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Nonlinear Projective Filtering of ECG Signals

Marian Kotas

Silesian University of Technology, Institute of Electronics
Poland

1. Introduction

Since the beginnings of the noninvasive electrocardiology, development of the methods for
reconstruction of the electrocardiogram (ECG) embedded in noise has stimulated the
progress in the field. The predominant types of noise are baseline wander, powerline
interference, electromyographic (EMG) noise and motion artifacts. Among them EMG and
motion artifacts are the most difficult to be suppressed. It stems from the fact that their
frequency spectra overlap that of the desired ECG, which makes the classical band-pass
filtering ineffective. To mitigate the problem, the synchronized averaging was introduced.
The method assumes that the ECG signal is repeatable and that the noise is additive,
independent and of zero mean. Linear time-alignment (Jane et al. 1991) of the respective
ECG beats and construction of an average one results in significant suppression of the noise;
however, the inter-beat variability of the cardiac cycles is lost.

In many applications it is advantageous to suppress noise while preserving the variability of
the desired signal morphology. In such cases, it is more advantageous to create a space of
possible shapes instead of constructing an average template. This task can be accomplished
with the help of principal component analysis (PCA) (Olmos et al., 1999; Kotas, 2006). In
(Paul, 2000) the signal subspaces were constructed in the discrete cosine transform domain.
However, modeling ECG beats with the help of the intrinsically linear PCA allows a limited
success only (Kotas, 2006). In (Hu & Nenov, 2006) construction of the signal subspaces was
preceded with the nonlinear alighment of ECG beats. New capabilities emerged when the
method of nonlinear state-space projections (NSSP) was applied to ECG processing
(Schreiber & Kaplan, 1996). Although this method also performs locally linear projections,
globally the operation is nonlinear and allows more effective processing of the signal. This
version of nonlinear projective filtering (NPF) was compared (Hu & Nenov, 2006) to several
other sophisticated methods of ECG noise suppression and achieved the best results in EMG
noise environment. NPF allows not only a kind of smoothing of ECG signals but can also be
used for separation of signal components with overlapping spectra. It was successfully
applied (Richter et al., 1998) to fetal ECG extraction from the maternal abdominal signals.
Although NSSP method offers so advantageous performance, its practical applications are
limited by the high computational costs. In (Kotas, 2004) linear time-alignment of the ECG
beats was used to decrease the number of the constructed signal subspaces. In the
conditions tested, projective filtering of time-aligned ECG beats (PFTAB) was several
hundreds faster than NSSP. Moreover, PFTAB appeared rather effective in EMG noise
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434 Biomedical Engineering

environment. This method can be regarded as an extension of time averaging, preserving
the deviations of the individual beats from the average one. However, when the length of
the individual beats and the positions of the low amplitude ECG waves are highly variable,
its performance can decrease. The method of dynamic time warping (Sakoe & Chiba, 1978)
helped to overcome the problem. Projective filtering of time-warped ECG beats (PFTWEB)
appeared much more effective in such conditions (Kotas, 2008b).

Application of nonlinear projective filtering to ECG reconstruction prior to the analysis of
the ventricular repolarization significantly improves the accuracy of the measurements
(Kotas, 2007a). The ability of the method to extract the fetal ECG from the maternal
abdominal electric signals was demonstrated in (Kotas, 2007b).

The aim of this study is to reveal the fundamental differences among the mentioned
versions of the nonlinear projective filtering and to present how these differences influence
the NPF performance. In sections 2, 3 and 4 the necessary details of the compared methods
operation are reminded. The differences among the methods and their applications are
studied in section 5. The final conclusions are formulated in section 6.

2. Nonlinear state-space projections

The method was proposed by (Schreiber & Kaplan, 1996) as an effective tool for suppression
of the wide-band electromyographic noise, contaminating the ECG signals. It forms the
state-space representation of the observed noisy signal by application of the embedding
operation (Schreiber & Kaplan, 1996). A point in the embedding space is a vector:

x() = [ x(n), x(n+7), ..., x(n+(m-1)7 |7 (1)

where x(n) is the processed signal, 7 is the time lag (r=1 in this application), m is the
embedding dimension.

For each point x(® a small neighborhood I'™ is constructed, composed of the points which
are close to x(")

r - {k:”x(k) —xMl<eg } (2)

where || . || denotes the distance, ¢is the radius of the neighborhood (Schreiber, 1995).

Within each neighborhood the local mean is computed (the neighborhood mass center)

<m - 1 ()

- W ®)

ker®

( |T™| denotes the cardinality of I'™ ) and the covariance matrix C of the neighborhood
points deviations from the mass center (Schreiber & Kaplan, 1996). Then the transformed
version of the covariance matrix is calculated G®=RC®R. R is a diagonal penalty matrix
introduced to penalize the corrections of the first and the last coordinates of x(" (111 = rmm=
r, where r is large (Schreiber & Kaplan, 1996), and the other diagonal entries of R are equal
to 1). The transformed covariance matrix undergoes eigendecomposition, and the calculated
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eigenvectors e;™ corresponding to the largest eigenvalues are used to compose the so-called
signal subspace. After constructing the subspace of the assumed dimension q (g < m ) the
point x( is projected into this subspace

200 _xm) R‘lEq(”)Eq(”)TR(x(”) _;<n)) @)

where E,(0) = [e;(), ..., e, ].

The projection is performed for each trajectory point. Since each sample of the processed
signal occurs in m points, its correction is a result of m individual corrections. It can be
calculated as their average (Schreiber & Kaplan, 1996).
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Fig. 1. Embedding space trajectories obtained for: a high quality ECG (A), the ECG with
white Gaussian noise (B) and the simulated signal of a pregnant woman (C).

Since high dimensional embedding cannot be shown graphically, two-dimensional
trajectories were presented in Fig.1. Although for noise reduction much higher embeddings
are required, even such two-dimensional representation reveals some interesting properties
of the ECG signal state-space structure. The trajectory of a high quality ECG (A) is close to a
nonlinear manifold. For the same desired ECG contaminated with white Gaussian noise, the
trajectory fluctuates around the “clean” one. Similarly, addition of the fetal ECG (C) results
in the appearance of small loops circulating around the “clean” trajectory.
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The described method (NSSP) is aimed to create locally linear signal subspaces for the
respective points of the state-space trajectory. By projecting the points into these subspaces
we shift the trajectory towards the “clean” one and, as a result, we suppress noise
preserving the fluctuations of the desired ECG. Averaging of locally linear projections
results in globally nonlinear transformation of the trajectory. Similar transformation of the
trajectories obtained for the maternal abdominal signals (see Fig.1 C) results in suppression
of the fetal electrocardiogram (FECG) and estimation of the maternal ECG (MECG). To
extract the FECG, we simply subtract the estimated MECG from the original abdominal
composite signal.

The ability of NSSP to suppress the wide-band ECG noise while preserving the desired
component morphological variability and even to separate the signal components of similar
spectral properties (MECG and FECG) is a great advantage. Another advantage is that the
method is very general. It can be applied without a complicated adjustment of its action to
processing of different signals. However, its practical applications are limited by the
extremely high computational costs (resulting from the fact that for each point of the state-
space trajectory we have to determine the neighborhood and to create the signal subspace
individually). To reduce these computational costs, the approach preceded by ECG beats
time-alignment was developed (Kotas, 2004). This operation allows limiting the number of
the constructed signal subspaces to the number of different positions within a beat, and the
points occupying the same position within different beats can be projected into the same
subspace.

3. Projective filtering of time-aligned ECG beats

In this method, construction of signal subspaces and state-space projections are preceded
(Kotas, 2004) with the following operations:

e Linear filtering for baseline wander and power line interference suppression
(Wariar & Eswaran, 1991),

¢ QRS complex detection (Hamilton & Tompkins, 1986),

e Beats classification as either dominant or aberrant (Pahlm & Strnmo 1987): the
latter are excluded from further analysis, as well as the beats preceded or followed
by aberrant ones,

e  Cross-correlation function based synchronization of the detected complexes.

The last operation produces a set of fiducial marks {rx | k=1,2,..., K} corresponding to the
same position within the respective detected QRS complexes. Once the fiducial marks are
established, the intrinsic operations of the method can be realized.

Each beat begins the assumed number of samples before its fiducial mark and ends one
sample before the beginning of the next beat (Kotas, 2004). In order to facilitate construction
of local signal subspaces (LSS), the respective beats are stored in an auxiliary matrix T
(although in this method the term local refers to the position within a beat, it is also related
with the points location in the embedding space). Each beat occupies one column of
T = [t]i=1"K. The number of rows (which is denoted as I) depends on the length of the
longest beat (RRmax). It must be large enough to allow construction of a signal subspace for
the position j = RRmax. Thus I = RRmaxt(m-1), and all the beats in T are extended to this
length - the method of zero order extension, which extends a beat by repeating its last
sample (Chou, 2006), is applied.
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Time-alignment of the beats enables easy determination of LSS corresponding to the
respective positions within a beat. To this end, for each j (1 <j < RRmax) a submatrix of T is
selected (Kotas, 2004)

T = [t D] = [0 ™K, where £, =t ®)

containing the vectors t;(), which correspond to the synchronized trajectory points.

To make construction of signal subspaces more robust against outliers, we form a local
neighborhood I'() by rejecting the assumed fraction cr of the most distant points. After
determination of the local neighborhood, the local mean t () is computed and the covariance
matrix C0) - of the deviations from the mean. In projective filtering of time-aligned ECG
beats, the concept of penalizing the corrections of the first and the last coordinates of the
embedding space vectors was desisted (Kotas, 2004). A local signal subspace corresponding
to the jth neighborhood is calculated by eigendecomposition of the covariance matrix C0).
After creating the signal subspaces for the respective positions within an ECG beat (the
learning phase of PFTAB), the processing phase begins. It consists of the following steps:
determination of a position j within a beat, the point under correction occupies; projecting
the considered point into the corresponding signal subspace; averaging of the results of the
respective points projection (Kotas, 2004).

The introduced modifications significantly decreased the computational costs of NSSP.
Moreover, PFTAB appeared not only much faster, but also rather effective in processing the
ECG signals disturbed by EMG noise (the influence of noise on determination of
neighborhoods was cancelled). This property appeared particularly advantageous when
application of projective filtering to fetal ECG extraction was studied (Kotas, 2007b).
Unfortunately, high fluctuations of the cycles length and large temporal shifts of the low
amplitude ECG waves can decrease PFTAB performance. Therefore a new version of
nonlinear projective filtering was developed (Kotas 2008b). In this version, the method of
dynamic time warping (Sakoe & Chiba, 1978) was applied to neighborhoods determination.

4. Projective Filtering of Time Warped ECG Beats

The preprocessing steps of the method are the same as in PFTAB. They produce a set of
fiducial marks {rx |k=1,2,..., K} corresponding to the same position within the respective
detected QRS complexes. The embedding space points are divided into successive, slightly
overlapping sequences of vectors whose time indices belong to the following sets

W ={a +1[1=01,..,N; | k=12,.,K-1 (©6)
where
akZTk—b—%, Nk:rk+1_”k+2b (7)

b € N is a small number introduced to immunize the method against small errors of the
fiducial marks determination (Kotas, 2008b).
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Fig. 2. The ECG signal sections containing successive QRS complexes. The presented delay
windows show the first and the last state-space points of W1 and ¥k respectively. The kth
sequence of points is time warped with respect to the first one.

The general concept (Kotas, 2008b) is to perform the nonlinear alignment of the successive
sequences of vectors (¥, k = 2, 3, ... K-1) with respect to the first sequence and this way to
determine the neighborhoods corresponding to the respective positions within #; .

a; +N;

For small b the side points x’and x“*™ overlap QRS complexes (see Fig.2), and thus
their neighborhoods can be determined on the basis of the preprocessing step results:

r@ —{a |k=12,..K-1}

(®)
rEND g + Ny [k=12,..,K-1]

Determination of the neighborhoods corresponding to the respective positions within ¥ is
performed in the following way (Kotas, 2008b).
1) In the first step each neighborhood of a point from ¥ is filled with this point only,
and so the time index of this point is included in the neighborhood set

F(a1+l) :{al +l}/ l:O,l,.-.,Nl (9)
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These points become the first mass centers of the respective neighborhoods. Then
we set k =2 and go to the next step.

2) The sequences of points that belong to ¥ are time warped with respect to the
sequence of the mass centers. For this purpose, the so-called warping paths are

that

calculated: wy;, [ = 0, 1, ..., Ny, containing the indices of the vectors x (% F i)

are aligned with the successive mass centers x"*) The warping path is calculated
by minimizing

N,
Q; = ZHx(ak‘*wk,l) _x(@+) (10)
1=0

while preserving the border conditions, the monotonicity conditions and the
condition restricting the number of successive points from % that may be omitted
in the warping path (Kotas, 2008a). The minimization is performed with the use of
the dynamic programming (Sakoe & Chiba, 1978).

3) After the kth sequence % has been time warped with respect to the sequence of the
mass centers, the neighborhoods are supplemented with the points whose indices
are stored in the warping path

F(‘””) = F(”1+l) U {Elk + wk,l } (11)

4) The mass centers of the respective neighborhoods are updated and k is
incremented. If k < K-1 we go to step 2, otherwise we end the algorithm.

After determination of the respective neighborhoods, the corresponding signal subspaces
are constructed. As in PFTAB, to make the constructed subspaces robust against outliers, in
each neighborhood the assumed fraction cr of the most distant points is rejected.
Construction of signal subspaces for the respective positions within %; ends the learning
phase of PFTWEB. The processing phase, as in PFTAB, consists of state-space points
projecting and introduced corrections averaging - for details see (Kotas, 2008b).

5. Results

In this section, we will first observe and analyze the differences among the compared
versions of nonlinear projective filtering. Then we will study the chosen versions ability to
suppress noise or to separate the signal components with overlapping spectra.

5.1 Distributions of neighborhoods points
Different approaches to neighborhoods determination result in different contents and
properties of the constructed neighborhoods.
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Fig. 3. The neighborhoods determined by the respective methods while processing a high
quality signal with a shifting T wave. The uppermost are one-dimensional representations of
the neighborhood points; below, the first three principal eigenvectors - vertically shifted;
below, distributions of the neighborhoods points in 3D principal subspaces.

In Fig.3 we can see that one-dimensional representations of the points included into the
neighborhood by NSSP are very close to each other. Their dispersion in the three-
dimensional principal subspace is very low. The neighborhood was determined to perform
reconstruction of one state-space point only. Since this point must be located close to the
center of the presented cloud of points, a high precision of reconstruction is possible even
for a very low dimension of the signal subspace.

The neighborhood determined by PFTAB is of much higher dispersion. It is caused by
different positions of the individual T waves within the ECG beats. The characteristic
structure of the points three-dimensional representation reveals nonlinear relations among
them. For so low level of noise, higher variability of the desired component assured
determination of very smooth principal eigenvectors. However, since many points of the
neighborhood are located very far from the mass center, much higher dimension of the
signal subspace is necessary for their precise reconstruction.

Applying nonlinear alignment of the sequences of state-space vectors (PFTWEB), we
achieved relatively precise synchronization of the T waves. Although the dispersion of
points is larger than that achieved by NSSP, it is much smaller than that obtained by PFTAB.
As a result, the dimension of the signal subspace doesn’t have to be so high as for PFTAB.
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Fig. 4. Results of a state-space point reconstruction in the simulated EMG noise
environment: A - the point under reconstruction; B - the desired component of A; C - the
neighborhood mass center; D,EF - results of reconstruction for the signal subspace
dimension of 1, 2 and 3 respectively (C,D,EF are vertically shifted).

The influence of real electromyographic, highly correlated noise on state-space points
reconstruction was illustrated in Fig. 4. For NSSP not only the desired, but also the noise
component had a great impact on neighborhood determination (the noise deviations from
the desired component are well synchronized). As a result, even the neighborhood mass
center (C) contains a discernible noise component. With increasing dimension of the signal
subspace, suppression of noise was less and less effective.

For PFTAB the noise components of the neighborhood points are not synchronized and
calculation of the mass center caused their effective suppression. Although the mass center
(C) is shifted with respect to the desired component (B), for g=1 relatively precise
reconstruction was achieved - with effective suppression of noise.

Application of dynamic time warping allowed more flexible determination of the
neighborhood with rather low influence of noise. It improved -calculation of the
neighborhood mass center, which is visually free of noise and closer to the desired
component (B) than the mass center constructed by PFTAB. However, for increasing g the
suppression of noise was less and less effective.

Separation of the maternal and the fetal ECG is even more difficult than suppression of
EMG noise. In the first stage, projective filtering is applied to suppress the fetal component
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and to estimate the maternal ECG. In the second stage, the estimated MECG is subtracted
from the original composite signal and this way suppressed. As a result, the fetal
component is extracted. However, when the estimated MECG contains some residua of the
fetal QRS complexes, its subtraction causes inconvenient suppression of the fetal ECG.

NSSP: neighborhood points PFTWEB: neighborhood points PFTAB: neighborhood poirts
20

20 20
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Fig. 5. Results of a state-space point reconstruction for the real maternal abdominal signal
(the point corresponds to the maternal T wave with the overlapping fetal QRS complex). The
further description is as in Fig.4. For this signal the desired component (B) was not available.

Reconstruction of the point corresponding to the maternal T wave with the overlapping fetal
QRS complex is illustrated in Fig. 5. In this case NSSP failed. Most points of the
neighborhood contained a fetal QRS complex and were synchronized with respect to it. As a
result, the complex was preserved in the neighborhood mass center (C) and, consequently,
the state-space projection could not have caused its suppression. For PFETWEB the complex
was suppressed by calculation of the mass center. However, projections into the principal
subspaces of different non-zero dimension resulted in its reconstruction. Only PFTAB
allowed suppressing the fetal complex for non-zero dimension of the signal subspace.
Although many factors influence state-space points reconstruction, and in different
conditions the results can be quite different, the presented cases were chosen to illustrate the
most typical action of the compared methods. We can conclude that PFTWEB is most
appropriate for ECG enhancement in EMG noise environment, but PFTAB allows most
effective extraction of the fetal ECG.
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Fig. 6. Results of ECG signal filtering in a case of the significantly shifted T wave. The
arrows indicate poor results obtained by PFTAB.

5.2 Suppression of noise versus precision of the desired ECG reconstruction

The most important parameters of the projective filters are: embedding dimension (1) and
the dimension of signal subspaces (7). When the level of noise is low, it is crucial to assure
high precision of the desired component reconstruction. To achieve it, we can either increase
g or decrease m. For higher level of noise, however, it is very important to assure its effective
suppression. It can be achieved by decreasing g or increasing m. In (Kotas, 2008c) the
parameters balancing both requirements (for SNR=10 dB) were chosen: 7,=500 ms and g=1
for NSSP; 7,=200 ms and g=2 for PFTAB; 7,=400 ms and ¢=2 for PFTWEB (7, is the
embedding window width, corresponding to m, independent from the sampling frequency
applied).

The precision of the desired component reconstruction, offered by the respective filters for
the above parameters, is illustrated in Fig.6. For reference the results obtained by application
of the low-pass Hanning filter (H(z)=(z+2+z1)/4) are presented. The processed signal
characteristic feature is high variability of the QT interval. Particularly the first T wave in the
presented signal segment is considerably shifted to the left. For g=2, PFTAB was not able to
reconstruct the shifted wave precisely. Much better results were achieved by both NSSP and
PFTWEB.

Analyzing the residual noise ( x’(11)-s(n) ) obtained for NSSP and PFTWEB, we can notice
that the first QRS complex was reconstructed with lower precision than the second one. It
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was caused by the influence of the shifted T wave of high amplitude on determination of
neighborhoods for the points overlapping both the QRS complex and the T wave. For the
first complex in the figure, the amplitude of the residual noise is comparable for all filters
applied. However, for the second one, the Hanning filter introduces much higher
disturbances than any of the three projective filters compared.

x(n)=s(n)+w(n), ECG+EMG, SNR=10 dB w(n), EMG added
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Fig. 7. Results of ECG signal filtering for a moderate level of the EMG noise.

The ability of the projective filters to suppress the EMG noise was illustrated in Fig.7. In the
presented example, PFTWEB performed best, but PFTAB achieved rather comparable
results. NSSP caused significant suppression of noise as well; however, for this filter energy
of the residual EMG noise was clearly higher. The Hanning filter, which introduces similar
distortions of the QRS complex as the projective filters (see Fig.6), caused hardly any
suppression of the EMG noise. Concluding, nonlinear projective filtering allows much more
effective processing of the ECG signals, with higher precision of the desired component
reconstruction and better suppression of noise. Among the compared versions of NPF, the
best compromise between both requirements was achieved by PFTWEB.

5.3 NPF for reliable evaluation of the repolarization duration (RD) variability

The time between depolarization and repolarization of the ventricles is covered by the QT
interval (from the QRS onset to the T wave end). It is an important electrocardiographic
parameter, often used to quantify the duration of ventricular repolarization (Malik, 2000).
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Since precise determination of the QRS onset and the T wave end is relatively difficult, new
variables were defined to evaluate the repolarization duration variability. The problem is
discussed at length in (Merri et al., 1993; Tikkanen et al., 1999). According to (Tikkanen et al.,
1999) the most precise measurement of RD can be obtained if the left limit of the
repolarization interval is defined as the position of the R wave maximum (R) and the right
limit as the position of the T wave peak (Tp). According to (Merri et al., 1993) the RTp
interval is highly correlated with the actual QT interval; therefore, it can be used for the
analysis of repolarization duration variability. In (Kotas 2008c) the experiments with the
latest version of the nonlinear projective filtering were performed. NPF improved
evaluation of RD variability both in time and frequency domain. This area of projective
filtering applications is discussed in this subsection.

NF: rmssd=2.7, sd=2.3 LPF: rmssd=2.5, sd=2.2 PFTWEB: rmssd=2.7, sd=2.4
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Fig. 8. The RTp series determined on the basis of a high quality ECG (the uppermost) and
the ECG with EMG noise added (below). Each series is evaluated with two indices of
variability: SD and RMSSD - defined by (12). The columns correspond to the filtering
operations executed before the measurements (NF denotes “not filtered”).

Fig.8 presents the RTp series determined on the basis of a high quality ECG from the QT
database (Laguna et al., 1997) and for the signals with EMG noise added. For the localization
of the T wave peak, the procedure developed by (Laguna et al., 1990) and modified by
(Tikkanen et al., 1999) was used; for the precise description - see (Kotas, 2007a). The
procedure was applied to the original (not filtered) signals and to the signals enhanced by
different operations. Since the measurements of the repolarization duration can be
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performed for high quality signals only, and the precision of the desired signal
reconstruction is of the primary interest, PFTWEB was applied with 4=3 for 7,=400 ms (the
dimension of the signal subspaces is higher than in the previous experiments). For reference
the low-pass filter with the cut-off frequency of 15 Hz, which had appeared effective in
(Kotas 2008c), was employed.

A) RTp series (no EMG added, NF) A) PSD
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Fig. 9. Spectral analysis of RTp interval variability: A) the series obtained for a high quality
ECG; B,C,D) the series obtained after different filtering operations, for the signal with EMG
added. LF and HF are the low and the high frequency peaks of the true PSD (of series A).

The determined time series are evaluated with two indices of variability: the standard
deviation (SD) and the root mean square of the successive differences (Tikkanen et al., 1999)

RMSSD, = \/— S (x(n+1) - x(m) P (12)

where x(n), n =1, 2, ..., N is the analyzed time series.

We can notice that addition of even very weak noise (SNR=20 dB) raises the errors of the
measurements performed on the original not filtered (NF) signals. Since the RD
measurement errors increase the RD series variability, for the growing level of noise the
variability indices grow as well. Application of low-pass filtering slightly decreased the
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measurement errors and the growth of the indices. However, PFTWEB allowed much more
precise measurements and, as a result, most reliable evaluation of the RTp series variability
in time domain.

The PFTWEB influence on spectral analysis of the RTp intervals variability was illustrated in
Fig.9. The uppermost on the left is the series established on the basis of a high quality ECG
signal from the QT database. When the signal was contaminated by the EMG noise of highly
variable level (the average SNR=15 dB), localization of the T wave maximum failed in
numerous cases. As a result, series B is rather jagged - corrupted by large measurement
errors. Preceding the measurements with low-pass filtering slightly improved the
measurements - the number of large errors decreased. However, application of PFTWEB
caused much more significant improvement of the results. Only a few large errors of RTp
interval determination occurred.

For each RTp series determined, the following operations were performed: large
measurement errors were detected and replaced by the preceding values, the corrected
series was resampled with the frequency of 1 Hz (by application of first order interpolation)
and then filtered to remove the low frequency trend (the Butterworth high-pass filter with
the cut-off frequency of 0.02 Hz was applied in forward and reverse direction). The power
spectra were estimated by application of the autoregressive modeling (Lim & Oppenheim,
1988) with the model order equal to 10.

The repolarization interval series often contain the oscillatory components of low frequency
(LF) - close to 0.1 Hz - related with the slow waves of the arterial pressure, and high
frequency (HF) - close to 0.25 Hz - related with respiration (Lombardi et al., 1996). For series
A both components are distinct. However, addition of EMG noise to the analyzed ECG
signal resulted in numerous measurement errors which spoiled not only the time properties
of the determined RTp series, but also deformed their power spectra. Only after projective
filtering (D) the two highest spectral peaks are close to the original ones (A). Thus, nonlinear
projective filtering allowed most reliable analysis of the repolarization duration variability
also in the frequency domain.

5.4 NPF for fetal ECG extraction

An important area of projective filtering applications is related with processing and analysis
of the maternal abdominal electric signals for extraction of the fetal component (Richter et
al., 1998; Kotas, 2007b). NPF can be combined with spatial approaches to achieve FECG
signal enhancement (Kotas, 2008a) or even to perform separation of the multiple FECG
signals in twin pregnancies (Kotas et. al., 2008b). In this chapter, we study the influence of
NPF on the results of fetal QRS complexes detection. This issue is of high significance,
because the noninvasive fetal electrocardiography offers higher accuracy of fetal heart rate
monitoring than the routine instrumentation based on the Doppler ultrasound technique
(Jezewski, Wrobel & Horoba, 2006). The applied detection method consists of linear band-
pass filtering for noise attenuation, differentiation for QRS slopes estimation, squaring and
moving window integration and, finally, comparison with the threshold for QRS peaks
localization (Kotas et al, 2008a).

As it was mentioned in $5.1, separation of the maternal and the fetal ECG in a single-
channel signal can be accomplished in two stages. First, projective filtering is applied to
suppress the fetal component and to estimate the maternal ECG. Then, the estimated MECG
is subtracted from the original composite signal and this way suppressed. As a result, the
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fetal component is extracted. This procedure was illustrated in Fig.10. The uppermost, on
both sides of the figure, is the composite maternal abdominal signal obtained after high-pass
filtering. Since fetal QRS detection was of interest, and the requirements limiting distortions
of the desired component did not have to be satisfied, a relatively high cut-off frequency of 5
Hz was applied. The results of MECG enhancement by application of PFTAB (the most
appropriate for FECG extraction, as we inferred in $5.1) are presented below on the left; the
FECG extracted - on the right.

x(n)

50 B) x(n), PFTAB: m=50, g=1 B) x(n)-x'(n)
S0
=1

-50 M M M

50 C) x(n), PFTAB: m=50, q=2 C) x(n)-x'(n)

time [s ] time [s ]

Fig. 10. The maternal abdominal signal (the uppermost on both sides of the figure) and the
results of MECG enhancement (on the left) and FECG extraction (on the right): F marks the
fetal QRS complexes, M-the maternal ones and ry-residua of the latter.

The figure illustrates the influence of the dimension g of local signal subspaces on MECG
enhancement and FECG extraction. For g=0, the operation of PFTAB is similar to time-
averaging, and the filter is not able to preserve the morphological changes of the respective
maternal QRS complexes. As a result, the operation of subtraction produced the FECG
signal corrupted with the residua of these complexes. For g=1, the residua were significantly
smaller, and for g=2 they almost vanished. Unfortunately, for higher values of g projective
filtering preserves some residua of fetal QRS complexes in the estimated MECG signal, and
the subtraction leads to inconvenient suppression of these complexes. Different dimensions
of local signal subspaces can be applied for different positions within a beat to improve the
results of FECG extraction (Kotas, 2007b); however, this study is limited to the basic
approach, and the constant dimensions are used.
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For evaluation of PFTAB influence on the results of fetal QRS detection, ten four-channel
signals (five minutes long) were used. For each signal, the fetal QRS complexes locations
were marked manually and stored. In the experiments, PFTAB was applied with czx=0.25,
7,,=200 ms and g varied from 1 to 3 to FECG extraction in the respective channels of the test
signals. The test detections were performed in each channel separately.

Comparing the locations of the detected complexes with the previously stored reference
ones, we can establish the number of missed complexes (Ny) and the number of false alarms
(Nra). Results of the detection tests are evaluated with the following performance index
(Hamilton & Tompkins, 1986)

NN =N g9

PI [%0] (13)
The obtained indices are presented in Table. 1.
PI[ % ] cl c2 c3 c4 cl-c4

PFTAB: q=1 93.3 96.8 | 94.1 79.2 90.9
PFTAB: q=2 94.2 96.5 | 959 83.4 92.5
PFTAB: q=3 93.0 96.1 954 | 80.7 91.3
TS 93.3 958 | 93.0 82.4 91.1
AICF 92.1 96.3 | 91.5 759 89.0

Table 1. Performance indices obtained for different methods of MECG suppression in the
respective channels of the test signals and for all channels together.

For reference the detection tests were performed in the FECG signals extracted by
application of the method of template subtraction (TS) and the method based on the
adaptive impulse correlated filter (AICF). TS performs maternal QRS complexes detection,
synchronization, time-averaging, scaling and subtraction. Moreover, it is modified by the
additional operations (e.g. subtraction of the template derivative) decreasing the MECG
residua and preventing the FECG suppression in cases of the maternal and the fetal
complexes coincidence (Matonia et al., 2006). The second reference method employs AICF
(Laguna et al. 1992) instead of PFTAB to MECG signal enhancement and then performs the
operation of subtraction for FECG extraction. Before application of this method, the test
signals, originally stored with the sampling frequency of 500 Hz, were resampled with the
frequency of 1000 Hz to decrease the synchronization errors. After MECG suppression, the
extracted FECGs were again resampled with the original frequency.

During recording of the test signals, the repeatable arrangement of electrodes on a surface of
a maternal abdomen was applied (as described in (Kotas et al., 2008a)). Analyzing Table 1,
we can infer that among the recorded channels, the second one most often contained the
fetal ECG of the best quality. Since for high amplitude fetal QRS complexes the very precise
suppression of the maternal ones is not crucial, in this channel the similar performance
indices were obtained for all compared methods of MECG suppression. The best results
were achieved by PFTAB applied with g=1. In the fourth channel, however, the amplitude of
the fetal complexes was most often rather low, and the precision of MECG suppression was
of high significance. For this channel, the differences among the compared methods were
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the greatest, and PFTAB applied with g=2 was most effective. It was also most effective in
the first and the third channel. We can conclude that among the compared methods of
MECG suppression, the one based on projective filtering of time-aligned beats allows most
effective detection of fetal QRS complexes in the signals of poor quality. This result is of high
significance, because very often the diagnostic analysis of the signals from the maternal
abdominal wall is hindered by difficulty in performing successful detection of the fetal QRS
complexes.

6. Conclusion

Research in the field of nonlinear dynamics resulted in development of the method of
nonlinear state-space projections, which can help to solve the very crucial problems related
with ECG signals processing. The method forms the multidimensional state-space
representation of the processed one-dimensional signals, determines the neighborhoods of
all state-space points and creates the signal subspaces for the respective of them. Each state-
space point undergoes projection into its individual signal subspace. Averaging the
introduced corrections leads to reconstruction of the processed signal one-dimensional
representation. NSSP method allows suppressing noise whose spectrum overlaps that of the
desired signal. Moreover, it can be applied to the separation of signal components that are
not separable in the frequency or time domain, such as the maternal and the fetal ECG
contained in the maternal abdominal signals. However, a severe shortcoming of this method
is its high computational cost. It results mostly from the necessity to create the signal
subspaces for each state-space point individually.

This chapter describes the modifications of the NSSP method that highly decreased its costs
and adjusted its operation to the particular properties of the processed ECG signals and, as a
result, increased its performance in this field of application. The modifications are based on
different approaches to the determination of neighborhoods. Linear time-alignment of the
ECG beats allowed constructing the signal subspaces for the successive positions within a
beat only. This significantly reduced the computational costs. Moreover, the developed
method (PFTAB) almost completely cancelled the influence of high energy EMG noise, or
the other signal components apart from the dominant one on determination of the
neighborhoods. The performed experiments have proved that projective filtering of time-
aligned ECG beats can successfully be applied to fetal ECG extraction from the maternal
abdominal signals for fetal heart rate determination.

Application of nonlinear alignment of the sequences of state-space points to neighborhoods
determination made the method more flexible. Although projective filtering of time warped
ECG beats is less immune than PFTAB to such signal components as the fetal ECG, it allows
more precise reconstruction of the desired ECG embedded in EMG noise. Applied to signal
enhancement prior to the analysis of the dynamic changes of the low level ECG waves, it
allowed precise evaluation of the beat-to-beat variability of the repolarization duration -
both in time and frequency domain. The method can also be applied prior to the
measurements of other indices quantifying the ventricular repolarization. This issue will be
a topic of further study.
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