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New Methods for Atrial Activity Extraction in
Atrial Tachyarrhythmias

Raul Llinares and Jorge Igual
Universidad Politécnica de Valencia
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1. Introduction

Atrial fibrillation (AF) is the most common human arrhythmia. The analysis of the
associated atrial activity (AA) provides features of clinical relevance. In particular, the
fibrillatory rate has primary importance in AF spontaneous behavior (Asano et al., 1992),
response to therapy (Stambler et al., 1997) or cadioversion (Manios et al., 2000). Previously,
the atrial signal must be obtained. Hence, the identification of the AA is necessary. AA is
embedded into the surface electrocardiogram (ECG), including the rest of the signals, such
as the ventricular rhythm, breathing or noise. The cancellation of the ventricular signal can
be done in different ways: from template matching subtraction to source separation
approaches. One of these AA extraction methods is implemented on a commercially ECG
system available on the market. It features ECG recording and signal processing for non-
invasive assessment of atrial fibrillatory activity (Grubitzsch et al., 2008).

This chapter presents further developed algorithms to extract the AA in the frequency
domain. The methods presented are extensions of classical ICA methods based on second
and higher order statistics. The algorithms exploit the prior assumption about the sources in
order to obtain the source extraction algorithms that are focused on the extraction of the
atrial component.

The chapter is organized as follows. Section 2 describes the AF. Section 3 reviews the
methods of AA extraction existent in the literature. Section 4 outlines the new methods in
detail. In Section 5, the quality parameters of AA extraction are discussed. Numerical
simulations and comparisons are provided in Section 6. Finally, concluding remarks are
given in Section 7.

2. Atrial Fibrillation

The importance of atrial tachyarrhythmias in humans, such as atrial fibrillation (AF) or atrial
flutter (AFL), is revealed by statistics: AF affects 0.4% of the general population, but the
probability of developing it rises with age, less than 1% for people under 60 years of age and
greater than 6% in those over 80 years (Fuster et al., 2001).

During AF, the atria beat chaotically and irregularly, out of coordination with the ventricles,
increasing the risk of stroke and death. There is no unique theory about the mechanisms of
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AF, but some characteristics of AF in the ECG are well established: the atrial activity is
irregular in timing and shape; there is a substitution of the P-waves by an oscillating
baseline that consists of low amplitude fibrillatory F-waves (Petrutiu et al., 2006). The shape,
amplitude and frequency of the F-waves depend obviously on the patient, being more
regular in the AFL case. Atrial rates are usually in the range 240-540 waves per minute in AF
and 240-320 in the case of AFL (Stridh et al., 2006). In addition, the ventricular response
during AF episodes becomes irregular, with higher average rate (shorter RR intervals).
Figure 1 shows an episode of AF (a) and a normal sinus rhythm (b). Note the fibrillatory
waves between the R peaks, the absence of the P waves and the irregular ventricular rhythm
in (a). The normal sinus rhythm (b) contains the P waves and it is more regular.

RRinterval
XX

i F T Q‘RSTcomplex‘
r P wave .
(b) |

0 1 2 3 4 5
t(sec.)

Fig. 1. Comparison between Atrial Fibrillation (a) and Normal Sinus Rhythm (b)

From the signal processing point of view, AA shows a power spectral density concentrated
around a main peak in a frequency band (narrowband signal), with slight variations
depending on the authors; for example, 4-9 Hz. (Petrutiu et al. 2006, Stridh et al. 2006), 5-10
Hz. (Langley et al. 2000) or 3.5-9 Hz. (Castells et al., 2005a). This spectrum is a key feature to
distinguish between AF and other non fibrillatory rhythms. Figure 2 represents two
examples of atrial activity: AF in (a) and AFL in (c); (b) and (d) plot their spectra and the
corresponding peak frequencies.

fp: 7.07 Hz
(a) (b)
| fp: 5.73 Hz
) 1 (d)
0 1 2 3 4 0 10 20
t(sec.) f(Hz)

Fig. 2. Two examples of AA, their spectra and the corresponding peak frequencies
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Analyzing the AA from a statistical point of view, the AA shows a Gaussian or subgaussian
distribution (zero or negative kurtosis value, depending on the patient and the stage of the
disease). From a time series point of view, it can be modeled as a sawtooth signal consisting
of a sinusoid with several harmonics (Stridh & Sornmo 2001). In this case, the kurtosis
values are close to zero. In Figure 3 the histograms of the atrial activities of Figure 2 are
represented together with their associated kurtosis values. The continuous solid lines on the
plots represent the closest Gaussian approximations to the observed distributions.

Histogram of AF Histogram of AFL
)

V"N k=-0.68
[l
'i“““

5 0 5 5

Fig. 3. Histogram of the atrial activities in Fig. 2

3. Methods of Atrial Activity Extraction in the Time Domain

3.1 Strategies

Two main approaches are used to extract the AA: techniques based on exploiting the spatial
diversity of multi-lead ECG recordings and single-lead techniques. The first group includes
algorithms based on averaged beat subtraction (ABS) and algorithms based on source
separation performing an independent component analysis (ICA) or a principal component
analysis (PCA) of the recorded ECG. Similar results were obtained when these algorithms
were compared (Langley et al., 2006). The single-lead methods to extract the AA are mainly
based on averaged beat subtraction. Single-lead algorithms are not benefited by the
information present in all the leads. However, single-lead algorithms permit the analysis of
early stages of AF with Holter systems where there is no more than two or three available
leads, that are not sufficient to exploit the spatial diversity.

3.2 Averaged Beat Subtraction

ABS methods are the most widespread techiques of atrial signal extraction. These methods
are based on QRST cancellation in the time domain. They assume two premises: (i) the atrial
and ventricular activity are decoupled during AF episodes, and (ii), each individual beat can
be represented approximately by an average (template) beat. Once the template is created, it
is used to subtract the ventricular activity (VA) from each individual beat, obtaining a
remainder or residual ECG containing only the F-waves.

ABS methods can be applied directly to single leads (Slocum et al., 1992, Shkurovich et al.,
1998). They differ in the clustering of the different beat morphologies and the estimation of
the template. One key point in ABS methods is the time alignment of the average beat and
the QRST complex before the subtraction. The alignment can be carried out directly from the
R wave timings or maximizing the cross-correlation between the template and the processed
beat for different time shifts.
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Other ABS methods work in a multi-lead ECG environment. Spatiotemporal QRST
cancellation (Stridh & Sornmo, 2001) takes advantage of the spatial diversity to compensate
for variations in the electrical axis, variations in the tissue conductivity and heart position. In
this case, the ventricular activity is modeled by:

X=JXDQ (1)

where J. =[0 Luv Oy A_T)] is the shift matrix used for time alignment (with 7 an

Nx(A+7)

integer time shift and +A the maximum corrected alignment error), X is the average beat,
Dis a diagonal amplitude scaling matrix and Q is a rotation matrix.

The optimization of the parameters D, Q and ], is solved by means of a minimization

problem:
2 : Y 2
£ = min|[Y -] XDQ), )

where Y =X-X, perfoms the AF reduction step with X the beat being processed and X,

the TQ-based fibrillation signal (Stridh & Sornmo, 2001). Note that when Y =X (no AF
reduction step) and DQ =1, the algorithm corresponds to a traditional ABS algorithm
applied to a single-lead.

Lemay et al. (2007) propose a method that processes the QRS complexes separated from the
T waves basing on the different nature of the repolarization and depolarization waves.

The main problem of these methods is the reduction of the performance when a high quality
QRST cancellation template is difficult to obtain. This is the case of clinical practice where
there is only available no more than 10 seconds (Lemay et al. 2007). Other limitations are
their high sensitiveness to variations in QRST morphology or the difficulty of finding the
optimal selection of the complexes to generate the template (Alcaraz & Rieta, 2008).

3.3 Independent Component Analysis

ICA is a signal processing tool for estimating individual source components from mixtures
of them recorded at sensors. The estimation is carried out only with the statistical
independence of the sources as assumption. The most basic formulation of ICA is the linear
noiseless instantaneous mixture model for real-valued sources and mixtures:

x=As (3)

where x (Mx1) is the observed vector that is a linear transformation (mixing matrix A
(MxK) ) of a source vector s (Kx1) whose components are statistically independent, i.e., the

joint probability is the product of the marginal densities p(s) = Hp(sz.) .

The source distributions are not available, so the independence condition cannot be
enforced and a measure of the independence is required. ICA algorithms differ in the way
that they approximate the independence condition (Hyvarinen et al., 2001).
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ICA based on higher order statistics (HOS) has been applied to AA extraction problem
(Rieta et al., 2004). The approach satisfies the basic conditions of ICA: independence of the
sources, non-gaussianity and generation of observations by instantaneous linear mixing of
the sources. The identification of the AA among the set of separated sources was carried out
using a kurtosis-based reordering of the separated signals followed by spectral analysis of
the subgaussian sources.

Taking advantage of the time structure of the ECG recordings, ICA based on second order
statistics (SOS) has also been applied successfully to this problem (Llinares et al., 2006). The
sources in the ECG have different spectra allowing the application of SOS-based algorithms.
In this case, the identification of the atrial activity was carried out using spectral analysis
and kurtosis values.

Castells et al. (2005) proposed a two-step solution based on HOS-ICA (first stage) and SOS-
ICA (second stage) to extract the AA. The identification of the atrial activity was done in
frequency domain searching for the source with a peak in the range of 3-10 Hz.

Regarding the approach, ICA is a multi-lead technique that suffers a decrement of the
quality of the extraction as the number of leads is reduced. Recent studies focus on the
optimization of the location of the leads to apply blind source separation (BSS) techniques
with a reduced number of leads (Igual et al., 2006). Starting from 64-leads recordings (body
surface potential mapping), the AA was extracted using only two leads and an ICA
technique.

The methods based on source separation waste computational load in the separation of non
interesting sources. In addition, they need an additional step to choose the atrial signal
among the recovered sources.

3.4 Principal Components Analysis
PCA is a statistical technique that applies a linear transformation V (MxK) to the
observation data x (MxI) obtaining a vector of uncorrelated variables z (KxI):

z=Vx (4)

where the elements of z are called the principal components. The first principal components
will retain most of the variation present in all of the original variables.

PCA has been applied to multi-lead ECG for extracting the AA (Raine et al., 2004). The first
components are related to ventricular activity and its variability since this activity presents
the largest energy. Among the rest of principal components, the AA is identified in the
frequency domain since it exhibits a narrowband spectrum. PCA applied to multi-lead ECG
provides the optimal solution for orthogonal mixtures. However, the mixing matrix may
have an arbitrary structure, obtaining non-satisfactory results. In addition, if the signals are
Gaussian, decorrelation means independence, so in this case PCA and ICA are the same
transformation.

PCA has also been applied to single-lead ECG for extracting the AA successfully exploiting
the interbeat redundancy. When PCA is applied to several consecutive beats from the same
lead, it outputs the principal components and their projections on each beat. The first
principal component is related to the main QRST waveform, several components are related
to AA and the rest of the components correspond to noise. In the case of several QRST
morphologies in the lead or non-regular QRST waveforms, other principal components will
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appear representing the different patterns or the dynamics of the QRST waveforms. Castells
et al. (2005) estimate the AA reconstructing the atrial subspace from the projections of the
non-ventricular components:

Saa = VanZ )

Other application of PCA to extract the AA in single-lead ECGs is presented by Alcaraz &
Rieta (2008). They calculate the singular value decomposition of a matrix containing N QRST
complexes of the analyzed lead with L samples each one. They use the first non-normalized
principal component as a QRST template to cancel out VA with a previous amplitude
adaptation between each QRST complex and the template. The method also avoids sudden
transitions at the beginning or the end of each QRST segment provoked by the subtraction
of the template to each individual complex.

4. Atrial Fibrillation Extraction in the Frequency Domain

Considering the aforementioned approaches to extract the atrial activity, the specific
characteristics of the target signal, i.e., the F-waves, are not included in the separation
process. In fact, the spectrum of the F-waves that characterizes this signal is a key feature to
distinguish between AF and other non fibrillatory rhythms. Llinares & Igual (2009)
presented two algorithms that exploits this discriminative frequency information of the
atrial rhythm, focusing only on the extraction of the atrial component in a more effective and
simpler manner.

The blind source extraction of the atrial component v ,(t) is:

Ya(t)=b'x(t) 6)

The recorded signals are first whitened by PCA in order to reduce the dimensions of the
problem, to exhaust the use of the second order statistics and to assure that all the sources
have the same variance: z(t)=Vx(t), where V is the NxM whitening matrix, so

E{z(t)z(t)T} =I. The new problem reads:

Ya(t)=w'z(t) )

with the restriction w'w =1 (to assure unit power signals). The aim is to estimatey ,(t), i.e.,

the recovering unit norm vector w, maximizing the independence using HOS-based or
SOS-based ICA algorithms and at the same time looking for a signal that is as close as
possible to the known spectral properties of the atrial signal. This implies the addition to the
independence criterion (HOS or SOS) of a new term that models prior information. The new
combined cost function to be maximized can be expressed as J(w)=],(w)+AJ,(w). The

first term, J,(w), is the ICA only contrast function; it is maximum when a (independent)
source is extracted. The second term, J,(w), models the prior information about the spectral

content of the atrial signal. It is maximum when the extracted signal corresponds to the F-
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waves that define the atrial signal. The tradeoff between the ICA term and the prior is
controlled by the parameter A that is experimentally adjusted.

The mathematical formulation of the power spectral density information about the atrial
waveform corresponds to the integral of the power spectrum in the proper range of
frequencies:

Jo(w)= [, ())df )

where ¢ (f) is the power spectrum of the recovered signal y(t). It is maximum for the

atrial activity y,(t); the interval of integration [f,, f,] depends on prior information about

the patient and the criterion to fix the bandwidth. This interval is calculated from a central
frequency f, (maximum of the power spectral density function) and a bandwidth 2B:

fi=f-Band f,=f +B.

The estimation of the central frequency must be first addressed. Llinares & Igual (2009)
propose a simple procedure for the estimation of the peak frequency. First, starting from
leads V1 or II (they have the largest ratio of atrial to ventricular signal amplitude (Petrutiu et
al., 2006)), the time intervals where there is no QRST complex are extracted, i.e., the signal
corresponding only to the T-Q intervals is obtained; second, these T-Q segments are joined
smoothly; third, the spectrum of the new signal composed of only T-Q fragments is
calculated; fourth, the peak frequency is obtained as the maximum of the FFT in the interval
of frequencies 3-9 Hz. Another option for estimating the initial peak frequency is to follow
the procedure described by Sassi et al. (2007). From leads V1 or II, the time intervals of the
QRST complex (QT intervals) are eliminated and a spectral analysis of the rest of the signal
(T-Q interval) is made with a method appropriate for unevenly sampled data, the Lomb-
Scargle periodogram (Flannery et al., 1988). Although the automated measurement of the
QT interval in atrial fibrillation episodes is complex (Pai & Rawles, 1989), satisfactory results
were obtained applying a simple rule based on Bazzet formula (Bazzet, 1997) and fixing
QT. =550 ms (Sassi et al. 2007).

4.1 Atrial Activity Extraction based on HOS
The HOS-ICA cost function J,;(w) chosen is the approximation of the negentropy given by

Hyvarinen (1999):

oo (1) & (ELg ()]~ E[g(u1c)])’ 9)

where E is the expectation operator, u is a random variable, u; is a Gaussian with the

same variance of u# and g is the non linear function g(u)= llog cosh(a,u) with 1<a, <2.
&

This non-linear function is a good general-purpose contrast function that avoids possible
problems of outliers associated with the kurtosis based contrast function. The final
formulation of the optimization problem is:
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arg max((E[g(y)] - E[g(yc)])2 + A J.f):z ¢y(f)df) subject tow'w =1 (10)

where the spectrum ¢, (f) is estimated by means of the periodogram.

The final updating rule consists of two terms. The first one corresponds to the independence
criterion, i.e., the negentropy term (Hyvarinen, 1999). The second one implements the
optimization of the cost function corresponding to the prior information. See (Llinares &
Igual, 2009) for details in the optimization process:

W E[z tanh(alez)] - E[a1 (1 —tanh® (alez))Jw +A(Cw+C'w), C= %2Z(oimi*TZT 1)

w <—w/||w||

where [I,,I,] is the interval of digital frequencies corresponding to [f;,f,] and
Z =[z(0),z(1),...,z(N —1)] is the matrix of whitened observations. The second step of the

algorithm enforces that w is a unit norm vector, a necessary condition in order to maintain
the unit variance of the recovered source.

4.2 Atrial Activity Extraction based on SOS
The SOS-ICA cost function J,(w) chosen consists in a “sequential diagonalization” of the

autocovariance matrices (Li et al., 2007). The cost function to be maximized is:

2

R.w-dt

Q
Jsos (Wit dy, dy, . dg ) == ) (12)
=0
where R =E [z(t)zT(t - r)],r =0,1,...,Q are Q+1 autocorrelation matrices of the whitened
mixtures, d,d,,...,d, are Q+1 unknown scalars, and | - | denotes the Euclidean length of
vectors. In order to avoid the trivial solution, the constraints [t[=1 and
“[do,dl,. . "dQ}H =1 are imposed. One source is perfectly extracted when R, w =d_t, since t is

collinear with one column vector in A, and w is orthogonal to the other K-1 column
vectors in A . The final formulation of the optimization problem is:

Q
arg max(—Z"Rrw —dt ) J;fz ¢V(f)dfj, subject to w'w =1 (13)
w =0 1

The final updating rule consists of three steps. The first one adjusts the independence
criterion together with the implementation of the prior information. The second one adjusts
the value of dand the third one adjusts the value of t. The final algorithm reads (see
(Llinares & Igual, 2009) for details in the optimization process):
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Q = I
(i) weT(ZOdTRT]t+,1(Cw+CTw), T:[ZZORfT; C:%ZZmimi*TzT
= =1

w<—w/||w||
T

(i) d=| (Ryw)' t,(Rw)"t,...,(Row) t] (14)
[dy,dy,....dy |« d/|d]

(iii) v=Y" dRw
t—v/ ||v|

5. Quality Parameters in Atrial Activity Extraction

To quantify the quality of the extraction with real ECG recordings is not a simple task. In
fact, the problem is unsolvable: the true atrial signal is an unobserved random process that
is only measured mixed with not only the QRST complexes, but other biologic and non
biologic signals, such as 60 (50) Hz powerline interference, instrumentation noise, baseline
drift and wander or electromyogram. It makes impossible to compare the residual ECG with
the real one, so it is not possible to obtain the typical measures of error in signal processing
such as the mean squared error (MSE) or correlation coefficients. As a consequence, the
quality of the extraction (bad-good) cannot be quantified with a distance measure from the
real solution. This section reviews some of the most extended measures found in the
literature and proposes two new quality indexes.

5.1 Parameters Defined in the Frequency Domain

Two parameters in the AA extraction are defined in the frequency domain: the peak
frequency and the spectral concentration around the peak frequency.

The peak frequency is defined as the frequency at which the power spectral density is the
highest in the 3 - 10 Hz band. It is not really a quality measurement by itself, but a parameter
to characterize the AA. The dispersion of its value when we apply the different algorithms
can be used to assure the goodness of the extraction.

The Spectral Concentration (SC) is defined as (Castells et al., 2005a):

117 f,
. [y, BaHf

AN i N W A N 15
[RAGL =

where P,(f) is the power spectrum of the extracted atrial signal and f, the main peak

frequency. SC is a measure of the relative power contained in the narrow band around the
peak frequency. This means that when we compare different algorithms applied to the same
patient, a higher SC value indicates a better extraction of the atrial F-waves.

We propose another index that explains the kind of noise present in the estimated signal.
For every patient, the true atrial signal has an unknown peak frequency and SC value. This
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is equivalent to say that, assuming the bandwidth of the atrial signal from 3 to 10 Hz, every
patient has a centroid frequency, defined such as:

['f-s,,(af

['s, ()i

The centroid frequency measures the form of the distribution of the spectrum over the
bandwidth of the atrial signal. If the SC is very large, it should be close to the peak
frequency. If not, the centroid frequency will move in the frequency direction where there is
more power. Remember that the spectrum of the ventricular activity includes frequencies
above the 10 Hz and below 3 Hz. With respect to other non atrial signals, their spectrum is
also known in advance, e.g., the high frequency powerline interference or the low frequency
breathing. We propose an index that measures the centroid frequency displacement when
we calculate the centroid frequency of the estimated atrial rhythm considering the atrial
bandwidth or the full range of frequencies. It will give us an idea about the kind of noise
remaining:

fo= (16)

10 S d
JE ;‘ 5 ;‘ 7
J;f St df (18)

RN

In the case of perfect atrial estimation, both indexes equals to one. If not, the indexes are
lower than one. A value close to one means a better estimation. In addition, it gives us

information about the kind of noise. For example, I, will be large for an algorithm that does

not cancel the powerline interference.

5.2 Parameters Defined in the Time Domain

Four parameters in the AA extraction are defined in the time domain: the ventricular
residue, the ventricular depolarization reduction, the percentage of significant QRS residua
detected and the relations between amplitudes of the AA and the different segments of a
reference lead in QT and TQ intervals.

The ventricular residue (VR) proposed by Alcaraz & Rieta (2008) permits to estimate
ventricular residua in the extracted AA. VR is defined as:

1 ri+H
VRi - 1 Q n \/2H+1kz yA .k=hfrf?‘e‘lk)iﬁ+H(|yA(k)|) (19)
A
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where 2H+1 is the duration of the QRS interval in samples for a value of H
corresponding to 50 ms. In this case, high values of VR indicate greater QRS residua, i.e., a
poor AA extraction.

The ventricular depolarization reduction (VDR) measures the reduction of the R-peak
amplitude achieved by the algorithm under evaluation (Rieta & Hornero, 2007). VDR is
defined as:

VDR(dB) =101og(Ry, / Ryg) (20)

where R, is the R-peak amplitude of a reference lead and R, is the R-peak amplitude of

the recovered AA. High values of VDR indicate good performance of the algorithm.

Other parameter used to evaluate the quality of the atrial activity is the percentage of
significant QRS residua detected (Lemay et al., 2007). The method identifies the significant
ventricular residua comparing the absolute values of the QRS intervals with a threshold
¢=m+20 where m is the median of the amplitude distribution of y,(t) and

o =qr /0.6745 is the standard deviation estimated from the interquartile range gr of the
amplitude distribution of y,(t). Those QRS complexes with absolute values above the

threshold are considered as significant. Finally, the parameter is presented showing the
percentage of significant QRS residua (PSQRS).

Langley et al. (2006) compared the amplitudes of the extracted atrial signal with a reference
lead, V1, in QRST segments. In addition, they defined a reference atrial signal as the
segments of V1 containing no ventricular activity and compared this reference atrial signal
with noQRST and QRST segments of the extracted AA. The amplitude of each segment was
the peak-to-peak amplitude.

The above parameters (VR, VDR and PSQRS) are designed for ABS methods. They only take
into account the recovered atrial signal in QRST segments, ignoring the form of the signal in
noQRST segments. Respect to the comparison of amplitudes, it can be carried out only with
methods that do not modify the amplitude of the original signal. ICA and PCA returns
signals with unit power, distorting the results when comparing the amplitudes of the
signals.

We propose the kurtosis as quality measure of the atrial signal extraction. It considers the
whole signal (QRST and noQRST segments) and it is valid for signals with unit power. The
kurtosis of a subgaussian (supergaussian) random variable is negative (positive), allowing
distinguish between atrial and ventricular activities. In the cases where the kurtosis of the
atrial activity is marginally positive, it will be always lower than the ventricular activity.
This property can also be extended to measure the quality of the atrial activity extraction.
Since the atrial activity is near the Gaussian distribution, a high absolute value of the
kurtosis means a poor extraction.
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6. Results

In this section, we demonstrate the use of the new algorithms in the AA extraction and the
accuracy of the proposed quality parameters compared with other quality parameters found
in the literature.

We have used two different databases for a total amount of 50 patients. Ten belong to the
“PTB Diagnostic ECG Database” from the MIT database Physionet (Goldberger et al., 2000).
Each record includes 15 simultaneously measured signals: the conventional 12 leads
together with the 3 Frank lead ECG. The other forty belong to a clinical database recorded at
the Clinical University Hospital, Valencia, Spain, and were taken with a commercial
recording system with 12 leads (Prucka Engineering Cardiolab system). For both databases,
the signals are digitized at 1000 samples per second with a resolution of 16 bits.

In our experiments, we have used all the available leads for a period of 10 s for every
patient. The signals were preprocessed in order to reduce the baseline wander, high
frequency noise and power line interference for the later signal processing. The recordings
were filtered with an 8 coefficients highpass Chebyshev filter and with a 3 coefficients
lowpass Butterworth filter to select the bandwidth of interest: 0.5—40 Hz. In order to reduce
the computational load, the data were downsampled to 200 samples per second with no
significant changes in the quality of the results.

The detection of the R peak wave event is carried out by means of a parabolic fitting
algorithm (Illanes Manriquez & Zhang, 2007). The power spectrum is obtained with the
modified periodogram using the Welch-WOSA method with a Hamming window of 4096
points length, a 50% overlapping between adjacent windowed sections, and an 8192-point
fast Fourier transform (FFT).

We use the following acronyms for the algorithms: cFastICA (constrained FastICA)
corresponding to Eq. (11) and cSAD (constrained Sequential Approximate Diagonalization)
to Eq. (14). The parameter A is 4 for cFastICA and 2 for ¢cSAD and the bandwidth used in
both cases is +0.85 Hz.

In Table 1 the results of the quality indexes in the frequency domain are shown. Note the
agreement between the SC values and the centroid frequency indexes: cSAD obtains slightly
better results in SC and I; and I.

cFastICA cSAD
fp, (Hz) 5.543 +1.233 5.556 +1.247
SC 0.541 + 0.149 0.555 +0.145
f. (Hz) 5.604 + 0.855 5.622 + 0.885
I 0.945 + 0.040 0.950 + 0.045
In 0.565 + 0.132 0.581 +0.125

Table 1. Quality indexes in the frequency domain

Figure 4 shows two examples of AA recovered from different patients by cFastICA (a) and
c¢SAD (b) and their respective spectra (c) and (d) with the associated value of the peak
frequency of each AA.

Figure 5 represents one example of AA with low value of I; (a) and another one with low
value of I, (b) and their respective spectra (c) and (d) together with the values of the indexes.
The first case presents low frequency content and the second case shows high frequency
content.
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fp: 4.93 Hz
(@) (b)
fp: 7.25 Hz
() (d)
0 1 2 3 4 0 10 20
t(sec.) f(H2)

Fig. 4. Two examples of AA recovered by cFastICA (a) and cSAD (c), their spectra and the
corresponding peak frequencies (b) and (d)

I; 0.29 Hz

0 1 2 3 4 0 10 20
t(sec.) f(Hz)
Fig. 5. (a) Atrial signal with low I value and its spectrum (b); (c) atrial signal with low Iy
value and its spectrum (d)

Finally, we show a scatter plot of SC values and the indexes I; (a) and Iy, (b) for both methods

in the Figure 6. Clearly, there exists a positive correlation between these parameters, i.e.,
both parameters increase together.

1.2 O  cFastiCA O cFastlCA
& ¢SAD 1 & ¢SAD o
1 o | o8 8
I| Ih
0.6
0.8
% 0.4
0.6 0.2
0 0.5 1 0 1

SC
Fig. 6. Scatter plot between SC and the indexes I; (left) and I, (right) values

www.intechopen.com



580 Biomedical Engineering

In the case of time domain quality indexes, for the sake of simplicity, we only use the
parameter VR and the kurtosis. Table 2 summarizes the results obtained. Note the
agreement between the VR values and the kurtosis: low values of kurtosis imply low values
of VR.

cFastICA cSAD
VR 2.893 +1.051 3.129+£1.169
Kurtosis -0.030 £ 0.648 0.219+£0.794

Table 2. Quality indexes in the time domain

In Figure 7 we analyze the effect of an extraction where the kurtosis of the estimated atrial
signal is high (3.80), due to the presence of QRST residua near 0.6 seconds, 2 seconds and 3.5
seconds.

0 1 2 3 4 5
t(sec.)
Fig. 7. Example of AA with high kurtosis value

Finally, Figure 8 represents the scatter plot between VR and kurtosis for both methods. The
figure confirms the relation between the correct cancellation of the QRST complexes and the
low values of the associated kurtosis.

4
O cFastICA
5 & c¢SAD
k a3
urt 5B
0 s
-2
0 5 10

Fig. 8. Scatter plot between VR and kurtosis values

7. Conclusion

The extraction of the atrial signal in atrial fibrillation has attracted the attention of many
researchers in the last years. We have reviewed the statement of the problem and the
different approaches to solve it. We have shown how the traditional multilead solutions can
be adapted considering the characteristics of the signals involved in the problem. In
addition, we have paid attention to the difficult goal of how to measure the quality of the
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extraction since the solution (the true atrial rhythm) is unknown. We have presented some
indexes that can help in order to analyze the goodness of the extraction.
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