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1. Introduction

Cognitive radio (CR) is a newly emerging technology (Mitola & Maguire, 1999, Mitola,
2001), which has been recently proposed to implement some kind of intelligence to
automatically sense, recognize, and make wise use of any available radio frequency
spectrum. With the increasing demand for wireless application, access to available spectrum
is becoming increasingly difficult. On the other hand, most licensed spectrum go unused
most of the time according to the FCC's Spectrum Policy Task Force Report (FCC, 2003). In
order to solve these problems, cognitive radio is proposed for sharing the licensed spectrum
to unlicensed users without harmful interference to licensed system.

Spectrum sensing is a key element in cognitive radio system which enables the cognitive
radio to share the spectrum in licensed bands by detecting temporarily unused spectral
resources (Haykin, 2005, Ghasemi & Sousa, 2005). Recently, several spectrum sensing
techniques have been explored for cognitive radios, such as matched filter detection, energy
detection and cyclostationary feature detection (Akyildiz at el., 2006). Many signals used in
communication systems exhibit periodicities of their second order statistical parameters due
to the operations such as sampling, modulating, multiplexing and coding. These
cyclostationary properties, which are named as spectral correlation features, can be used for
spectrum sensing. Moreover, spectrum sensing can not be restricted to simply monitor the
power in some frequency bands of interest but must include detection and identification in
order to avoid interference (Fehske at el., 2005). Therefore, cyclostationary feature detection
is undoubtedly a good solution for primary user signal detection and recognition. In this
chapter, several well-known spectrum sensing techniques are reviewed first. A survey of
signal detection and classification for cognitive radios combining the spectral correlation
analysis and support vector machine (SVM) is given in Section 3. Several spectral coherence
characteristic parameters which are sensitive with modulation types and insensitive with
SNR variation are chosen via spectral correlation analysis. In order to give better
performance of the SVM, an alignment based kernel selection method is proposed in Section
4, which is used to choose the best kernel function for the SVM with spectral coherence
characteristic training samples. A simple cross-validation method is also introduced to
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52 Cognitive Radio Systems

choose the most appropriate kernel parameters and penalty parameters for the SVM. The
performance analysis of the proposed approach is given over both Gaussian channel and
IEEE 802.22 WRAN channel in Section 5. Compared to the existing methods including the
classifiers based on binary decision tree (BDT) and multilayer linear perceptron network
(MLPN), the proposed approach is more effective in the case of low SNR and limited
training numbers.

2. Overview of Spectrum Sensing in Cognitive Radio System

Interference due to a cognitive radio network is deemed harmful if it causes the signal-to-
interference ratio (SIR) at any primary receiver to fall below a certain threshold, which
supplied by the regulatory bodies. This threshold depends on the receiver's robustness
toward interference and varies from one primary band or service to another. In order to
achieve spectrum sharing, the sensitivity of cognitive radio should be higher than that of
primary receiver. For example, in order to share the radio spectrum between cognitive users
and TV users in IEEE 802.22 standard, the sensitivity of cognitive receiver should exceed the
TV receiver without hidden terminal problem. To improve the sensing accuracy, an
additional margin of 30dB - 40dB should be added to the detection threshold. Moreover, due
to the dynamic characteristic of the radio environment and difference between primary
users as well as unknown influence of interference, spectrum sensing has become a
challenging problem in cognitive radio. Generally, the spectrum sensing techniques can be
classified as transmitter detection, cooperative detection, and interference-based detection,
as shown in Fig. 1. In this chapter, we focus on the transmitter detection which is commonly
used in the practical system. Transmitter detection approach is based on the detection of the
weak signal from a primary transmitter. To achieve dynamic spectrum sharing, the
cognitive radio transmitter should have capability to determine if a signal from primary
user is locally present in a certain spectrum. Basic hypothesis model for transmitter
detection can be defined as follows

n(t) H,
x(t) = (1)

hs(t) +n(t) H,

where x(t) is the signal received by the cognitive user, s(t) is the transmitted signal of the
primary user, n(t) is the additive white Gaussian noise and h is the amplitude gain of the
channel. Hq is a null hypothesis, which states that there is no licensed user signal in a certain
spectrum band. On the other hand, H, is an alternative hypothesis, which indicates that
there exists some licensed user signals.

Three approaches exist for transmitter detection, based on the sensing users' knowledge on
the transmitted signals, which are illustrated in Fig. 1.
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Spectrum Sensing

| Transmitter | | Cooperative | | Interference |

Matched Filter Energy Cydostationary Feature

Fig. 1. Spectrum Sensing Techniques.

2.1 Matched Filter Detection

When the information of the primary user signal is well-known to the cognitive radio, the
matched filter is the optimal linear filter for maximizing the signal to noise ratio (SNR) in the
presence of additive Gaussian noise (Sahai at el., 2004, Akyildiz at el., 2006). In cognitive
radio system, the matched filter is obtained by correlating a known signal, or primary user
signal template, with an unknown signal to detect the presence of primary user signal in the
unknown signal. This is equivalent to convolving the unknown signal with a time-reversed
version of the template. According to the hypothesis model for transmitter detection, the
received signal x(n) can be expressed as

w(n) H,
x(n) = { (2)

\J1-nsmn)+ \/asC (n)+w(n) H,

where s(n) and s_(n) are original signal and pilot signal transmitted by primary user, which

are orthogonal. 1 is the ratio of power allocated to pilot signal. The correlation function of

received signal x(n) and unit vector of pilot signal §_(n) is given by

1 N
T(x) = — D, x(m)3, () 3)

> w)s, ) “NO,OYN)  H,
N
T(x) = < . @
S (T s+ s )+ wls. o) - NWBB, 0Ny H
L N
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54 Cognitive Radio Systems

where P is the power of the pilot signal, and a2 is noise variance. Then the decision function
can be given by

T ¥ ©)

where the threshold y is determined by the probability of false alarm Pra. The probability of
false alarm Pra and detection Pp are given as follows

P, =P(T(x)>y|H,)=Q v/ \E (6)
N
P, =P(Tx)>y[H,)=Q vJe—P/J% (7)

where () is the generalized Marcum Q-function, which can be defined by

t2

QW = [ e 2t ®)
Jon

Combining Equation (6) and Equation (7), we can obtain N by eliminating y .

N=[Q"(p,)-Q" (B,)] 0"SNR’ o)

According to the Equation (9), O (1/ SNR) samples are required to meet a probability of
error constraint, thus the main advantage of the matched filter is that it requires less time to
achieve high processing gain. However, as a coherent detection method, matched filter
detection requires a priori knowledge of the primary user signal such as the modulation
type and order, the pulse shape, and the packet format. Although most of the priori
knowledge can be obtained from pilot, preambles, synchronization word or spreading codes
of the primary user network systems, an obvious shortcoming is that the cognitive radio
user requires specific receivers for different types of primary user signal.

2.2 Energy Detection

If the receiver cannot gather sufficient information about the primary user signal, for
example, if the power of the random Gaussian noise is only known to the receiver, the
optimal detector is an energy detector (Akyildiz at el., 2006, Digham at el., 2003). In order to
measure the energy of the received signal, the output signal of bandpass filter with
bandwidth W is squared and integrated over the observation interval T. Finally, the output
of the integrator, x(t), is compared with a threshold, y, to decide whether a licensed user is
present or not.
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Fig. 2. The principal of energy detection.

According to the basic hypothesis model for transmitter detection, the probability of false
alarm Pra and detection Pp are given as follows

ey =P{X>Y|H1} =Q(\/£'\/;) (10)

r(m,2/y)

T(m)

Since it is easy to implement, the recent work on detection of the primary user has generally
adopted the energy detection. Although this method can be implemented without any prior
knowledge of the primar2y user signal, it also has some drawbacks. Since energy detection is
non-coherent, O(1/SNR ) samples are required to meet a probability of error constraint.
Moreover, the threshold selection for energy detection is highly susceptible to uncertainty in
background noise and interference, and it can only determine the presence of the signal
without differentiating signal types. However, the largest advantage of energy detection is
simple and low complexity.

P, =P{X>y[H,} = (11)

2.3 Cyclostationary Feature Detection

The cyclostationary feature is intentionally embedded in the physical properties of a
communication signal, which may be easily generated, manipulated, detected and analyzed
using low complexity transceiver architectures. This feature is present in all transmitted
signals, requires little signalling overhead and may be detected using short signal
observation times, and thus it can be used for primary user signal detection and recognition.
Recent research efforts exploit the cyclostationary features of signals via spectral correlation
analysis as a method for spectrum sensing (Digham at el., 2003, Sahai at el., 2004, Ghasemi &
Sousa, 2005), which has been found to be superior to simple energy detection and matched
filtering. Energy detection can only detect whether or not a signal in present and utilizing a
matched filter system requires extensive knowledge about the channel and signals that are
to be identified. The method, which is not susceptible to in-band interference, can be used to
detect and classify different types of signal. Conventional signal classification approaches
are mainly based on decision theory (Polydoros & Kim, 1990, Sapiano & Martin, 1996, Sills,
1999, Wei & Mendel, 2000, Hang at el., 2001) and statistical pattern recognition (Nandi &
Azzouz, 1995, Azzouz & Nandi, 1995, Azzouz & Nandi, 1996, Nandi & Azzouz, 1998). In the
work by Hang (Hang at el., 2001), a binary decision tree is designed to signal classification.
However, it's difficult to obtain the decision thresholds and rules, which needs a large
amount of calculation. For more efficient and reliable performance, a novel approach based
on multilayer linear perceptron network for signal classification in cognitive radio is studied
by Fehske (Fehske at el., 2005). Support vector machine (SVM) is a new statistical pattern
recognition approach, which is based on structural risk minimization principle (Vapnik,
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1995). Compared with the conversional methods based on empirical risk minimization like
artificial neural network (ANN), it has been found to give better generalization and better
performance for small training examples. In the next section, a novel approach of signal
classification for cognitive radios combining the cyclostationary features and SVM is
proposed.

3. Spectrum Sensing based on spectral correlation analysis and SVM

3.1 System Framework

As our signal classification scheme combining spectral correlation analysis and SVM is
based on statistical pattern recognition, which mainly consists of three modules (Han, 2003):
feature extraction, classifier design and classification decision. Feature extraction is typically
the first stage in any classification system in general, and in our spectrum sensing systems in
particular. Given signal set to be classified, the feature parameters of different classes of
signal and rules for classifier should be determined first. In order to achieve better
classification performance, selected feature parameter should be insensitive with the SNR
variation, and then a proper classifier is designed for specific classification problem using
training data with known signal types. When the error probability of the classifier achieves a
specific threshold, the classifier can be used for signal classification and recognition. In our
scheme, there are three procedures adopted for primary user signal recognition:

1) Pro-processing procedure:
Several feature parameters are extracted via spectral correlation analysis first. The feature

parameters insensitive with the SNR variation are selected as feature vector x ,x,,-,x,, -

After that, the feature vector and signal type Yy, are used to form the training

set(x,,x,,,x,,,y,) for classifier.

2) Training and learning procedure:

The SVM classifier is trained using selected feature parameters in the training set. By
utilizing a nonlinear SVM, an amount of calculation for training is performed offline,
thus the computational complexity is reduced. The optimal classification plane for SVM
is obtained in this procedure via training and learning.

3) Test procedure

Selected feature parameters extracted for received signals are inputted well-trained
SVM classifier for primary user signal detection and recognition.

The framework of our scheme combining spectral correlation analysis and SVM is shown in
Fig. 3.
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Fig. 3. System framework.

Although SVM is a better choice for the classifier, the selection of feature parameters has
direct impact on the performance of the classification algorithm. In the next section, we will
discuss the first step, how to choose spectral coherence characteristic parameters for our
scheme.

3.2 Spectral Correlation Analysis

Many signals used in communication systems exhibit periodicities of their second order
statistical parameters due to the operations such as sampling, modulating, multiplexing and
coding. These cyclostationary properties, which are named as spectral correlation features,
can be used for signal detection and recognition (Gardner, 1987).

In order to analyze the cyclostationary features of the signal x(t), two key functions are
typically utilized. The cyclic autocorrelation function (CAF) is used for time domain
analysis, which can be expressed as

a 1 (12 T

RY(M)=lim— | x(t+)x “e- 1) et gy
Ton T+ 2 2
(12)
T+ T, ong
= { x(t+—)x (t-—)e™
2 2

The spectral correlation function (SCF), which exhibits the spectral correlation of the signal
x(t), is obtained from the Fourier transform of the cyclic autocorrelation in Equation (12)
(Gardner & Franks, 1975).

f R -]2r1fT dt
T

“lim & (t+ 5y X (- 1) &Pt P gide (13)
o o T 2 2

lim S, (¢ f)

T+
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Where ais the cycle frequency, f is the spectral frequency and S (tf) is the cyclic

periodogram of S (f)

S3 (66 = [X; (6 f+a/2) X} (- a/2)]/T (14)

where the Fourier transform of the function x(u) on the bounded time interval [t-T/2,t +
T/2] is definedas

+T/2

X0 = [ x() ™ du (15)

T/2

The correlation coefficient for the SCF between frequency components f+a/2 , which is

known as spectral coherence coefficient (SCC), can be calculated by

)= (16
2+ a/2)8% ¢ -a/2)

The magnitude of the SCC ranges from 0 to 1 with a = 0 for all f. Different signal classes (i.e.
AM, ASK, FSK, PSK, MSK, QPSK) can be distinguished based on several characteristic
parameters of SCF and SCC.

In practical situations, however, the number of observation samples at the sensor is limited.
Therefore, the spectral correlation function needs to be estimated from a finite set of
samples. In general, two methods are used for spectral correlation estimation including
time-domain averaging and frequency-domain smoothing (Gardner & Spooner, 1988). In
this section, the frequency-smoothing method is used for spectral correlation estimation,
which can be expressed as follows.

(M+1)/2

1 a . a
_Xm(t'f+E+nFs)'XAt(t'f'E+nFs)

Si(f) = —
x( )Af M e At

N-1
Xy ()= D Wiy (KT, ) X(t - KT,)e ™)
k=0
where F, =1/(N -1)T, Ts is the frequency increment, T, is the cyclic sampling interval and
the length of the sample is N = At/ T, . Thus, the data-tapering window W, (kT,) is of the

width Af = M-E, . The Spectral correlation functions of some typical signals can be obtained

by frequency-smoothing method, which are shown in Fig. 4 (Gurman at el., 2008).
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Fig. 4. Spectral correlation functions of some typical signal classes.

Even visually in the above figures, the spectral correlation functions of the different
modulation types possess distinct characteristics. It is this fact that allows the successful
application of the pattern recognition techniques to achieve primary user signal detection
and recognition. In order to obtain better robustness of the proposed algorithm, some
features less sensitive with SNR should be chosen for the classifier. Assumed that the
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received signal s = s + n , where s , n are the transmitted signal and additional white
Gaussian noise. The feature parameter of the received signal has a better classification where
performance which is insensitive with SNR variation, if it satisfies

I - x|| <|In]l, (18)

X, x, n is the feature vectors of s, s, n.

Based on the calculation of the spectral correlation function, we can obtain the spectral
correlation magnitude surface of different types of signal. According to above analysis,
several spectral correlation features can be extracted for distinction of different modulation

types. Typically, four key features x,,x,,x,, x, which are sensitive with modulation types

and insensitive with SNR variation are listed in Table. 1.

Signal Type
Feature
AM [ ASK | FSK | PSK | MSK [ QPSK
X, 2 2 4 0 0 0
X, 1 >3 2 >3 >2 >2
X, 1 1 / 1 0 0
X, / / / 6 <6 | <6

Table 1. Typical value of spectral correlation features. Four key features xi,xo,xX3xsare
described as follows.

. x1: Number of 5 pulse on f - domain of SCF
Let a = 0 in Equation (17), the SCF is transformed into S"(f), thus x; can be obtained
from the ichnography of S(f).

. x2: Number of cyclic spectral line on a -domain of SCF
Let f = 0 in Equation (17), the SCF is transformed into S2 (0), and x> can be obtained
from the ichnography of Sa (0).

. x3: Average energy of cyclic spectral line on a - domain of SCF
The Average energy of cyclic spectral line on a - domain of SCF can be computed by
the equation as follows:

5% (6| da (19)

x, = |

* x4 Maximum value of SCC
The spectral coherence coefficient can be obtained via Equation (16) and Equation (17).
Then, the maximum value of SCC is computed as key feature x4 .

In the simulation experiments, 4000 features are extracted from the signal for every trial. In
order to prevent numerical computational errors, the features need to be normalized by
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subtracting mean of each feature from the original feature and dividing the result by the
standard deviation of the same feature.

X, = (x; -%,)/8, i=1,2,34 (20)

After normalization, the feature vector x = (x|, x},X3,x/) can be generated as the input of

the signal classifier.

3.3 Support Vector Machine

The traditional statistical theory is primarily based on the asymptotic principle, which
provides conclusion only for the situation where the sample size is tending to infinity.
However, in most practical applications, the samples are usually limited so that it is difficult
to achieve the desired results via existing methods. Statistical Learning Theory is a novel
statistical theory based on small sample statistics by Vapnik (Vapnik, 1995). Compared to
the conventional statistical theory, statistical learning theory mainly concerns the statistic
principles when samples are limited, especially the properties of learning procedure in such
cases. Statistical learning theory provides us a new framework for the general learning
problem, which not only considers the asymptotic performance but obtains the optimal
results under the condition of limited information. In order to study the generalization
performance and the speed of uniform convergence, a series of indicators used to evaluate
the learning performance of function sets are defined in statistical learning theory. One of
the most important concepts is Vapnik-Chervonenkis(VC) dimension which was originally
defined by Vladimir Vapnik and Alexey Chervonenkis in 1971. VC-dimension is a measure
of learning machine complexity or the capacity of a statistical learning algorithm, which is
the cardinality of the largest set of points that the algorithm can shatter. The learning
machine is more complex with a greater VC-dimension. Statistical learning theory provides
a novel strategy that balances the empirical risk and confidence interval. A nested subset
sequence is chosen from the given set of functions according to the size of the VC
dimension. For a given subset, the minimal value of the empirical risk can be obtained as the
minimal true risk, which is illustrated in Fig. 5. This method is named as Structural risk
minimization (SRM) which was also coined by Vapnik and Chervonekis in 1974. The
principle of SRM is to provide a method to reach the trade-off between hypothesis space
complexity (the VC dimension of approximating functions) and the quality of fitting the
training data (Wang, 2007). The procedure is described in detail as follows.

Assumed a function set Q(x, a),a € A has a set S, which has a structure shown in Fig. 5. The

structure is defined by a nested subset sequence S,,S,,-+,S, , which satisfies

S, S, c-S - (21)

The elements of the above structure have two properties as follows.

(1) The VC dimension of each subset /i is limited and satisfies
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h,<h, <-h <. (22)

1 2 n

(2) Any element in the structure Sy contains a set of totally bounded function
0<Q(z,a)<B,, acA, (23)

or contains a function set which satisfies the following inequality for some (p, T )

Srk,

p 1/p
up ([Q° w)dF()

p>2 (24)
wh,  [Qlz a)dF()

For a given set of observation set z,,z,,:--,z,, SRM aims to choose the proper function

Q(z, af) who makes the empirical risk minimal in subset S with smallest guaranteed risk.
After performing empirical risk minimization on each subset, the subset whose sum of
empirical risk and VC confidence is selected. The optimal function Q(z, af ) that makes the

empirical risk minimal in selected subset is the optimal solution.

4 Underfitting « » Overfitting
Risk
True Risk Upper Bound

onfi
I Confidence
I Interval

I IEmpirical Risk

.
>

hl h* hn 1’1

VC Dimension ] Function Subset
Fig. 5. The principle of Structural Risk Minimization.

Statistical learning theory also gives the required conditions for reasonable structure of
function subset and the convergence property of actual risk in SRM principle. The actual
risk is the sum of empirical risk and confidence interval. As the index of the elements in the
structure increases, the empirical risk will be reduced with extended confidence interval.
The smallest upper bound of the actual risk can be derived from a certain element in the
structure. Support vector machine is a novel universal learning machine, which is widely
used in the fields of pattern recognition, regression estimation and probability density. It is
based on VC-dimension theory and SRM principle, which has a better generalization
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performance by reaching a trade-off between model complexity with limited sample data
and capacity of the learning algorithm. The support vector machine was coined by Vapnik
in the late 1960s on the foundation of statistical learning theory. It was originally developed
for binary classification problem. The optimal solution of SVM for a linearly separable case
was introduced by Vapnik. Later this was extended to non-separable cases. In the previous
research, a common solution to classification problem of communication signals is artificial
neural network (ANN), such as multilayer linear perceptron network. After the first
preliminary studies, SVM have shown a remarkable efficiency, especially when compared
with traditional artificial neural networks. The main advantage of SVM, with respect to
ANN, consists in the structure of the learning algorithm, characterized by the resolution of a
constrained quadratic programming problem (CQP), where the drawback of local minima is
completely avoided (Boser at el., 1992, Cortes & Vapnik, 1995, Scholkopf, 1995). Since the
classification of communication signals is obvious to be a linearly non-separable problem,
we will only discuss the computation of this optimization problem in this chapter. Given
linearly non-separable classification problem, we suppose a training set is {(xi, Vi )},

where x RN, y € {+1,—1} ,i=1,..,1. Assumed that the signal group can be classified by a
hyperplane which is defined by

w d(x)+b=0 (25)

where the vector w defines the boundary of different classes of data, b is a scalar threshold
and ®(x) = ||x||2 /2.
In order to solve this non-separable problem, the non-minus slack variables ¢ are

introduced, and then the training vectors must satisfy
y,(w'x, +b)-121-&,  i=1,2,1 (26)

The hyperplane, which makes O(w) = | |w|| /2 to be minimum, is named as the optimal
hyperplane. All of the training vectors are correctly classified by it and the vectors of each
class are separated with a maximum margin (Burges, 1997).

Usually, structuring a hyperplane is solved as a quadratic optimization problem that can be
formulated as

S \
min —w w+t CZ S,
Wb, 2 i=1

sty (W O(x,)+b)>1-8 27)

i i

& >0, i=12-,1

where C is the penalty parameter, which is used to control the training error rate by
different values.
Using a Lagrange multiplier technique, the optimization problem can be converted into
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1

1 1 1
F= Ellwllz +CE =Y aly, (W D(x,) +b)-1+E,]- D BLE, (28)

i=1

where , (> 0 are Lagrange multiplier factors.

Given linearly non-separable classification problem, we can map the input data into a high
dimensional feature space through some non-linear transformation which makes the data
linearly separable (Devroye, 1996). Noted the above solution to linearly non-separable
classification problem, only the inner product operation of the training samples is involved
in the decision function. While structuring high dimensional feature space, the algorithm
only use the inner product O (x;)«O (x) in the space without separated O (x) or O (x;) . If we
can find a function K satisfying Mercer condition (Daniel & James, 2000), which can be
denoted as

K(x;,x) = q)(xi)-CD(x) (29)

where K(x;, %) is the kernel function, which is utilized for mapping the input data to higher
dimensional space in order to reduce the computational load. There are different kernel
functions like polynomial, sigmoid and radial basis function (RBF) used in SVM, which are
defined as follows.

1. Polynomial Kernel

K(X, Xi) = [(X “ X ) + 1]k (30)

A k-order polynomial classifier can be defined by Equation (30).
2. Radial Basis Function (RBF) Kernel

K(x, x;) = exp({- ||x - X, ||2 /o’) (31)
The width of the RBF kernel parameter o can be determined in general by an iterative
process selecting an optimum value based on the full feature set. The main difference
between RBF classifier and traditional RBF method is that each basis function in the RBF
classifier corresponds to a support vector, which is automatically identified by the algorithm

where the drawback of local minima is completely avoided.
3. Sigmoid Kernel

K(x,x;) = tanh (V(X'Xi)+C) (32)

This kernel uses sigmoid function as inner product, which is equivalent to a multilayer
perceptron with only one hidden layer. The number of node in hidden layer is automatically
determined by algorithm.

Till now, the choice of the kernel functions was often used empirically, and this also became
a theoretical drawback of SVM. A proper kernel function for a specific problem is
dependent on the specific training sample data. In the practical applications, how to choose
the proper model according to training sample set with better generalization ability is
currently a research direction in the field of SVM. For a signal classification problem using
cyclostationary features, we use an improved method of model selection based on kernel
alignment, which will be described in Section 4.1 in detail. The choice of the kernel functions
is studied via computer simulations and optimal results are achieved using radial-basis
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function (RBF) kernel function. A typical classification experiment using RBF kernel

function based SVM is illustrated as follows

Fig. 6. A typical classification experiment using RBF kernel function (Sherrod, 2008).

After choosing the best kernel function, the dual representation of the optimization problem
can be obtained by computing the derivatives with respect to w, b, ¢ , which is described as

1 1 1
max Z a, - E z O[iC[].yiy].K(xi , x].)
i=1

i,j=1
s.t. 0<a,<C,i=1,2,,1
T

ya=0

The resulting decision function is obtained as follows:

f(x) = sgn {Zl: ayK(x , x)+ b}

i=1

(33)

(34)

The architecture of the SVM classifier combining spectral correlation analysis is shown in

Fig. 7.
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Fig. 7. Architecture of the SVM classifier combining spectral correlation analysis.

4. Performance Evaluation and Analysis 4.1 Kernel Function and Parameters
Selection

According to the definition of kernel function in the previous section, the kernel matrix can
be defined as follows (Lanckriet at el., 2002)

K= (k(xi,xj)):_=1 =| : : : (35)

1-1,1 1-1,2 1-1,1-1 1-1,1

where n is the number of the samples. It is a symmetric positive definite matrix, and since it
specifies the inner products between all pairs of input elements, it completely determines
the relative positions between those points in the embedding space.

In this section, we use an improved method of kernel selection based on kernel alignment to
choose proper kernel function for our scheme (Cristianini at el., 2002). Assumed that Ky and
K are kernel matrix of the kernel function k; and ko, respectively. The (empirical)

alignment of a kernel k; with a kernel k; with respect to the sample S is the quantity, which
can be defined by

(K, K,)

JK K )< (KK

A(Sk k)= (36)

Given a sample set S = {xi |xi €S,i=1,2,---,1} for a specific signal classification problem,

the sample can be divided into two types which are identified by +1 and -1. The signal type
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set is denoted as Y = {yi |yi etl,i=1, 2,---,1} with the vector form Y = {Y1'Y1/""Y1}T'

and then alignment matrix can be defined by

VY, VY. oYY VY
V.Y, V.. v VY. YL,
K,=YY =| ! N | ] ' (37)
VLY. VoY, v YuY. YLV
Lyy, vy, oYY Yy

This kernel selection method using kernel alignment is based on an important assumption
that the kernel function has better performance if the kernel alignment of the kernel matrix
and the alignment matrix is higher. Thus, if we consider K= K1, Ka.qa =YY =K3, then

A(S K, YY) = (K v') ) (38)

\/<K,K>><<YYT,YYT> 1K)

According to the above derivation, the optimal kernel function problem can be transformed
into kernel alignment maximizing problem. In this section, the kernel alignment values of
different kernel functions are compared via computer simulation by MATLAB 7.0. For the
simulations, we define a signal set as {AM, ASK, FSK, PSK, MSK, QPSK}. To obtain the
kernel alignment at different SNR, simulations are carried out with 1024 samples at SNR
ranging from 0 dB to 20 dB. Simulation results show that the kernel alignment of the RBF
kernel is the greater than that of other kernels, which is shown in Fig. 8. According to the
simulation results, we choose RBF kernel as the kernel function of the SVM in our scheme.
After the kernel function is selected, two key parameters of the SVW should be considered
next. The first parameter, penalty parameter C of the SVM, is used for adjusting the range of
the confidence interval to control the training error rate by different values. The second one,
the width of the RBF kernel parameter o, can control the classification error by changing the
largest VC dimension of linear classification plane. Therefore, these two parameters have a
great impact on the classification performance (Chapelle at el., 2002). In this section, we use
a simple cross-validation method to search the best parameters (C, o) .

In n-fold cross-validation, we first divide the training set into n subsets of equal size.
Sequentially one subset is tested using the classifier trained on the remaining n-1 subsets.
Thus, each instance of the whole training set is predicted once so the cross-validation
accuracy is the percentage of data that are correctly classified. The process of cross-
validation is described as follows.
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Fig. 8. Performance comparison of different kernel functions.
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1.  The training set is divided into n subsets (T o I\ ) of equal size, and the elements of

the subset areT' | = {CO,1 , Cor2 Lo, CO,n} AN, = {00,1 100, 0 } n is typically from 4
to 10.

2. After training each (Ci 10, ) using the classifier, the classification performance is
tested.

3. The (Ci 10, ) with best classification performance is used to form the parameter set

rl ={C1,1'C1,2"”’C } and A] ={01,1’01,2’“"01,n}’Ol/n -0,, <0,,-0

Ln 1,1 O,n 0,1

4.  Repeat step 3 until the number of I', and A, reach to a preconcerted threshold. The

(Ci,j /0, ) will be the optimal choice for the specific SVM after iterations.
After performing cross-validation method for our scheme by MATLAB, we can obtain the

best kernel parameters o =0,476 and C = 0.212. After the best (C,0) is found, the whole
training set is trained again to generate the final SVM classifier.

4.2 Classifier Design

In order to compare the performance of different classifiers, two approaches based on
existing methods, such as decision theory and artificial neural network, are introduced with
spectral correlation features as training data.

4.2.1 Binary Decision Tree
After decades of research, decision theory has been widely studied in mathematics, statistics
and communication concerned with identifying the values, uncertainties and other issues
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relevant in a given decision and the resulting optimal decision. In the conventional decision
theory, the binary decision tree (BDT) is a decision support tool that uses a graph or model
of decisions mapping from observations to target value. Since it is simple and easy to
understand, binary decision tree is widely used in signal detection and recognition. After
observation of the value range the different features in Table. 1, it's easy to find that feature
x can be used to classify the signals into three groups, which are {PSK, MSK, QPSK}, {FSK}
and {AM, ASK}. Furthermore, feature x, and x; can be used to distinguish {ASK, AM} and
{MSK, QPSK}, respectively. Thus, a binary decision tree is designed based on spectral
correlation features for primary user signal recognition. In the decision algorithm given in
Fig. 9, we make use of feature x to recognize the FSK signal in the first layer, and then
feature x; and xs are used for the classification of ASK and AM signals and recognition of
PSK signal in the second layer. In the third level, feature x4 is utilized to distinguish MSK
and QPSK signal.

feature vector input MLPN output
X = (X X3 X pmmm == \|yi(k)e[—1,1}
Iyl ASK H >
| |
| |
2 > PSK [ >
= 2 : |
c | 1 Z
e [ iy
A R 0 s e A R AT
n — & | [ 3 >
o my !: FSK ! > Z 1={1,2,---,6}
Og ) | | rr
2 |2 | | —
g | Msk H -
o N
| |
> QPSK [ >
\ /
\ 'l

Fig. 9. Architecture of the BDT classifier based on spectral correlation analysis.

4.2.2 Multilayer Linear Perceptron Network

Artificial Neural networks have long been considered for pattern recognition and
modulation classification and have proven to be robust to a variety of conditions such as
interfering signals and noise. In order to compare the classifier performance of artificial
neural network and support vector machine, a signal classification approach using spectral
correlation and neural networks, which was proposed by A. Fehske (Fehske at el., 2005), is
introduced below. Due to its simplicity, a multilayer linear perceptron network (MLPN)
with 4 neurons in the hidden layer was used for each signal class, and each input layer uses
the normalized spectral correlation feature vector x' = (x'y, x2, x's, x's) as input. Each MLPN

was trained with a back propagation algorithm (Gupta, 2003) with an initial learning rate #t =

0.05 decreasing with each epoch, a momentum constant @ = 0.7 , and an activation function
tanh(x). The output of each MLPN is a continuous value in the range (-1, 1). The MAXNET
structure shown in Fig. 10 simply chooses the signal whose MLPN outputs the largest value.
A typical gradient descent algorithm can be used to solve the linearly non-separable signal
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classification problem, which can achieve minimal mean square error of expected output
and actual output. The training results of all the MLPN are inputted into a simple MAXNET
for final decision. The decision function of the MAXNET is defined by

z(k) = argmax([y, (k)] (39)

The signal classification approach using spectral correlation and MLPN is shown in Fig. 10.

feature vector input  MLPN output
X = 063 X3 Xy Xy Jpmmmmm e NACE -11]
I»| ASK H >
—
e » PSK |+ >
5 5 i =
o 1
E @ > AM i > ; z(k)=max[yi(k)}
e g Z | i={12-6}
% 5 » FSK > & a
o
B o ! =
) i .
S > MSK H >
1
1
» QPSK H >
/

Fig. 10. Architecture of the MLPN classifier based on spectral correlation analysis.

5. Simulation Results

In this section, a variety of Monte Carlo simulations are presented to illustrate the
performance of the algorithm. In the simulations, we define a signal set as {AM, ASK, FSK,
PSK, MSK, QPSK}. For each type of signal, N signal samples constitute one frame which is
used as an observation window to compare the performance of the algorithm with different
data samples. To distinguish 6 modulation classes, simulation are carried out with 1100
frames at SNR ranging from 0 dB to 20 dB using three classifiers developed. 100 frames are
used for training samples, and the remaining 1000 frames are used to calculate the
probability of correct classification of different classifiers. The probability of correct
classification (Pcc) can be defined by

1 N
cc EZ

where N is the number of simulations, P |H, |Hl] is the probability that the algorithm

(40)

determine the signal class i correctly.

The radio channel models considered in the simulations include Gaussian channel and
cognitive radio channel. In order to simulate the wireless environment of cognitive radios,
WRAN channel model B recommended in IEEE 802.22 standard is used as cognitive radio
channel (Sofer, E. & Chouinard, 2005). The WRAN channel reference model B determined
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by the IEEE 802.22 standard group has a multi-path (6-path) delay profile, which is
summarized in Table. 2.

In the IEEE 802.22 WRAN system, cognitive radio technology is considered to share the
licensed spectrum of Digital TV, the typical service coverage is from 33 kilometres to 100
kilometres. The reference channel model B for the IEEE 802.22 WRAN are derived from a
scenario that transmits the signals between the fixed BS and CPEs in wireless broadband
environments. In such a dynamic channel environment, the delay extension is high with
lower Doppler frequency. An Example channel responses for the nominal WRAN channel B
is illustrated in Fig. 11.

Path | Delay(ys) | Power(dB) 15 zglz;ezr)
1 0 0 0
2 3 -7 0.10
3 8 -15 2.50
4 11 -22 0.13
5 13 -24 0.17
6 21 -19 0.37

Table 2. Multipath profiles of the IEEE 802.22 WRAN reference channel model B.
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Fig. 11. An Example channel responses for the nominal WRAN channel B.

Table.3 and Table.4 indicate the probability of correct classification (Pec) for each modulation
type with the training data length of 1000 over Gauss channel and cognitive radio channel,
respectively. Results show the overall correct rate is above 92.83% for a SNR of 4dB, and
97.32% for a SNR of 8dB. These good results for signals with low SNR in the cognitive radio
environment show the proposed approach is insensitive with SNR variation, which come
from the effects of the robustness of SVM classifier. According to Table.3, the proposed
approach has better performance in both channel conditions.
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Signal SNR/dB

Type [ odB | 4dB | 8dB | 12dB | 16dB | 204B
AM | 9692 | 100 100 | 100 | 100 | 100
ASK | 9523 | 100 100 | 100 | 100 | 100
FSK | 9207 [ 9723 | 100 | 100 | 100 | 100
PSK | 8634 | 93.02 | 9824 | 9991 | 100 | 100
MSK | 8858 | 9554 | 9929 | 100 | 100 | 100

QPSK | 8514 | 92.83 | 97.32 | 99.72 | 99.93 | 100

Table 3. Pec of SVM classifier over Gaussian channel.

Signal SNR/dB

Type | gdB | 4dB | 8dB | 12dB | 16dB | 20dB
AM | 9432 | 9661 | 9971 | veo2 | 100 | 100
ASK | 91.33 | 9614 | 9988 | 100 | 100 | 100
FSK | 89.87 | 9522 | 9991 | 100 | 100 | 100
PSK | 87.29 | 9236 | 9829 | 9991 | 100 | 100
MSK | 8561 | 9419 | 9790 | 9989 | 100 | 100

QPSK | 8220 | 90.13 | 9619 | 9843 | 9992 | 100

Table 4. Pecof SVM classifier over WRAN channel B.

Fig. 12 and Fig. 13 show the performance of SVM classifier with data length as parameter
over different channel models. When the data length is 100 and for a SNR of 4dB, the P is
up to 80.62% and with data length 200 and for a SNR of 6dB, the P.cincreases to 90%. When
the data length is 1000 and for a SNR of 10dB, the Pcc is close to 100%. Above results show
that the performance of the SVM classifier is high for small training data in both channel
models. Fig. 14 and Fig. 15 are the performance comparison between BDT classifier, MLPN
classifier and SVM classifier with the spectral correlation features over Gaussian channel
and WRAN channel, which are calculated for different signals using data length of 200 and
1000, respectively. It is shown that when the SNR is lower, the MLPN classifier shows poor
performance. While the SNR is higher, the probability of correct classification is increased.
In lower SNR, the variation of the spectral correlation features (SCFs) is drastically due to
the effect of the noise. Thus, the construction of neural network is not complete with small
training data, which results in the performance degradation. The decision tree based
classifier only use the partial information of the spectral correlation features (SCFs),
therefore, the correct probability is lower than SVM classifier in the whole SNR range. All
the results show the high performance of SVM classifier based on spectral correlation
features (SCFs).
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Fig. 12. The performance of SVM classifier with different data length over Gaussian channel.
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Fig. 13. The performance of SVM classifier with different data length over WRAN channel.
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Fig. 14. Comparison between three classifiers with different data length over Gaussian
channel.

6. Conclusion and Future Work

In this chapter, we proposed a novel approach combining the spectral correlation features
and SVM for signal classification in cognitive radio environment. Four spectral correlation
characteristic parameters were chosen as feature vector of SVM classifier. Simulation results
show that the overall success rate is above 92.83% with data length of 1000 when SNR is
equal to 4dB. Compared to existing methods, the proposed approach is more effective in the
case of low SNR and limited training numbers. Future work in the area of signal
classification for cognitive radio systems will involve the analysis of higher order spectrum
correlation features of more communication signals. Based on these features, a multi-class
SVM classifier can be used to improve the accuracy of classification and reduces the
computational complexity. In addition, the classifier performance will be tested via
simulations using several different channel models.
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