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1. Introduction

Fully automatic nonrigid registration of shapes is highly desired for computer vision and
medical image processing. For a nonrigid registration between two shapes ShapeA and
ShapeB, the ultimate goal should be to find the correspondence between subparts of the two
shapes instead of to achieve a perfect match by applying a forced deformation without con-
straints on the objects. Such a correspondence assignment is usually defined and achieved as
an optimization problem with a cost function abstracted as H(SA(QA),SB(QB),TA→B,CA→B)
to measure the difference of the two matched shapes, where SA(QA) and SB(QB) are the
shape descriptors of SA and SB with shape parameters QA and QB in their own representa-
tion spaces, TA→B is a nonrigid transformation between the spatial coordinate spaces of the
two shapes, and CA→B is the correspondence assignment between the subparts of the two
shapes.
There are two ways to define the cost function H(SA(QA),SB(QB),TA→B,CA→B). In the ro-
bust point matching (RPM), active shape model(ASM), active appearance model (AAM) (Cootes and
Taylor, 2004), and nonrigid shape matching algorithms using the level set based contour and
surface representation (Xu et al., 2001), shape signature harmonic embedding (Lee et al., 2006)
and Gaussian mixture based shape models (Roy et al., 2007)(Jiang et al., 2007), the cost func-
tion is defined as

H(SA(QA),SB(QB),TA→B,CA→B)
= Edi f f (QA),SB(QB),TA→B,CA→B) + γEde f orm(TA→B)

(1)

where Edi f f (SA(QA),SB(QB),TA→B,CA→B) is a measurement of the shape difference be-
tween the aligned shapes with the nonrigid transformation TA→B and the correspondence as-
signment CA→B, Ede f orm(TA→B) defines the bending energy of the nonrigid deformation TA→B

and γ is a factor to balance the two terms. The advantage of this approach is that both the
shape difference and the bending energy are explicitly expressed and we have a wide free-
dom to select their definitions with different underlying physical pictures. The disadvantage
is that the explicit representations of TA→B and CA→B are iteratively defined on each other,
i.e., a TA→B can only be defined on a given CA→B and vice versa. This usually results in that
TA→B and CA→B can only be updated iteratively during the optimization. Such an optimiza-
tion strategy can only converge to local optima and it usually asks for a proper initialization.
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In the shape context (Belongie et al., 2002), the spectral decomposition (Jain and Zhang, 2006)
and graphical model based registration algorithms (Coughlan and Ferreira, 2002)(Caetano
et al., 2004)(Rangarajan et al., 2003), both the shape difference and the bending energy of the
nonrigid deformation are defined implicitly, where both of them are encoded in the relative
positions between correspondent landmarks of the shapes. In such an approach, the opti-
mization procedure aims to directly find the optimal correspondence assignment CA→B and
the nonrigid transformation TA→B never appears during the optimization. The advantage of
this approach is that it can lead to a fully automatic registration since the optimization does
no rely on an explicit transformation TA→B between the two shape. The disadvantage is that
usually this approach is computational expensive. In (Coughlan and Ferreira, 2002)(Caetano
et al., 2004)(Zhang and Seitz, 2005)(Sun et al., 2003), graphical model based Bayesian inference
was used for the purpose of point set matching, image segmentation and stereo matching.
In (Xiao et al., 2007), this idea was also explored for the purpose of surface matching. One
limitation of the work of (Xiao et al., 2007) is that it only matches shapes with the same num-
ber of landmarks and assumed that a correspondence assignment between the landmarks of
these two shapes can always be achieved. The optimization procedure to find the optimal
correspondence assignment was achieved by Gibbs sampling, which may not be efficient to
explore the whole configuration space (Gibbs, 2000) and therefore apt to local optima.
This paper will explore the idea of graphical model based approach for the nonrigid surface
matching of two dense surfaces. The main contributions of this paper are: (a) A cost function,
which is immune to rigid transformations and robust to nonrigid shape deformations, is used
to measure the difference between shapes; (b) Belief propagation is used in the optimization
procedure to find the optimal correspondence assignment, which can converge efficiently for
our registration purpose; (c) A hierarchical matching strategy is proposed so that it can on one
hand reduce the computational complexity and on the other hand, during the matching we
can always assign a sparse surface to a denser surface so that the existence of correspondent
landmarks can be ensured; and (d) A parallel graphical model is constructed so that the two
surfaces will mutually register to each other and also exchange local assignment information
during the registration, which can accelerate the convergence of the optimization procedure
and overcome local optima.

2. Graphical model based nonrigid surface matching

2.1 The cost function for nonrigid surface matching

The inputs of our system are two dense triangulated surfaces Sur fA,Sur fB with NA and NB

(NA ≈ NB) triangle faces respectively. The surfaces can be described as SA = [s0
A,s1

A, . . . ,sNA−1
A ]

and SB = [s0
B,s1

B, . . . ,sNB−1
B ] respectively, where si

A = [xi
A,ni

A] (si
B = [xi

B,ni
B]) stands for the 3d

position of the center and the normal direction of the ith face of Sur fA(Sur fB).
For each landmark si

A on the surface Sur fA, we can compute a shape signature di
A of the land-

mark at the ith face of Sur fA as

di
A = [di,0

A , . . . ,d
i,j
A , . . . ,di,NA−1

A ]j ∕=i,d
i,j
A = [D

i,j
A , A

i,j
A , AL

i,j
A ], (2)

where D
i,j
A = ∥xi

A − x
j
A∥ is the spatial distance of landmark si

A and s
j
A, A

i,j
A is the angle be-

tween the normal directions ni
A,n

j
A of the two faces and AL

i,j
A is the angle between the normal

direction ni
A and the vector connecting xi

A and x
j
A as shown in Fig. 1(a). This shape descrip-

tor measures the distances and angles between landmarks and vectors, therefore a spatial
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shape Sur fA(Sur fB) can be fully determined by the collection of all these shape signatures
{di

A}({di
B}). This shape descriptor is immune to rigid transformations. In the case of a non-

rigid deformation, the landmarks and normal vectors can be regarded as connected by elastic
strings and the deviation of these values can then be understood as the bending energy of the
deformation. Therefore this descriptor can also handle nonrigid shape deformations.
Without losing any generality, we consider the case to register SA to SB. Given the shape
descriptors {di

A} and {di
B}, the difference between two surfaces with a given correspondence

assignment between the landmarks of the surfaces CA→B(i) = j, i = 0,1, . . . , NA, j = 0,1, . . . , NB

can then be written as

H(SA,SB,CA→B) = ∑
i

(di
A − d̃i

B)Λ(di
A − d̃i

B)
T (3)

where d̃i
B = [d

CA→B(i),CA→B(0)
B , . . . ,d

CA→B(i),CA→B(j)
B , . . . ,d

CA→B(i),CA→B(NB−1)
B ],

Λ = Diag(σ2
D,σ2

A,σ2
AL, . . . ,σ2

D,σ2
A,σ2

AL)
−1 is the covariance matrix to balance the strengths of

the elastic strings that connect the landmarks. The cost function measures the difference be-
tween the shape descriptor of SA and the shape descriptor of SB at the correspondent land-
marks.

2.2 Graphical model based correspondence assignment optimization

For the purpose of defining a 3-dimensional surface, the cost function in (3) is over-determined
since its underlying graph G is a complete graph. In (Caetano et al., 2004), the authors indi-
cated that to determine a rigid shape in R

d, the minimal underlying graph G is k-tree in R
d.

A denser graph topology will improve the robustness of the representation to keep the shape
with the expense of a higher computational cost. Define a graph G = {V, E} with NA vertices,
V = {vi} with each vertex correspondent to one landmark in SA and E = {eij} with eij = 1 if
there is an edge connecting vi and vj. Then a generalized representation of (3) can be given as

HG(SA,SB,CA→B) = ∑i,j,eij=1 E
i,j
A (CA→B)

= ∑i,j,eij=1(d
i,j
A − d̃

i,j
B )Λ′(d

i,j
A − d̃

i,j
B )T

(4)

where d̃
i,j
B = d

CA→B(i),CA→B(j)
B , Λ′ = Diag(σ2

D,σ2
A,σ2

AL)
−1.

Accordingly a distribution p(HG) = ∏i,j,eij=1 exp(−E
i,j
A (CA→B)) can be defined and repre-

sented by a graphical model as shown in Fig. 1(b). Each vertex vi
A represents a landmark

si
A of SA and its state is a vector svi

A = [pi,0
A , . . . , pi,NB−1

A ] representing the probabilities that

si
A is assigned as the correspondent landmark of the landmarks of SB. Vertices {v

j
B} stands

for the the landmarks in SB and its state is a vector sv
j
B = [p

j,0
B , . . . , p

j,NA−1
B ] representing

that s
j
B should be the correspondence of each landmark in SA. The vertices {vi

A} are con-

nected according to the topology of G. The potentials between {vi
A} encode probabilities

as ψA(i, j) = exp(−βE
i,j
A (CA→B)), where β = 1/τ is the inverse of the annealing temperature

τ. The optimization to find the optimal correspondence assignment can then be formalized
as a ML estimation to find the peak of p(HG), which can be achieved by graphical model
based Bayesian inference (Coughlan and Ferreira, 2002)(Caetano et al., 2004)(Zhang and Seitz,
2005)(Sun et al., 2003). In our method, the Bayesian inference is achieved by running the belief
propagation (Coughlan and Ferreira, 2002) on the graphical model as given in Fig. 1(b). When
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the belief propagation converges, the state svi
A is then the marginal distribution of the assign-

ment of vertex vi
A. If the annealing template τ is low enough, then {svi

A} will give a unique
peak which indicates the global optimum correspondence assignment for the matching.

3. Graphical model based hierarchical mutual surface registration

It can be observed that the above described graphical model based nonrigid surface matching
faces three difficulties

∙ The existence of correspondence assignment: In our algorithm description, we assume
that the correspondent landmarks for each landmark of Sur fA can always be (uniquely)
found on Sur fB. For a general case where NA ≈ NB, this can not always be satisfied.

∙ The computational complexity: To matching two surfaces with NA and NB faces, the
computational complexity of each belief propagation iteration is �(κNA N2

B), where κ
is a factor related with the topology of the graphical model. The proposed algorithm is
quite computational expensive for practical cases.

∙ The unbalanced information processing structure: In the graphical model based surface
matching, the two surfaces play different roles. The graphical model is built on Sur fA

and the shape descriptors of the two surfaces are explored in different ways. Such an
unbalanced information processing structure may lead to local optima as in the classic
ICP based registration, where the correspondence is achieved by finding closest points
from one data set to another. In an ideal surface matching solution, the two surfaces
should be dealt with equivalently.

To overcome the above mentioned difficulties, we proposed a hierarchical mutual registration
strategy, in which

∙ A hierarchical shape descriptor is used to describe each surface. In such a hierarchical
structure, we can always match a sparse surface to a dense surface so that the existence
of correspondence can be ensured.

∙ The computational cost on the hierarchical shape descriptor can be greatly reduced due
to the fact that the matching results at coarse levels can be used as initializations for the
finer levels so that the possible configurations of each landmark at finer levels can be
greatly reduced.

(a) The definition of the shape signa-
ture at each face of the surface

(b) The graphical models for belief propagation based
nonrigid surface matching

Fig. 1. The graphical models for the registration of two surfaces taking Sur fA as the template

www.intechopen.com
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Fig. 2. The graphical model for parallel mutual registration of two hierarchically represented
surfaces

∙ A parallel graphical model is used to achieve mutual matching of the two surfaces. Dur-
ing the matching procedure, the local matching result of each surface can be exchanged
between surfaces so that it’s more robust to local optima.

3.1 Hierarchical shape descriptors of triangulated surface meshes

To reduce the computational cost, a hierarchical coarse-to-fine strategy is used to represent
each surface in L levels as {SA,L−1, . . . ,SA,1,SA,0} and {SB,L−1, . . . ,SB,1,SB,0}. In our system
a simple k-mean clustering method is used to accomplish this task. Sur fA and Sur fB are
first segmented into NA,L−1 and NB,L−1 (NA,L−1 ≈ NB,L−1) clusters. Each cluster of SA,L−1

(SB,L−1) is represented as si
A,L−1 = [xi

A,L−1,ni
A,L−1] (si

B,L−1 = [xi
B,L−1,ni

B,L−1]), where xi
A,L−1

(xi
B,L−1) is the center of the central triangle of this cluster and ni

A,L−1 (ni
B,L−1) is the mean

normal direction of the faces in this cluster. Lower level representations are then obtained
by further subdivide each cluster in higher level representations by k-mean clustering and
each subdivided cluster can still be described by its center and normal direction. The finest
level descriptors SA,0 (SB,0) are then SA (SB). To facilitate the correspondence assignment on

each landmark si
A,0 (si

B,0)at the finest level, we build an extra representation level SA,−1 =

{si
A,−1}, i = 0,1, . . . ,KNA,0 − 1 (SB,−1 = {si

B,−1}, i = 0,1, . . . ,KNB,0 − 1) by uniformly sampling
K samples from each face in SA,0 (SB,0).
With such a hierarchical structure of each surface, we can construct hierarchical shape descrip-
tors at each representation level as described in the previous part. The graphical model based
surface matching can then be carried out to match a surface at a coarse level l to another sur-
face at a finer level l − 1. Due to the fact that NA ≈ NB and NA,l << NB,l−1 (NB,l << NA,l−1),
the existence of correspondence can then be ensured.

3.2 Graphical model based parallel mutual registration

In the graphical model based strategy to match SA with SB, only the shape information of SA

encoded in {ψA(i, j)} is explicitly explored. This may lead to a slow convergence and it is apt
to local optima.
The idea of parallel mutual registration is stimulated from the Turbo code in communication
field, which indicates that an error-correction code which satisfies two sets of constraints si-
multaneously can greatly improve the its performance (McEliece et al., 1998). For our purpose
of nonrigid shape matching, simultaneously exploring the different shape information of the

www.intechopen.com
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Fig. 3. Information transfer flow in the graphical model for the parallel mutual registration

two surfaces, although they are not independent since they are similar, may also improve the
robustness and accelerate the convergence of our algorithm.
The graphical model for parallel mutual registration of Sur fA and Sur fB between representa-
tion level l − 1 and l is a duplication of the graphical model of Fig. 1(b) as shown in Fig. 2 with
extra directional edges to connect vertices representing landmarks of the same surface but at
different representation levels. These edges only exist if a patch at a finer level is a subset of a
patch at a coarser level.
The equivalent cost function of the parallel mutual registration scheme can be written
as HG(SA,l ,SB,l−1,CA,l→l−1) + HG(SB,l ,SA,l−1,CB,l→l−1) with a consistency requirement on
CA,l→l−1 and CB,l→l−1 encoded in the message exchange between the two subparts of Fig. 2.
In the graphical model for the mutual registration, the correspondence assignment informa-
tion is transferred in the graphical model as shown in Fig. 3.

3.3 Hierarchical mutual registration

The parallel registration can be carried out at each successive level of the hierarchical repre-
sentation of the surfaces, where the result of belief propagation at coarse levels can be used
as the initialization at finer levels. The graphical model based hierarchical mutual surface
matching is summarized as in Algorithm 1.

∙ 1. l = L − 1, initialize all the messages as equal distributions at all configurations.

∙ 2. Run the parallel mutual matching between level l and level l − 1 with β = βl till it
converges.

∙ 3. Using the correspondence assignment result between level l and l − 1, initialize the
correspondence assignment between level l − 1 and l − 2. Increase βl to βl−1, go to 2
till l = 0.

Algorithm 1. Graphical model based hierarchical automatic surface matching

www.intechopen.com
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(a) Surface A (b) Surface B (c) Surface A, L=3 (d) Surface A, L=2

Fig. 4. Randomly generated surfaces from a PCA based statistical model of proximal femurs
and their hierarchical representations

(a) Correspondence assignment
between SA,3 and SB,2

(b) Correspondence assign-
ment between SB,3 and SA,2

(c) Correspondence assignment
between SA,2 and SB,1

(d) Correspondence assign-
ment between SB,2 and SA,1

Fig. 5. The results of mutual registration at l = 3 and l = 2, the red lines show the corre-
spondent landmarks on the two surfaces and the green lines show the distance between the
assignment results of our algorithm and the correspondence assignment encoded in the PCA
model

4. Experiments

We verified the principle of the proposed matching algorithm on a PCA based statistical model
of proximal femurs including 4098 vertices and 8192 faces. Two randomly generated instances
are obtained from the statistical model and one of them is further scaled by a uniform scaling
of 0.9 as shown in Fig. 4(a) and 4(b). Since our matching algorithm is immune to rigid transfor-
mation, applying any rigid transformation to these surfaces will not influence the matching
result. Hierarchical representations of the surfaces are constructed with L = 3, the first two
levels (L = 3 and L = 2) of clustering results of Sur fA are shown in Fig. 4(c) and 4(d).

www.intechopen.com
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(a) The center of
one patch in SA,2

(b) Initialization of
its correspondence
assignment in SB,1

(c) The center of
one patch in SB,2

(d) Initialization of
its correspondence
assignment in SA,1

Fig. 6. The initialization for the mutual registration between level 2 and 1 using the assignment
results at level 3

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. The result of mutual registration between level 2 and 1, (a)(e): centers of two patches
in SA,2; (b)(f): centers of their correspondent patches in SB,1; (c)(g): centers of two patches in
SB,2 where most probable correspondence assignment in SB,1 of (a)(e) are their subpatches;
(d)(h): centers of the correspondent patches of (c)(g) in SA,2; the size of the dots in (b)(d)(f)(h)
represents the probability of the correspondence assignment

The correspondence assignment using the graphical model based mutual registration is then
carried out on them. The underlying graph topology G is selected as a random graph, in
which the degree of each node is at least 5 (connected with 5 nearest neighbours) and the

average degree of one node is 10. Λ′ = Diag(σ2
D,σ2

A,σ2
AL)

−1 in (4) is selected as σD = d
i,j
A,l/4,

σA = σAL = 20∘.

∙ The results of the mutual registration at the coarsest level l = 3 and l = 2 are shown in
Fig. 5. Obviously the two surfaces are already roughly aligned at the coarsest level and
this shows that the proposed algorithm does not ask for any initialization.

∙ The registration result at coarser level is then used to initialize the correspondence as-
signment at finer level as shown in Fig. 6. It can be observed that the number of candi-
dates of each landmark at a finer level is greatly reduced due to the initialization.

∙ The advantage of the parallel mutual registration between the two surfaces can be ob-
served from Fig. 7. The mutual registration can explore the shape information of two
surfaces and exchange correspondence assignment information between them. This

www.intechopen.com
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strong constraint forces the correspondent landmarks on two surfaces to mutually as-
sign to each other quickly. It’s observed during the experiment the belief propagation
at each level can converge in less than 10 iterations.

∙ As mentioned before, the goal of a nonrigid registration is to find optimal correspon-
dence assignment between shapes. Since both surfaces are generated from the same
PCA model, each landmark on a surface carries a point index in the PCA model. We
take the landmarks with the same point index on the two surfaces as the ground truth
of the correspondence assignment and then compute the registration error as the dis-
tance between the correspondent landmark obtained by our registration algorithm and
the ground truth position from prior knowledge of the PCA model. The registration
error is evaluated on both shapes as 2.7 ± 2.3mm. Of course the prior correspondence
knowledge may not be the ground truth but it can be regarded as a proper reference.

5. Conclusions

In this paper we proposed a fully automatic scheme for nonrigid surface matching. The non-
rigid surface matching is formalized as a graphical model based Bayesian inference and the
belief propagation is used to achieve the optimization to find the optimal correspondence as-
signment between shapes. To further reduce the computational cost and enhance the robust-
ness to noise and local optima, a hierarchical mutual registration strategy is implemented so
that the shape information of the two surfaces can be simultaneously explored. Experiments
on randomly generated surfaces from a PCA based statistical model showed the capability of
the proposed algorithm to achieve an automatic nonrigid surface registration.
The proposed scheme can also be extended to incorporate other shape descriptors such as the
Gaussian curvature as used in (Xiao et al., 2007) and the shape context (Belongie et al., 2002)
since they can be easily modeled as local believes of each vertex in our graphical model based
scheme.
One limitation of the proposed algorithm lies in the way that it handles the nonrigid defor-
mation. Different from the commonly used TPS based deformation energy to set constraints on
the shape deformation, our algorithm encodes a nonrigid deformation by the deformation of
the subparts of a shape such as the distances and angles between landmarks. It’s difficult to
design a metric, which can accurately evaluate the deformation energy. Future work will be
carried out to design better cost functions, which can measure the deformation energy more
accurately by combining more shape information including local information such as curva-
ture and deformation energies at different representation levels.
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