binding objects and roles have the following characteristics:
Composition takes place when an object instance and a role instance are bound together; an
object instance can be bound to multiple role instances residing in different environments;
when an object enters an environment it is assigned a role, when it exits that environment
the associated role is discarded by the object.

9. References

1. GJ. Ahn and R. Sandhu. Role-based Authorization Constraints Specification. ACM
Transactions on Information and Systems Security, 3(4):207-226, November 2000.

2. S. Barker. Security Policy Specification in Logic. In Proceedings of the International
Conference on Artificial Intelligence, pages 143-148, Las Vegas, NV, 2000.

www.intechopen.com

72 Computational Intelligence and Modern Heuristics

3. S. Barker and A. Rosenthal. Flexible Security Policies in SQL. In Proceedings of the 15th
Annual IFIP WG 11.3 Working Conference on Data and Applications Security,
Niagara-onthe-Lake, Canada, 2001.

4. E. Bertino, P. Bonatti, and E. Ferrari. TRBAC: A Temporal Role-Based Access Control
Model. In Proceedings of the 5th ACM Workshop on Role-Based Access Control,
pages 21-30, Berlin, Germany, 2000.

5. R. Chandramouli. Application of XML Tools for Enterprise-Wide RBAC Implementation
Tasks. In Proceedings of 5th ACM workshop on Role-based Access Control, Berlin,
Germany, July 2000.

6. F. Chen and R. Sandhu. Constraints for Role-Based Access Control. In Proceedings of the
1st ACM Workshop on Role-Based Access Control, Gaithersburg, MD, 1995.

7. N. Damianou and N. Dulay. The Ponder Policy Specification Language. In Proceedings of
the Policy Workshop, Bristol, U.K., 2001.

8. D.F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed NIST
Standard for Role-Based Access Control. ACM Transactions on Information and
Systems Security, 4(3), August 2001.

9. Geri Georg, Robert France, and Indrakshi Ray. An Aspect-Based Approach to Modeling
Security Concerns. In Proceedings of the Workshop on Critical Systems
Development with UML, Dresden, Germany, 2002.

10. Geri Georg, Indrakshi Ray, and Robert France. Using Aspects to Design a Secure System.
In Proceedings of the Interational Conference on Engineering Complex Computing
Systems (ICECCS 2002), Greenbelt, MD, December 2002. ACM Press.

11. R. J. Hayton, J. M. Bacon, and K. Moody. Access Control in Open Distributed
Environment. In IEEE Symposium on Security and Privacy, pages 3-14, Oakland,
CA, May 1998.

12. M. Hitchens and V. Varadarajan. Tower: A Language for Role-Based Access Control. In
Proceedings of the Policy Workshop, Bristol, U.K., 2001.

13. J. A. Hoagland, R. Pandey, and K. N. Levitt. Security Policy Specification Using a
Graphical Approach. Technical Report CSE-98-3, Computer Science Department,
University of California Davis, July 1998.

14. S. Jajodia, P. Samarati, and V. S. Subrahmanian. A Logical Language for Expressing
Authorizations. In IEEE Symposium on Security and Privacy, pages 31-42,
Oakland, CA, May 1997.

. J. Jurjens. UMLsec: Extending UML for Secure Systems Development. In Proceedings of
Fifth International Conference on the Unified Modeling Language, pp. 412-425,
pages 412-425, Dresden, Germany, October 2002.

16. Dae-Kyoo Kim, Robert France, Sudipto Ghosh, and Eunjee Song. Using Role-Based
Modeling Language (RBML) as Precise Characterizations of Model Families. In
Proceedings of the International Conference on Engineering Complex Computing
Systems (ICECCS 2002), Greenbelt, MD, December 2002. ACM Press.

17. T. Lodderstedt, D. A. Basin, and J. Doser. SecureUML: A UML-Based Modeling
Language for Model-Driven Security. In Proceedings of Fifth International
Conference on the Unified Modeling Language, pages 426-441, Dresden, Germany,
October 2002.

18. B.T. Messmer and H. Bunke. Subgraph Isomorphism in Polynomial Time. In Lecture
Notes in Computer Science Graph Theory - ECCV’98, Springer-Verlag, Berlin, 1998.

1

Q1

www.intechopen.com

Modelling Access Control with Dynamic Role Binding 73

19. OASIS. XACML Language Proposal, Version 0.8. Technical report, Organization for the
Advancement of Structured Information Standards, January 2002. Available
electronically from http:/ /www.oasis-open.org/committees/xacml.

20. C. Ribeiro, A. Zuquete, and P. Ferreira. SPL: An Access Control Language for Security
Policies with Complex Constraints. In Proceedings of the Network and Distributed
System Security Symposium, San Diego, CA, February 2001.

21. J. E. Tidswell and T. Jaeger. An Access Control Model for Simplifying Constraint
Expression. In Proceedings of 7th ACM conference on Computer and
communications security, pages 154-163, Athens, Greese, November 2000.

22. G. B. andWilliam Cook. Mixin-based inheritance. In OOPSLA 1990, pages 303-311, 1990.

23. D. Bardou and C. Dony. Split objects: a disciplined use of delegation within objects. In
OOPSLA "96, pages 122-137, San Jose, California, USA, Oct. 1996.

24 K.Beck and W. Cunningham. A laboratory for teaching object-oriented thinking. In
OOPSLA “89, pages 1-6, 1989.

www.intechopen.com

74 Computational Intelligence and Modern Heuristics

www.intechopen.com

, Computational Intelligence and Modern Heuristics
Compulational Intelligence . i
and Modern Heuristics Edited by Al-Dahoud Ali

st e 4

ISBN 978-953-7619-28-2

Hard cover, 348 pages

Publisher InTech

Published online 01, February, 2010
Published in print edition February, 2010

The chapters of this book are collected mainly from the best selected papers that have been published in the
4th International conference on Information Technology ICIT 2009, that has been held in Al-Zaytoonah
University, Jordan in the period 3-5/6/2009. The other chapters have been collected as related works to the
topics of the book.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Al-Dahoud Ali and K.Chitra (2010). Modelling Access Control with Dynamic Role Binding, Computational
Intelligence and Modern Heuristics, Al-Dahoud Ali (Ed.), ISBN: 978-953-7619-28-2, InTech, Available from:
http://www.intechopen.com/books/computational-intelligence-and-modern-heuristics/modelling-access-control-
with-dynamic-role-binding

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE DEHERFERESS HiBEPR R A IRIE IMAE4058 7T
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed under
the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0
License, which permits use, distribution and reproduction for non-commercial
purposes, provided the original is properly cited and derivative works building
on this content are distributed under the same license.

