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1. Introduction

Functional Magnetic Resonance Imaging (fMRI) is a relatively new procedure which uses
magnetic resonance imaging to measure tiny metabolic changes which take place in an
active part of the brain. It is becoming a diagnostic method for learnng how a normal,
disease or injured brain performs, as well as, for assessing the potential risks of surgery or
other invasive treatments on the brain. Physicians perfom fMRI to examine the anatomy of
the brain, to determine precisely which part of the brain is handling critical functions, such
as thinking, speech, motion and sensation, to assess the effects of stroke, trauma or
degenerative diseases (such as Alzheimer’s Disease) on brain function, to monitor the
growth and function of brain tumors and to plan surgery, radio therapy or other surgical
treatments of the brain.

After an fMRI paradigm has been designed and carried out, the resulting data must be
passed through various analysis steps before the physician can obtain answers to questions
about experimentally-related activations at the individual or multi-subject level and address
the above matters. The goal of a computer-based fMRI analysis is to detect automaticaly, in
a robust, sensitive and valid way, those parts of the brain which show increased intensity at
the points in time where stimulation was applied. The fMRI analysis methods consist of
three basic stages: preprocessing, signal detection - description, and extraction of the brain
connectivity.

The purpose of preprocessing is to remove various kinds of artefacts and condition the data,
in order to maximize the sensitivity of the next stage of analysis. Preprocessing includes
spatial or temporal filtering of fMRI data and image restoration. After preprocessing, signal
detection is accomplished. It aims to determine which voxels are activated by the
stimulation. This can be performed by simple correlation analysis or more advanced
methods. The main output of this step is an activation map which indicates those points in
the image where the brain has been activated in response to the stimulus. Signal description
aims at modeling the response shape by several parameters and relating these parameters to
variables of the the stimulation context. Finally, connectivity analysis attempts to estimate
brain networks.

The aim of this chapter is to provide an overview of the computer methods which have been
developed to accomplish the above stages of the computer-based fMRI data analysis. The
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chapter is organised as follows: first (Section 2), some fundamental features of the fMRI
modality (including what is fMRI, how does fMRI work, what does fMRI measure, what are
the advantages and disadvantages of fMRI, what are the sources of noise in fMRI, what are
the spatial and temporal characteristics of fMRI, etc.) are described. The next section (Section
3) provides an overview of the preprocessing methods used in fMRI analysis. Then (Section
4), a summary of the main ideas that have been proposed to model and detect the fMRI
signal is presented. In the fifth section, a description of connectivity analysis mehtods is
given. Finally (Section 6), the importance of fMRI studies in understanding brain function
and the applications of fMRI are exposed.

2. Description of the fMRI modality

Functional Magnetic Resonance Imaging (fMRI) is a neuroimaging technique which uses the
physical phenomenon of Nuclear Magnetic Resonance (NMR) and the associated technology
of MRI to detect regional changes in cerebral metabolism or in blood flow, volume or
oxygenation in response to task activation. It utilizes Blood Oxygen Level Dependent
(BOLD) constrast which is based on the differentiation of the magnetic properties of
oxygenated (diamagnetic) and deoxygenated (paramagnetic) blood. These magnetic
susceptibility differences lead to small but detectable changes in susceptibility weighted MR
image intensity (Jezzard et al., 2001, Lazar, 2008).

2.1 fMRI image formation

When the human brain receives a stimulus an increase in neuronal activation takes place.
When neurons are activated require energy. This energy is supplied in the form of glucose
and oxygen (the oxygen is carried in hemoglobin). The resulting increased need for oxygen
is overcompensated by a large incerease in perfusion. As a result, the venous
oxyhemoglobin concentration increases and the deoxyhemoglobin concentration decreases.
As the later has paramagnetic properties, it alters the T2* weighted magnetic resonance
image signal (deoxyhemoglobin is sometimes referred to as an endogenous contrast
enhancing agent, and serves as the source of fMRI signal) (Jezzard & Clare, 2001). More
specifically, the intensity of the fMRI image increases in the activated areas. As the
conditions are alternated, the signal in the activated voxels increases and decreases
according to the paradigm (Figure 1).

2.2 BOLD response

As mentioned above neural activity requires increased local blood flow to supply additional
oxygen. The increased need for oxygen leads to increase in perfusion. Increasing the
prefusion rate in a tissue volume element generally leads to the dilution of the venous
deoxyhemoglobin, reducing the tendency of the blood to decrease the magnetic resonance
signal. This incease in signal intensity is referred as the BOLD.

A schematic representation of the common features of the fMRI BOLD response to a period
of neural stimulation is given in Figure 2. fMRI BOLD response is divided into three epochs:
a) initial dip, b) positive BOLD response, and c) post stimulus undershoot. Immediately
after electrical activity commences there may be a brief period of approximately 0.5-1sec
during which the fMRI signal decreases slightly below the baseline (~0.5%). This is known
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as initial dip. Subsequently, the BOLD response increases, yielding a robust positive BOLD
response whose peak is located 5-8sec after the stimulus is applied. Finally, upon cessation
of the stimulus, there is a return of the BOLD response to baseline, often accompanied by a
post stimulus undershoot, during which the response passes through baseline and remains
negative for several seconds. Eventually, the response returns to baseline (Hoge & Pike,
2001).
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Fig. 1. Schematic representation of the fMRI formation.
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Fig. 2. Schematic representation of the BOLD response.

2.3 fMRI paradigm

During the fMRI paradigm the subject is positioned in the scanner and asked to
alternatively perform several tasks or is stimulated to trigger several processes or emotions.
Tne stimuli are usually audio, visual and motor, but can involve more complex functions
such as memory and thought. Each of the above conditions is repeated several times and
can be separated by rest periods. More specifically, there are two types of fMRI designs: a)
event related designs in which stimuli of different types are intermixed, and b) block
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designs in which stimuli of the the same type are presented in blocks. The brain of the
subject is scanned repeatedly, using Echo Planar Imaging (EPI) technique. EPI is a fast
magnetic resonance imaging sequence which allows the acquisition of a brain volume in less
than 3 seconds (Figure 3) (Jezzard & Clare, 2001).
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Fig. 3. Echo Planar Imaging (EPI) technique.

2.4 Advantages and disadvantages of the fMRI modality

The fMRI image volume offers several distinct advantages over other functional image
modalities, such as PET and SPECT. These advantages are: a) it is considerably safer since
no contrast agent is needed in order the signal to be administrated, b) the total scan time is
very short, and c) it has high spatial and temporal resolution. The disadvantages of the fMRI
are the following: a) it is very expensive, and b) it captures a clear image only if the patient
does not move.

2.5 Spatial and temporal resolution in fMRI

One reason for the popularity of fMRI is its good spatial and temporal resolution. Spatial
resolution in fMRI means the smallest activated area that can be reliably detected. It is
basically limited by imaging time and by reasonable signal to noise ratio (SNR). Smaller
voxels indicate smaller SNR but also improve spatial resolution by enabling the detection of
smaller structures and smaller activated areas. Temporal resolution is defined as the shortest
time between two stimuli in the same cortical area which produce distinguishable
responses. Due to short acquisition time high temporal resolution of fMRI is possible in
principle. However, it is limited by a blurred intrinsic hemodynamic response and a finite
SNR (Menon & Goodyear, 2001).
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2.6 fMRI time series

The functional images, as already mentioned, are T2* weighted images with lower spatial
resolution than anatomical images. However, functional images are not considered as
anatomical images of the object and they are not examined as those. The collection of them
in a certain time rate consitutes a set of images. Each voxel’s intensity value in each image of
the set is called time series of the specific voxel (Figure 4).
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Fig. 4. fMRI time series.

2.7 Sources of noise in fMRI

fMRI time series contain not only the activity evoked by the experiment (effects of interest)
but also structured and random noise. Noise in fMRI has several sources. These are: a)
thermal noise arising from the subject, the receiver coil and the amplifiers, b) systematic
noise arising from subject motion, c) systematic noise arising from tissue pulsation related to

cardiac and respiratory cycles, and d) noise due to slow fluctuations in blood oxygenation
(Lazar, 2008).
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3. fMRI analysis — preprocessing stage

A successful fMRI paradigm is the one that ensures that the evoked neural activity
generated by the stimulus or task constitutes a signal which can pass through all
transformations which are necessary for the preprocessing and statistical analysis stages.

Preprocessing is performed to remove extraneous sources of variation and isolate the fMRI
signal. There are six preprocessing steps that are needed in order the confounding effects of
artefacts to be removed and the SNR to be enhanced. These are: slice timing, motion
correction, intensity normalization, spatial normalization, spatial and temporal filtering.

3.1 Slice timing

Functional MRI volumes are formed one slice at a time. The scan time of individual slice
differs within a repetition time (TR) depending on the acquisition order. More specifically,
in ascending or descending sequential acquisition, the last slice is collected almost one TR
after the first slice. In interleaved acquisition (all odd slices are collected first followed by all
even slices) adjacent slices are collected a TR/2 apart. A problem is that later analysis steps
assume that every voxel is sampled at exactly the same time. It is desirable to correct for this
time shift. Slice timing correction makes the data in each slice to correspond to the same
time instant. It is achieved by phase shifting of the sines that make up the signal. Each
voxles time series is transformed to the frequency domain, phase shift is applied to the data
and then the inverse Fourier transform is applied to recover the corrected time series (Smith,
2001, Strother, 2006).

3.2 Motion correction

One of the strongest fMRI artefacts are the movement related ones. If the subjects move their
head during the fMRI paradigm, the position of the brain within the functional images will
vary over time. Consequently any voxel’s time series does not refer to the same anatomical
point in the brain. Since the head movement cannot completely eliminated by scanner
enviromental ~manipulation, it is corrected afterwards through mathematical
transformations. Motion correction is achieved by the spatial alignment of the voxels across
the sequentially collected fMRI image volumes. Spatial alignment is perfromed by
registering the whole time series of the images to a target image (usually image picked first
or middle image volume). Registration is based on the fact that only rigid body movement
occurs. Thus, rigid body transformation is applied where six parameters (three translations
and three ratotions) are needed. For the determination of the optimal value of parameters a
cost function is used. Many of the differences between registration algorithms concern the
choice of the cost function and the optimization strategies which are used (Smith, 2001,
Strother, 2006).

3.3 Intensity normalization

In fMRI experiment there is additional scan-to-scan variance at very low spatial frequencies
that cannot be readilly accounted for by the experimental stimulus. One possible cause of
changes is the scanner itself (scanner drift). Several global normalization approaches have
been developed to model and control this variation. Intensity normalization refers to the
rescaling of all intensities in an fMRI volume by the same amount. It is applied to each
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functional volume separately. A common approach for intensity normalization is the
following. For each fMRI volume, the mean intensity across all voxels, which have been an
intensity above a predetermined threshold, is calculated. Then all intensity values are
rescaled by a constant value, so that the new mean intensity becomes a preset value. An
alternative procedure is to use mean intensity value of each volume as confounding
variables in later statistical analysis. Such methods present the following probelm. If the
activation is strong then the activation itself will increase the mean intensity, thus, after
normalization the “non-activated” parts of the volume will be negatively correlated with the
stimulation, and will show up as “deactivation” in the final statistical image. Solutions to
this problem, as well as, a comparison of detrending methods can be found in (Smith, 2001,
Strother, 2006).

3.4 Spatial normalization

It is performed for two reasons. First, it enables to report the locations of activation
according to a well know coordinate space, and second, it enables group comparisons. It is
performed by a two step procedure: a) determination of an optimum 12 affine
transformation (3 translations, 3 rotations, 3 zooms and 3 shears) between the template
image and the image to be normalized, and b) estimation of nonlinear deformations defined
by a linear combination of 3D Discrete Cosine Transform (DCT) basis functions (Smith, 2001,
Strother, 2006).

3.5 Spatial smoothing

The importance of measuring and manipulating the spatial correlations of fMRI has been
studied in (Poline & Mazoyer, 1995, Friston et al., 1993a, Worsley et al. 1996). Additionaly,
the impact of spatial smoothing, as a preprocessing step, on signal detection of fMRI signal
has been mentioned in (Skudlaski et al., 1999, Parrish et al., 2000, Lowe & Sorenson, 1997,
Strother et al., 2004). There are two reasons for applying spatial filtering: a) blurring can
increase SNR, and b) certain statistical theory, which may be used in later processing,
requires the fMRI images to be spatially smoothed. A variety of methods for spatial filtering
and a comparison of such methods have been reported in the literature (Smith, 2001, Nandy
& Cordes, 2004, Sole et al., 2001, Long et al., 2004, Wink & Roerdink, 2004). The most
common method for carrying out spatial smoothing is to convolve each volume with a
Gaussian kernel. The width of the kernel lies between 3mm and 10mm of full width half
maximum (FWHM) for fMRI. The recommended FWHM for fMRI is 2-3 times the voxel
size. The convolution is performed in all three directions of the fMRI volume.

As far as it concerns temporal filtering, works on each voxel’s time series instead on each
spatial volume image. It aims to remove low and high frequency components without
damaging the signal of interest. High pass filtering removes slow varying unwanted signals
such as physiological effects (heartbeat, breathing) or scanner related drifts. High pass
filtering is often achieved using finite impulse linear filters or alternatively using non linear
high pass filtering procedures. Another approach is to model low frequencies in late
statistical procedures instead of removing them at the preprocessing stage. Lowpass
filtering attempts to reduce high frequency noise. A common way to carry out low pass
tiltering is the linear convolution with a Gaussian kernel (Smith, 2001, Strother, 2006). Other
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more sophisticated approaches use wavelet filtering, Markov random fields and local
neighborhood smoothing (Kruggel et al., 1999).

4. fMRI analysis — modeling and inference stage

After the improvement of the quality of the fMR images, statistical analysis is carried out to
determine which voxels are activated by the stimulation. The current section presents an
overview of the methods reported in the literature concering modeling and detection of
fMRI signal.

Most functional MRI studies are based on the correlation of hemodynamic response
function with stimulation. Activation is then defined as stimulus-linked and time-dependent
local intensity changes in the image. Strategies for fMRI data analysis, in terms of signal
analysis, consist of two steps: signal description and signal detection. Signal description
aims at modeling the BOLD response by parameters which describe the stimulation context.
Signal detection aims to detect significantly activated areas and it is commonly achieved by
applying a test statistic. A statistical parametric map is created. The value of each voxel in
this map express how closely the voxel’s time series is from the expected time course. Voxels
with high correlation values are given high activation score while voxels with low or no
correlation have low score. In case of negative activation (deactivation) voxels are given a
negative score.

The fMRI analysis has generated an abundant literature. The methods can be grouped into
two broad categories: a) univariate methods (hypothesis testing methods), and b)
multivariate methods (exploratory methods). Univariate methods try to define which voxels
can be characterized as activated given one single model. This allows the parameterization
of the response and then the estimation of the model parameters. This is followed by a
statistical test which assesses the signal estimation and concludes to the presence or the
absence of activation. The methodological variations can be related to the estimation
procedure used or the statistical method employed to assess the presence of activation.
Multivariate methods extract information from the dataset, often with any prior knowledge
of the experimental conditions. They generally, extract a set of meaningful patterns from the
dataset. In order to achieve this, they use some structural properties, such as decorrelation,
independence, similarity measures, that can discriminate between features of interest
present in the data. The gap between the two families of methods tried to bridge methods
which use multivariate linear models. According to the description of the two groups of
methods, methods such as Generalized Linear Model and some extensions of it, Wavelet
basis functions, Bayesian framework, Principal Component Analysis (PCA), Independent
Component Analysis, Canonical Correlation Analysis (CCA), Clustering techniques can be
used for the analysis of fMRI data.

4.1 Generalized Linear Model

One of the most common approach in fMRI statistical analysis is the construction of a model
that describes the way in which the BOLD response depends on the stimulus. A widely used
mathematical model for this purpose is the Generalized Linear Model (GLM) (Friston et al.,
1995a). It consists of two parts: fixed effects and random error. The fixed effects are the part
of the model that do not vary if the experiment is repeated. The ranodm error is the part
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which explains how the observations vary even if the experiments is repeated on the same
subject and under the same conditions. The mathematical formula of GLM is given as:

Y=Xp+e, (1)

where Y is a matrix representing the time series of all the voxels, X is the design matrix of
the predictors, p are the unknown coefficients of the predictors, and e is the error, usually
assumed to be normally distributed with zero mean and variance o2 (independent and
identically distributed). The error e may have a constant or a non constant variance, as well
as, nonzero covariance. The columns of the design matrix X reflecting how the signal is
varying in active areas (stimuli presented at each time point) and can contain different types
of covariates of interest including: factors which describe the experimental design, predicted
hemodynamic responses and categorical covariates, such as demographics of the subject
group membership and so forth.

The basic GLM is usually used under the following assumptions: a) voxels are independent,
b) time points are independent, c) the error variance at each time point is the same, and d)
the same model, as given by the design matrix, is appropriate for every voxel in the brain
(Lazar, 2008). Under these assumptions, the estimates of P can be obtained through the
ordinary least squares (OLS). Thus, the estimated parameters are given as:

B=x"%"x"Y. )

The estimated parameters define how well the model, described in the design matrix, fits
the time series of each voxel. However, the assumptions reported previously do not hold in
practice. Thus, statistical research in fMRI has focused on ways of improving and extending
the generalized linear model, or it has centered on alternative analysis methods.

4.2 Extensions of the Generalized Linear Model
A great part of the fMRI literature has concentrated on the improvement of the GLM

described above in order to take into account temporal correlations, spatial correlations or
both.

4.2.1 Temporal correlations

The basic GLM model described above assumes that the error term has zero mean and
variance o2I. This means that the error term is independent and identically distributed.
However, fMRI errors are not independent. Temporal correlations exist due to physiological
effects and scanner instability. In order temporal correlations to be addressed three general
methods are proposed in the literature: a) ignoring temporal correlation, b) prewhitening,
and c) precolouring. Ignoring temporal correlations leads to under estimation of variance,
over estimation of significance and to many false positives. Prewhitening is assumed to be a
statistical optimal approach but requires the precise estimation of autocorrelation structure.
Precolouring has the advantage that autocorrelation structure estimation is avoided but on
the other hand is statistically insufficient.
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The autocorrelation models used in the literature extend the basic GLM by modeling the
error term as a stochastic process. This can be achieved using an autoregressive model
(AR(1), AR(p), AR(1) + white noise model) (Friston et al., 2000a, Marchini and Ripley, 2000,
Kershaw et al., 1999, Burock & Dale, 2000, Purdon et al., 2001, Purdon & Weisskoff, 1998,
Worsley et al., 2002). Thus, the error term is replaced with zero mean and unknown
covariance structure. The variance is given as 02V, where V is a matrix whose elements
depend on the autocovariance function between two time points. The matrix V is the
autocorrelation matrix for the intrinsic and assumed correlations. The intrinsic correlations
are described by:

V. =K.K!. (©)

1 1 1

The assumed correlations are described by:

V =K K. 4)

a a a

The matrices K; and K, correspond to convolution matrices.

Based on this modeling of error term, a general class of procedures is obtained by
multiplying the GLM by matrix S (Friston et al., 2000a). This yields a model of the following
form:

SY = SXP + Se, (5)

where S is the applied temporal filter matrix. A variety of methods have been reported in
the literature concerning the estimation of the matrix S. These methods were developed
either in the time or frequency domain. Generally, if S has a Toeplitz form then it can be
considered as an applied (de)convolution. However, S can take any one of the following
forms:

K;'  "whitening"
Kirg AR(1)model
S =1Kjrp AR(p)model. (6)

Ky 1/fmodel

I "none"

A comparison of the methods for selecting the matrix S can be found in (Friston et al.,
2000a).

Until know it is assumed that the correlation structure is known. However, in practice V is
unknown and thus must be estimated. Getting the correct correlation structure is important
for three reasons: a) it leads to the best estimator, b) it guides us to the best design of the
experiment, and c) it leads to the correct estimator of the variance, vital for getting the
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correct statistics. A variety of methods have been proposed for the estimation of V. It must
be mentioned that no simple methods exist that give best unbiased answers. The best
methods all involve costly iterative calculations which are expensive to compute.

4.2.2 Spatial correlations

So far no information has been used from neighboring voxels, and all the models have been
titted independently at each voxel. If the signal extends over a certain region in space then it
can be shown that signal detection is optimal if the data is simply averaged over all voxels in
that region. Since the location of the region of interest is not known it is reasonable to
smooth the data (spatial smoothing) with a kernel. The shape of the kernel models the
assumed spatial activation patterns. Smoothing the data has been criticized because it
sacrifices resolvability for detection ability. Moreover, the width of the signal to be detected
should be known in advance.

Instead of smoothing the data or ignoring the spatial correlations, spatial modeling is
another approach. Spatial modeling aims to analyze statistical parametric maps in order to
detect those areas of the brain that were activated by the stimulus. A variety of methods has
been proposed in the fMRI literature (Marchini & Presanis, 2004, Hartvig & Jensen, 2000).
The most widely used methods are based on the thresholding of statistical parametric maps.
The threshold value is determined using the classical approach where a null hypothesis of
no activation at each voxel is postulated and then tested. The core unit of this approach is to
choose a significance level for each test such that the family-wise error rate (FWE) is
controlled at some pre specified level. This induces a multiple-comparisons problem which
is addressed by using random field theory. Another way of spatial modeling is though
Bayesian framework, more specifically spatial mixture models, or clustering techniques.
These models explicitly model activated voxels in addition to the “null” distribution of non
activated voxels. Benjamini & Hochberg (1995), Genovese et al. (2002) suggested that
thresholds can be defined by controlling the false discovery rate (FDR). A different Bayesian
analysis is described by Smith et al. (2003) and Smith & Fahrmeir (2007). Their approach is
based on the basic linear model but the voxel time series is modeled as the sum of a baseline
trend, an activation profile and an error. Their analysis is concentrated on the second term of
the model. The application of the method to simulated and real data detected more isolated
voxels than a comparable linear model-based analysis. Also the use of anatomical prior
information increased the sensitivity of preserving details of activated structures.

As far as it concerns the use of clustering techniques for localization and characterization of
spatial patterns of activation blurs the distinction between purely spatial and spatiotemporal
models. Bowman & Patel (2004) tried to build a spatial model that does not have a temporal
component. Although, their method was developed for PET images they indicate that the
statistical issues are the same and the analysis can be used for fMRI as well.

4.2.3 Spatio-temporal correlations

A more natural way to handle functional neuro-imaging data is to build models that
incorporate both spatial and temporal correlations. The most straightforward approach to
achieve this is to apply clustering techniques to the time series data or spatial regularized
approach, the so called “direct modeling”. Time series clustering is a non model approach
since no parametric model is specified for the spatial relations. These are clarified by the
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detected clusters. With direct modeling spatial models are fitted, often with an aid of prior
information provided by neuro-scientific reasoning or previous experiments.

Application of clustering techniques prerequisites an answer to the following questions: a)
what should be clustered, b) what clustering algorithms should be used, c) which is the
number of clusters, and d) how is the number of clusters decided. A variety of methods
have been proposed in the fMRI literature to address those issues. As far as it concerns the
first question there are two perspectives: a) clustering fMRI time series proposed by
Baumgartner et al. (1998) and b) clustering features of fMRI time series proposed by Goutte
et al. (1999). After the determination of the nature of the dataset, clustering algorithms
(hierarchical clustering, k-means, fuzzy clustering) are utilized. A basic input of the
clustering algorithms is the number of clusters. Methods described in (Filzmoser et al., 1999,
Baumgartner et al., 1998, Balslev et al., 2002, Fadili et al., 2000) are trying to address this
issue. However, the problem remains inherently difficult.

In direct modeling both temporal and spatial components are modeled explicitly (Lazar,
2008). Some authors (Solo et al., 2001, Purdon et al., 2001, Katanoda et al., 2000, Worsley et
al. 2002) use a spatial regularization of the noise estimate. A potential disadvantage of these
models is the adequacy of the spatial model, which is usually isotropic. Another way of
spatial regularization is the use of Markov random fields (Descombes et al., 1998). The
inference based on Markov random fields can be interpreted within the Bayesian framework
where the prior probabilities is given by the voxel time course, while the posterior
probability takes into account the contextual information carried by the neighboring voxels.

4.2.4 Estimation of parameters

An important concern in model based fMRI analysis is the ability to find unbiased
estimators of the parameters. In the previous sections the least square estimation procedure
is reported. Another attractive approach is the maximum likelihood framework. Least
squares estimation approach yields maximum likelihood estimators under the assumption
that the noise is Gaussian. This idea has been generalized in (Nan & Nowak, 1999) to deal
with complex data.

In the previous sections, Bayesian framework is reported as a method for spatial or
spatiotemporal modeling. However, another application of this framework in fMRI analysis
is in the estimation of parameters. The main difference between maximum likelihood and
the Bayesian framework is the introduction of priors in the statistical model of the data. The
introduction of Bayesian concepts is in fact a way to optimize parameters in an expectation -
maximization fashion. Genovese (2000) and Worsley (2000) proposed a Bayesian model for
the estimation of parameters. A similar approach is previously described by Kershaw et al.
(1999). They use informative priors for all parameters, avoiding in this way the
computational issues. An advantage of this approach is that it allows researchers to give
answers to questions beyond those of localization and also the parameters of the model can
interpreted in terms of physiology of hemodynamic response. In 2004 Woolrich et al.
proposed a model that not only models the hemodynamic response but also introduces a
spatiotemporal noise component. The advantages of this approach is that allows for model
comparison and the formulation of the HRF is not restricted by the experimental design. A
different perspective on the Bayesian analysis is presented in Hartvig (2002), where marked
point processes are used to describe the spatial activation pattern. Although, Bayesian
framework is widely applied in fMRI analysis the potential of this framework is not fully
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exploited. A comparison of classical and Bayesian framework is given in (Friston and Penny,
2002).

4.3 Multivariate analysis

In this section we give a short description of multivariate or model free approaches such as
component, correlation and clustering analysis of fMRI data. Component analysis includes
principal and independent component analysis while correlation analysis includes canonical
and maximum correlation analysis. Clustering include methods such as k-means or fuzzy k-
means. In contrast to the methods described in previous sections which were voxel based,
the techniques which are presented aim to finding or characterizing the multivariate nature
of the data, looking in subspaces or higher dimensional directions of common behavior.
These directions may be in space, time or both depending on how the analysis is performed.

4.3.1 Component analysis

A classical multivariate statistical analysis technique is the Principal Component Analysis
(PCA). The goal of PCA is to explain the variance-covariance structure of the data through
linear combinations of the original data. It aims in: a) data reduction and b) interpretation.
Although, the original dataset contains p variables, often much of the variability can be
accounted for by a smaller number, m, of principal components. Hence, data reduction is
necessary. A PCA can show relationships that were not previously suspected, and it allows
interpretations that would not ordinarily result. PCA of fMRI data is often performed
through a Singular Value Decomposition (SVD) technique after centering the dataset. The
SVD simply decomposes the dataset into mutually orthogonal spatio-temporal components.
On the contrary, Independent Component Analysis (ICA) aims to derive statistically
independent components either in the spatial or in the temporal domain but not in both.
This is justified since the independence of the random variables is a much more constrained
problem than their correlation. The ICA uses information available in higher moments;
hence it does not assume normality. Application of ICA involves two main preprocessing
steps, data reduction and whitening. PCA is often used for the data reduction step. It is used
in such a way that the majority of the variability in the data is captured. The innovative
characteristic is that even if the number of required components is large, it will still be
smaller than either the number of time points or the number of voxels in a typical fMRI
study. PCA is also used to prewhiten the data. Whitening transforms the search space to an
orthogonal one. A variety of algorithms, which constrain the results to be correlated and
take advantage of the higher order features of the data are available to actually perform the
ICA.

Comparison of PCA and ICA reveals the following differences. First, the frame of reference
into which one projects the multivariate data with ICA is no more inevitably orthogonal.
Second, the direction of the axes in ICA is not only computed from the second order
statistics like in PCA but also from higher orders statistics. A third difference is the ordering
of the components. More specifically, in PCA, the first principal component accounts for as
much of the variability in the data as possible, and each successive orthogonal component
accounts for as much of the residual variability as possible. The PCA can be used to decrease
the dimension of the problem by considering only the first components which explain most
of the variance in the data. With ICA, the number of sources to be computed must be
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selected first. By changing the dimensions of the unmixing matrix to be estimated, the
number of independent sources is computed by the algorithm. The obtained independent
sources depend on the postulated number of sources, which is not the case in PCA (Lazar,
2008, Bugli & Lambert, 2007).

4.3.2 Extensions of PCA and ICA

An extension of PCA is its nonlinear version (Friston et al., 1999, Friston et al., 2000b). The
motivation for this extension is the observation that the conventional analysis imposes
biologically implausible constraints on the solutions. These constraints are: a) the
components are orthogonal and account successively for the greatest amount of remaining
variance, b) the decomposition is into linearly separable components. The last constraint
precludes the possibility of interactions among brain systems. However, neuroscientists
believe that brain systems interact with each other in a complex way.

Another form of PCA is functional PCA (Viviani et al., 2005). The data delivered by the
functional magnetic resonance imaging (fMRI) scans are considered as continuous functions
of time sampled at the inter scan interval and subject to observational noise. These functions
may be estimated by fitting a set of basis functions to each voxel time series. Collectively, the
functions replace the voxels of a series of images with a single “functional image.” In
functional PCA, the eigenanalysis is carried out directly on these functions. It requires two
steps: a) smoothing time series and b) application of PCA on the estimated functions. As an
explorative tool, functional PCA can be used as an alternative to other multivariate
methods. This is justified in (Viviani et al., 2005).

Kernel PCA is a modification of the original PCA using techniques of kernel methods
(Thirion & Faugeras, 2003). It does not assume that underlying structures of interest are
uncorrelated spatially and temporally. The reason for this modification is that the
assumption reported previously does not always hold for fMRI data. Kernel PCA is a two
step procedure. In the first step each voxel time series is analyzed univariately, resulting in a
temporal characterization of that voxel’s behavior. Then, the voxel based models are
subjected to a multivariate analysis. The aim of the kernel PCA is to preserve temporal
patterns extracted in the first modeling step, something that is not attainable with ordinary
PCA because of the assumption that components are uncorrelated.

As far as it concerns modification of the basic ICA approach these are spatial ICA, temporal
ICA, spatiotemporal ICA, skew ICA and combination of spatiotemporal and skew ICA
(Biswal & Ulmer, 1999, Calhoun et al., 2001, Calhoun et al., 2003a, McKeown et al., 1998,
Calhoun et al., 2003b, Stone et al., 2002). Spatial ICA seeks a set of mutuall independnent
source images, temporal seeks a set of independent source time courses, while
spatiotemporal ICA decomposes an image sequence into a set of spatial images and a
corresponding set of time courses such that signals in both sets are maximally independent.
It is based on the observation that the underlying source images and time courses associated
with brain tissue tend towards statistical independence, but neither source images nor time
courses are independent in such cases. These approaches are based on the assumption that
the probability density function (PDF) of the independent sources is highly kyrtotic and
symmetric. Skew ICA is based on the assumption that images are characterized by the
skewness (rather than the kurtosis) of their PDF’s. This assumption is consistent with
spatially localized regions of activity. Spatiotemporal skew ICA combines the ideas of

www.intechopen.com



Recent developments in computer methods for fMRI data processing 467

spatiotemporal ICA and skew ICA and produces better results both spatially and
temporally.

4.3.3 Correlation analysis

Correlation analysis includes canonical and maximum correlation analysis methods.
Canonical Correlation Analysis (CCA) (Friman et al., 2001, Nandy & Cordes, 2003, Lazar,
2008) is a way of quantifying the correlation between sets of variables. More specifically, it is
a mean to detect the subcomponents of two multivariate datasets that are maximally
correlated. It has been proposed as a way of investigating fMRI datasets with two possible
applications: a) the derivation of temporal components that are maximally correlated and b)
the derivation of the most spatially smooth maps of the dataset. An advantage of this
approach is that the transformation of the original variables into the new scale reveals the
correlation structure between the sets. This would not always be apparent if the simple
pairwise correlations between components of the two sets were calculated instead.
Maximum correlation analysis of maximum correlation modeling (MCM) (Friman et al.,
2002a, Friman et al., 2002b, Lazar, 2008) is a technique related to CCA. It works as follows: it
considers the eight neighbors around each voxel. From this neighborhood five new time
series are created. These are: a) time series of the center voxel, b) the average of the voxels to
the immediate left and right of the center, c) the average of the voxels above and below the
center, d) the average of the voxels in the upper left and low corners, and e) the average of
the voxels in the upper right and lower left corners. The five new time series are combined
linearly via weights (w1, w2, w3, w4, w5) which are positive numbers and sum to one. Also
the weight applied to the center voxel is greater than the others. The correlation of this
spatially smoothed time courses with the convolution of the stimulus and the hemodynamic
response function is calculated. The aim is to find the values of the weights and the
parameters of the model such that the correlation is maximized.

4.3.4 Clustering

Clustering is another exploratory method based on the following statistical viewpoint. The
dataset X is a set of N features (the temporal time series) that belong to a given signal
manifold or feature space F. The literature on fMRI data clustering deals with the following
problems: a) the method for constructing the final clusters, b) the definition of the feature
space F, c) the assessment of the quality of clustering results, and d) the determination of the
number of clusters. Clustering algorithms also try to isolate patterns of no interest since the
lack of prior knowledge. Flandin et al. (2003) suggest that introducing anatomical and
functional information improves the generality and the precision of the method. Unlike PCA
and ICA they do not decompose the data into components, and thus, do not benefit from the
associated denoising effect.

4.4 Wavelets and fMRI

Wavelet analysis of fMRI data has gained the attraction of researchers due to the numerous
advantages of wavelet basis functions. These advantages are: a) wavelets are multi-
resolutional, b) they are adaptive to nonstationary or local features, c) wavelet transform has
a whitening effect and this may be statistically convenient for modeling purposes, d) the
wavelet transform is useful for data compression and denoising, e) the discrete wavelet
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transform is very fast computationally, even compared to the fast Fourier transform, and f)
the brain has a fractal nature, and wavelets are an effective way of modeling such processes.
Thus, wavelet analysis has three main uses: a) creation of activation maps (Fadili &
Bullmore, 2004), b) modeling, and c) resampling. The most traditional application of
wavelets is the last one.

Wavelet resampling has been proposed to assess the presence of activation with colored
noise. It was introduced by Bullmore et al. (2001) and it is remarkably simple. First, the
discrete wavelet transform of fMRI time series is applied. It is adjusted to have zero mean.
Second, the coefficients are resampled at each level of detail. Finally, the inverse wavelet
transform of the permuted coefficients is applied to obtain a reconstructed time series that
has the same variance and covariance as the original. Breakspear et al. (2004) proposed a
two step procedure that aims to preserve both spatial and temporal second-order structure
which is presented in the original data. Also, issues such as which is the best way to
resample coefficients in each direction at each level are addressed. As far as it concerns the
choice of wavelet family, the order of the wavelet, the number of vanishing moments, the
way of resampling in multiple directions (jointly or independently), the management of
edge effects are discussed in (Bullmore et al., 2001, Breakspear et al., 2004). Resampling can
also be achieved in the frequency domain. At each frequency the components are
approximately independent and so the same rationale, as for wavelet resampling, holds. A
comparison of these two methods is given in (Laird et al., 2004), while a detailed comparison
of prewhitening with an autoregressive mode, wavelet and Fourier resampling is presented
in (Friman and Westin, 2005).

As already mentioned above, wavelet has also been used in fMRI analysis for data
compression and modeling. The latter is of specific interest because attempts are presented
to directly use prior anatomical information, and hence, to derive a set of functions that have
intrinsic physiological meaning and interpretation. Fadili & Bullmore, (2002) propose a
wavelet generalized least squares algorithm. The advantage of transforming the data into
the wavelet domain is that the variance-covariance matrix of the error is approximately
diagonal, which facilitates inference. The novel characteristic of this procedure is that the
parameters of the long-range dependency process are estimated simultaneously with the
parameters of the linear model.

5. Connectivity analysis

So far only the estimation of sites of activation and their relationship to stimulation or
cognitive activity were discussed. No special reference to the relationships between different
sites in the brain has been made. Connectivity analysis attempts to estimate such networks,
in order to build up a more shopisticated picture of the functioning of the brain.
Connectivity analysis is carried out on the basis of either similarities in time seires or
relationships between final activation levels. There are two types of connectivity, functional
and effective connectivity. Functional connectivity is defined as the temporal correlations
between spatially remote neurophysiological events (Friston et al., 1993b). This definition
provides a simple characterization of functional interactions, and it does not comment on
how these interactions are mediated. Effective connectivity is the influence one neuronal
system exerts over another (Friston et al., 1993c). Effective connectivity depends on two
models: a mathematical model describing how are connected and a neuroanatomical model
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describing which areas are connected. From the definitions given above it is understood that
functional and effective connectivity differ fundamentally at a practical level. This is because
the time scale and the nature of neurophysiological measurements are very different.
Functional connectivity is a statistical concept since it can be defined as the extent of
correlation in brain activity measured across a number of spatially distinct brain regions.
Studies regarding the presence or the absence of functional connectivity between a set of
brain regions depend on: a) the type of measurement (e.g. EEG, fMRI, MEG), b) the type of
the analysis, and c) the state of the subject during the recording of brain activity (e.g. rest,
stimulation or cognitive task). However, the majority of the studies have employed only two
approaches: a) coherence of EEG signals, and b) inter-regional correlation in fMRI time
series. Studies of patterns of functional connectivity (based on coherence or correlation)
among cortical regions have demonstrated that functional brain networks exhibit small-
world attributes possibly reflecting the underlying structural organization of anatomical
connections. More detailed graph theoretical analysis of functional brain connectivity
helped to identify functional hubs, which are highly connected and central to information
flow and integration. It should be noted that functional connectivity does not make any
explicit reference to specific directional effects or to an underlying structural model (Friston,
2003, David et al., 2004, Achard et al., 2006).

The methods for measuring functional connectivity can be categorized according to the
mathematical domain in which they are implemented (time, frequency). Functional
connectivity is highly time-dependent. Statistical patterns between neuronal elements
fluctuate on multiple time scales, some as short as tens or hundreds of milliseconds. While
the majority of the methods have been developed in the time domain, considerable fewer
methods have been developed in Fourier or wavelet domain. The motivation is that
associations between brain regions may not be equally subtended by all frequencies. Some
frequency bands may be of special importance in mediating functional connectivity.
Functional connectivity studies in the frequency domain have provided evidence for a
fractal organization of functional brain networks (Friston, 2003, David et al., 2004, Achard et
al., 2006).

As far as it concerns effective connectivity its computation is more challenging than the
computation of functional connectivity. More specifically, there are linear and nonlinear
models for effective connectivity such as multiple linear regression, covariance structural
equation modeling and variable parameter regression. Multiple linear regressions (Friston et
al. 1995b, Buchel & Friston, 2001) demonstrated that nonlinear interactions can be
characterized using simple extensions of the linear models. Structural equation modeling
(Penny et al., 2004, Buchel & Friston, 2001, Buchel & Friston, 1997a, McIntosh & Gonzalez-
Lima, 1994) was introduced as a technique that allows combining observed changes in
cortical activity and anatomical models. Variable parameters regerssion (Buchel & Friston,
2001, Buchel & Friston, 1998) was introduced as a flexible regression technique, allowing the
regression coefficients to smoothly vary over time. Multiple linear regression models are
sufficient to analyze effective connectivity to one region at a time. Structural equation
modeling allows for more complicated models compromising many regions and
demonstrates how nonlinear interaction are dealt withing this context. The basic idea behind
this approach differs from the usual statistical approach of modeling individual
observations. In muliple linear regression models the regression coefficients derive from the
minimisation of the sum of squared differences of the predicted and observed dependent
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variable. Structural equation modeling approaches the data from a different perspective.
The emphasis lies on the variance-covariance structure. Thus, the models are solved by
minimizing the difference between the observed variance-covariance structure and the one
implied by a structural or path model. An important issue in structural equation modeling is
the determination of the participating regions and the underlying anatomical model. Several
approaches can be adopted. Those include categorical comparisons between different
conditions, statistical images highlighting structures of functional connectivity and non-
human electrophysiological and anatomical studies. Due to the fact that the goal of some
experiments is not to compute effective connectivity but to demonstrate changes in effective
connectivity, variational parameter regression is proposed. Variational parameter regression
allows the characterization of the variance of regression coefficients by using the framework
of state space models and the Kalman filter (Buchel & Friston, 1997b).

6. Applications of fMRI

Functional neuroimaging has revolutionized the way that cognitive neuroscientists
investigate the relationship between brain and behavior. Functional MRI is contributing to
that revolution by providing a widely available, non-invasive technique which combines
high spatial resolution with critical information about the temporal dynamics of the cortical
and sub-cortical signal changes observed. It is widely accepted as a tool for identifying brain
regions that are associated with certain perceptual, cognitive, emotional, and behavioral
functions, such as visual, sensorimotor, language, and memory. It is suitable for accessing
many aspects of human cognition and plays an important role in assisting presurgical
planning in neurosurgery and in providing additional diagnostic information in the clinical
management of patients who have functional disorders due to neurological diseases and
mental illness. Some other fundamental application of fMRI is the management of pain, the
improved assessment of risk, and the improved seizure localization.

The ability of fMRI to depict brain activity in vivo makes it a promising tool for the
diagnosis, interpretation, and treatment evaluation of clinical disorders involving brain
function. Presurgical planning is an area of clinical importance where fMRI plays an active
role. When surgeons are going to remove a part of a patient’s brain, it is critical to know
exactly where various motor and sensory functions are mapped in that individual’s brain.
Functional MRI is a non-surgical technique for obtaining critical information before any
surgical intervention starts.

Other areas of obvious clinical potential, such as psychopharmacology, neurology, stroke
treatment and recovery, drug addiction, and psychiatric disorders, are under research. As
already mentioned in previous sections fMRI allows for the creation of maps of brain
activity corresponding to the performance of a specific task. A way to exploit these maps is
to identify areas of the brain which are functionally important and therefore should be
carefully avoided during neurosurgery. An important characteristic of these maps is that
they are specific to the individual patient and they do not based on averages across many
subjects.

Pharmacology is another area where fMRI has great potential. Although, fMRI is not
recommended for the identification of the binding sites of a drug, due to its good spatial and
temporal resolution, it can be utilized for the indication of brain areas that a drug influences.
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A better understanding of the anatomy and physiology of addiction may eventually lead to
more effective treatment.

As far as it concerns the application of fMRI to neurological and psychiatric disorders is still
under development. Also fMRI has great potential in the area of medical diagnosis, since the
analysis of this modality reveals a great variety of differences between healthy and diseased
subjects. Many such studies have been conducted already concerning various diseases. In
the future the fusion of fMRI with other medical image modalities will offer a significant
amount of valuable information for the better understanding of human brain anatomy and
function (Owen et al., 2001, Thulborn & Gisbet, 2001, Faro & Mohamed, 2006).
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