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ICA applied to microcalcification clusters CAD
in mammograms

C.J. Garcia-Orellana, R. Gallardo-Caballero, H.M. Gonzalez-Velasco,

A. Garcia-Manso, M. Macias-Macias

CAPI Research group, University of Extremadura,
Spain

1. Introduction

The incidence of breast cancer in western women varies from 40 to 75 per 100,000, being the
most frequent tumour among the feminine population. Latest statistics published by Cancer
Research UK (Cancer Research, 2006) for year 2006 show 44,091 new cases of breast cancer
diagnosed in the UK, being 99% of them detected in women. The importance of the problem
in the European countries can be observed in Figure 1 where the the highest incidence rate
appears in Belgium with more than 135 cases per 100,000 and a mortality rate of more than
30 per 100,000.

These pessimistic statistics illustrate the problem magnitude. Although some risk factors
have been identified, effective prevention measures or specific and effective treatments
are unknown.

The graph in Figure 2 (Cancer Research, 2006), allows to see that breast cancer treatment in
an early stage of development can increment considerably the patient's survival chance. In
fact, early breast cancer detection increases possibilities to allow for a conservative surgery
instead to mastectomy, the only solution in advanced breast cancers (Haty et al., 1991).

The absence of a clear risk factor, different from the age, with high significance in disease's
appearance makes difficult to establish any effective measure in breast cancer prevention.
Nowadays, early detection of breast cancer constitutes the most effective step in this battle.
To improve early detection of breast cancer, all the health systems of developed countries
perform what are known as "screening programs". In these screening programs, a review of
all women at risk age is performed with a given periodicity. The most common test for the
studies is mammography.

Like any other radiological test, mammography should be reviewed by expert radiologists,
looking for abnormalities (asymmetry, masses, spicular lesions and clusters of
microcalcifications or MCCs, mainly), being the mammography one of the more complex
plates to analyze due to its high resolution and the type of abnormalities to look for.

Among the abnormalities discussed above, MCCs (groups of 3 or more calcifications
per cm?) can be one of the first signs of a developing cancer.
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Fig. 1. Age standardized (European) incidence and mortality rates, female breast cancer in
EU countries.

A microcalcification is a very small structure (typically lower than 1 millimetre), and, when
they appear grouped in some characteristic shapes (microcalcification cluster, MCC) usually
indicates the presence of a growing abnormality.

The detection of such structures sometimes presents an important degree of difficulty .
Microcalcifications are relatively small and sometimes appear in low contrast areas, so that
they must be detected by a human expert, who can be fatigued or can have variations in his
attention level. This later reason makes very interesting the possibility to use a Computer
Aided Diagnostic system (CAD) as a way to reduce the possibilities of misdetection of a
developing breast cancer.

In order to provide a trusted helping tool for the radiologists, a CAD system must have a
high sensitivity, but also a low rate of false positives per image (FPi). A too alarmist CAD
system (ie, with a rather high FPi rate), is of no value in screening because it either causes
the radiologist to distrust, or generates a great number of biopsies, making unfeasible the
screening program. Approximately 6 in every 1,000 screening tests (0.6%) indicate the
presence of cancer. Currently there are several CAD systems for mammography, some of
them commercial and approved by the FDA. However, there are independent studies which
indicate that their use does not provide clear benefits. In many cases, the performance of
these systems is not known clearly enough, in part because results are given over their own
databases, making very complicated an objective validation and comparison.

The studies by (Taylor et al., 2005) and (Gilbert et al., 2006) are performed in the context of
the British Health Service. Those by (Taylor et al.,, 2005) do not use a great quantity of
mammograms, but however, the study by (Gilbert et al., 2006) is developed with 10.267
mammograms, with a proportion of cancer similar to what can be found in screening. These
studies try to evaluate the difference in performance between a “double reading” strategy
and a “simple reading plus CAD”.
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Fig. 2. 0-10 year relative survival for cases of breast cancer by stage diagnosed in the West
Midlands 1985-1989 followed up to the end of 1999, as at January 2002

The studies by (Taylor et al., 2005) indicate that there is no significant improvement neither
in sensitivity nor in specificity (they even talk about an increase in the cost), indicating that
it should be due to the low specificity of the system. They conclude that the subject must be
studied in deep before adopting.

On the other hand, the study by (Gilbert et al., 2006) conclude that there is obtained an
improvement on the sensitivity, but also an increase in the recall rate, when CAD is used.
The final conclusion is that the system must be evaluated better, an that a successfully
implantation of the CADe system depends on its specificity (i.e., on reducing the number of
FP).

Another interesting study is by (Fenton et al., 2007). This study is different from the other
two, it is a statistical analysis of the screening data from 43 centers, between 1998 and 2002.
They compare the results of the centers using CAD with those centers that do not. The final
conclusion is that the CAD usage reduces the precision when interpreting mammograms
while the number of biopsies increases (and, therefore, the “positive prediction value”
(PPV)).

PPV has three different variants depending on different diagnostic stages. When referred
exclusively to screening it is named as PPV1. This value provides the percentage of all
positive screening examinations that result in a tissue diagnosis of cancer within one year.
The two other kinds of parameters provide information about cases recommended for
biopsy or patients with clinical signs of the disease. PPV1 values recommended by Agency
for Health Policy and Research rely on the range 5 to 10% (ACR, 2003). Few studies provide
values for this parameter, being more common to provide sensitivity and specificity or false
positive rate as outcome measures.

Although screening can be useful to detect different signs of malignancy (good defined or
circumscribed lesions, stellate lesions, structural distortion, breast asymmetry, etc), the
clearest sign to detect early breast cancer is the presence of microcalcification clusters
(MCCs) (Lanyi, 1985). Indeed, from 30 to 50% mammographic detected cancers present
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MCCs (Chan et al., 1988; Dhawan and Royer, 1988); and 60-80% of breast carcinomas reveal
MCCs upon histological examinations (Sickles, 1986).

Even nowadays, the automatic interpretation of microcalcifications remains very difficult. It
is mainly due to their fuzzy nature, low contrast and low distinguishability from their
surroundings. One microcalcification is very small, its size varies between 0.1 and 1.0 mm,
being the average size 0.3 mm. Those smaller than 0.1 mm are very difficult to distinguish
from the high frequency noise present in the mammogram. Besides, they present different
size, form and distribution, and therefore it is not possible to fit a template.

In this field, the different approaches range from the most simple consisting in improving
the visibility of what are known regions of suspicion in the mammogram, in order to make
easier the work of the radiologist, to proposals of complete computer aided diagnosis
systems. The radiologists define a region of suspicion as that region which is more brilliant
than the surrounding tissue, has a uniform density, circular shape and diffuse edges. To
treat these regions, several techniques are normally used, as for instance: contrast stretching,
enhancement by histogram equalization (Karssemeijer, 1993), convolution mask
enhancement (Chan et al., 1987) and adaptive neighbourhood enhancement (Woods et al.,
1991; Dhawan et al., 1986).

Other groups of techniques include works based on region-based enhancement (Morrow et
al., 1992; Shen et al., 1994); and feature-based enhancement. In the last subgroup we can
distinguish two different lines. The first one consist on increasing the contrast in suspicious
areas and the other one is to remove background structures and noise according to
microcalcifications features. There have been used many different techniques for contrast
enhancement, as higher order statistical (HOS) (Gurcan et al., 1997); fuzzy logic (Chen et al.,
1998) and multi-scale analysis (Laine et al., 1994). Among those proposals based on
background removal we can find techniques as fractal modelling of the background tissue
(Li et al., 1997), morphological processing (Dengler et al., 1993) or wavelet reconstruction
(Wang & Karayiannis, 1998).

A higher step than enhancing is developed by different proposals to detect
microcalcifications or masses based on different feature extraction methods. In the literature
we can find different approaches among which we can point out:

* Individual microcalcification features. Features extracted directly from
mammogram such as perimeter, area, compactness, elongation, eccentricity, etc.
(Nam & Choi, 1998; Bottema & Slavotinek, 2000).

® Statistical texture features. Including different methods like Surrounding Region
Dependence method (SRDM) (Kim & Park, 1999), Spatial Gray level dependence
method (Ferrari et al.,, 1999), Gray level difference method (GLDM) (Lee et al.,
1998) or Spatial Gray Scale Co-Occurrence Matrix (SGLCM) (Yang et al., 2005) for
the detection of MCCs.

*  Multi-scale texture features. Methods based on wavelet transform (Yu et al., 1999),
Gabor filter bank (Bhangale, 2000) or Laplacian of Gaussian filter (Netsch &
Peitgen, 1999).

*  Fractal dimension features (Caldell et al., 1990).

The last step corresponds to the approaches which study the malignancy of the
abnormalities detected in the mammograms. Normally, they use feature vectors very similar
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to those used in the approaches of individual calcifications detection, along with a classifier
which can be neural network-type (Jiang et al., 1997), K-nearest neighbour (Zadeh et al.,
2001), Bayesian networks (Bankman et al., 1994) or binary decision trees (Zheng & Chan,
2001).

Finally, we can also cite several commercial equipments as can be ImageChecker® by R2
Technology, MammoReader™ by Intelligent Systems Software or SecondLook™ by CADx.
These three equipments have obtained the approval of the Federal Food and Drug
Administration (FDA) for their use in medical dependencies. Nevertheless, as we
commented above, there exist diverse opinions regarding their reliability, according to
different studies (Taylor et al., 2005; Gilbert et al., 2006; Fenton et al., 2007; Serio & Novello,
2003).

The rest of chapter follows with the methodology that we have used in our work. Next, we
describe the details of system implementation. After that, we show our results and finally
we deal with the conclusions.

2. Methodology

Our work proposal is based in the use of a technique known as Independent Component
Analysis (ICA), as an efficient image feature extractor which will be used in a neural
classifier. Independent Component Analysis is a technique which, unlike some classic
methods as variance or standard deviation, uses high order statistics. Moreover, using
samples from the signal space to model, is able to infer a base which let us represent any
image (signal) belonging to the space with a low number of components.

This is the same task we carry out when we decompose a signal in its Fourier components or
build wavelet decomposition, in the multiresolution field. But there are important
differences between the mentioned methods and ICA. First, both Fourier and wavelet
decompositions use fixed bases. On the other hand, ICA bases are generated to fit as better
as possible the data space to model. In addition, an ICA development builds base matrices
which maximize the non gaussianity of the input data space; this means that ICA bases
model the most interesting characteristics of the modelled space. And this is precisely the
key fact which leads us to use ICA as a feature extractor block instead of other more
extended techniques as the previously mentioned wavelet transform or principal
component analysis.

The second important element in our architecture is the neural classifier. This kind of
systems has characteristics which are especially interesting to broach the problem. Perhaps
the most well-known can be the capability to adjust its operation by means of “samples”.
Colloquially, we can say they have learning capability. Moreover, these systems have
another important characteristic which is known as generalization capability. Generalization
in neural classifiers is the capacity to provide a right response for a completely unknown
input. As can be inferred, this characteristic makes a neural classifier a great choice for a
classification task like our, where input data variability is very high (contrast variations,
mammography errors, artifacts, etc.).
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2.1 Data source

Although nowadays digital mammography systems have become popular, up to date the
main data source in research investigation tasks has been digitized mammograms.
Mammographic scanners provide a high resolution level: pixel sizes ranging in tenths of
micron, and grey level resolution from 11 to 16 bits (2,048 to 65,536 grey values). This gives
us an idea of the precision level which can be used working with mammograms.

The current data source for our work is the mammographic database known as Digital
Database for Screening Mammography (DDSM). Developed by the Island Vision Group at
the University of South Florida may be the most extensive and better quality free to use
database for research purposes. It comprises about 2,500 complete cases, providing the four
typical views in a mammographic study (left and right cranio-caudal and medio-lateral-
oblique). Furthermore, it provides useful information for the case as age, film type, scanner,
etc. But the most interesting feature for our work is that it provides what is called ground
truth marks when a breast presents a biopsy proven abnormality, specifying its type and
distribution in the ACR internationally accepted nomenclature named BIRADS.

There are other databases in this field, as can be MIAS or Nijmegen; but they are unavailable
or its distribution is restricted. MIAS group provides a reduced version free of charge
(miniMIAS), but its low spatial and spectral resolution makes it useless for
microcalcification detection problems.

2.2 Dataset prototypes generation

This was probably one of the slowest phases of this development because we propose, as a
first approximation, to carry out pixel level diagnostic. So, with the help of an experienced
radiologist we made a pixel labelling work using predefined classes over mammogram
regions, once converted to optical density. These set of regions correspond to all ROIs
defined in the DDSM database but also include some manually selected regions which
contain significant mammogram structures like vascular calcifications or artifacts.

The set of classes to study includes not only microcalcifications belonging to a cluster (hence
malignancy indicatives) but also benign microcalcifications, large rod-like calcifications,
round calcifications, lucent-centered calcifications, healthy tissue and several kinds of
artifacts.

Totally we have inserted a training set of more than 4,600 microcalcification prototypes,
over 6,700 benign and more than 100,000 healthy or benign prototypes.

Due to the high number of available prototypes and foreseen the following training step, we
decided to build different training sets by varying different prototypes percentages while
including all malignant microcalcification prototypes. These new training sets will be used
in the following training steps carried out in the project.

2.3 Independent Component Analysis (ICA)

Independent Component Analysis appears as a possible solution to the problem of blind
source separation (BSS) (Jutten & Herault, 1991; Comon, 1994). Basically, the goal in BSS is
to recover the signals generated by unknown sources using sensor observations which
provide a number of signals supposed to be a linear mixture of independent and unknown
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source signals. ICA can be used to solve this problem supposing statistical independence of
these sources. The problem can be stated in equation (1).

X=A-s 1)

Being x the observed signals, A the mixture coefficients and s the unknown sources
(Hyvérinen et al., 2001). To apply this technique in feature extraction on mammography, we
must suppose that a region of a given size in the mammography (called ‘patch’) is as linear
combination of a series of independent unknown sources, a priori. These unknown sources
can be seen as statistical independent “patches’, and can be estimated by ICA using samples.
The process provides us a base of functions (small squared images in our case) that lets us
expand a given ‘patch’ from the mammography in terms of it. The mentioned procedure can
be expressed graphically as shown in Figure 3.

Where a; coefficients represent the features to extract and which let us characterize a region
from its sources.

The use of coefficients from a linear combination as parameters to characterize patterns has
been widely used, for example in wavelets transforms or Gabor filters. Nevertheless, we
think that ICA value added is that the base functions are specifically created for the image
space under study on the opposed to wavelet transforms.

There exist many studies that have used ICA as a feature extraction technique and in
particular for image analysis (Bell & Sejnowski, 1997; Hyvdrinen et al., 1998; Jenssen &
Eltoft, 2003).

'o-

Fig. 3. ICA expansion.

The studies carried out by (Christoyianni et al., 2002) conclude that results obtained with
ICA improve results obtained by different statistical parameters (GLHM and SGLDM).
However, the study is carried out using only 58 regions of suspicion from the free version of
the MIAS database. Ignoring the big difference in the number of cases which provide each
database, the key difference between them is resolution (200pm/pixel for MIAS and
43.5pm/ pixel for DDSM). This characteristic along with grey level depth can be a key factor
for a successful handling of microcalcifications.

Other authors also apply ICA to extract features in mammograms. For instance, in (Campos
et al., 2005) a similar scheme to (Christoyianni et al., 2002) is followed, but including the
feature selection carried out by means of the forward-selection method. The work is also
carried out with the mini-MIAS database.

In relation to these works and also to our previous exposition about the databases, we
would like to remark that almost all the papers broach the usage of ICA to describe
complete regions of interest (ROIs), scaled or centered. We think that this strategy, although
may be valid with mini-MIAS and mass detection, is totally unsuitable for the DDSM
database and microcalcification based approaches. A greater spatial resolution will lead to
bigger ICA input for each ROI, increasing computational requirements in ICA matrices
procurement phase and the number of features to obtain an effective ROI classification. We
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are using ICA at vicinity-of-pixel level, instead of considering complete ROIs, what means
that we needed to label groups of pixels individually within each ROL.

2.4 Neural classifiers

Our work in microcalcification clusters CAD is not only centered on isolated prototypes
evaluation. We have developed a complete software system to detect ROIs in mammograms
and analyze its malignancy. The pattern recognition block is implemented by using a neural
network with only one hidden layer. The number of neurons that includes the hidden layer
is adaptable from 50 to 200. The selected training algorithm is RPROP (Riedmiller & Braun,
1992), a well known, fast converging and robust algorithm. The training system is
implemented using the kernel abstraction characteristics provided by Stuttgart Neural
Network Simulator (SNNS). This feature permits us to build standalone trainers which can
be run in our Beowulf cluster, allowing us to study an important number of configurations
and to evaluate performance dependence on ICA window size and the number of features
to be used.

2.5 ROI generation

The previously described classifier provides a map of suspicious pixels for each input
mammogram. This map is filtered to eliminate spurious single-pixel positives. The filtered
image is further fed into a ROI builder subsystem which groups neighboring
microcalcifications into zones of interest.

The first step of the ROI builder consists in an object detector that isolates microcalcifications
and computes its sizes. In a second step, we carry out an object grouping phase by means of
a density map. For each pixel of the mammogram we compute the number of neighbour
microcalcificacions in an area of lcm?” After that, we filter the density map retaining only
those zones which have a density value equal to or greater than 3, following the classic
definition provided in (Sickles, 1986). This procedure provides us an easy way to obtain
ROIs avoiding costly region growing and merging operations because they are completely
inherent to the process and don’t need further calculations.

Each possible generated ROI in a mammogram, is tagged as true positive (TP) if it overlaps
with the ROI provided in the DDSM database (if present). Analogously the ROI is tagged as
false positive (FP) if there exist no overlapping with an actual zone of interest of the
mammogram or the mammogram is healthy. On the contrary, if DDSM contains malignant
ROIs for a mammogram and our system fails to find them we compute all those ROIs as
false negatives (FN).

And finally, a healthy mammogram successfully diagnosed is considered as a true negative
(TN). In a computerized diagnosing system, the previous four parameters are usually
expressed in terms of mean values per image, being false positives per image (FPi) a
common performance index. Figure 4 shows a processed mammogram which yields one TP
ROI (the upper one) and four FPs. The true positive ROI includes a detailed view which
shows the microcalcifications that define it.
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Fig. 4. Example of mammogram process (case D-4183, with 1 TP and 4 FP).

2.6 False positive correction

An automated ROI generator may lead to an excessively big region if the output of the
neural network classifier provides an scattered microcalcifications distribution over the
whole mammogram. Considering the previously stated evaluation criterion, large ROIs can
lead to a misleading low FP rate.
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In order to deal with the possibility of an excessive ROI growth, instead of using false
positives per image (FPi) as a performance index, we have defined a new parameter called
weighted false positive per image (WFPi). A false positive ROI increases this parameter as
many times as it exceeds the maximum estimated ROI size (MRS) plus one. The MRS is the
area of the largest MCC-ROI defined in DDSM database calcification subset (39.69 cm?).
Moreover, WFPi is also increased if a true positive ROI exceeds the MRS, see (2) for
reference. Thus this parameter penalizes not only false positives but also unjustified true
and false ROI growths.

Hence, WFPi improves common FPi confidence degree and makes it a preferable figure of
merit for a completely automated system. Nevertheless, it is important to note that
providing results in terms of this parameter leads to a worsening of overall results.

. area(FP)) area(TP,)
WFPZ_FPZ:; (1 YT )Jr% (7MRS ) 2

2.7 Evaluation of different sets

To test our system robustness we have defined four different database subsets with the aim
of stating that the system performance depends on this choice. The four views provided for
each case are used in this study. Table 1 summarizes the main characteristics of the chosen
subsets and includes the total number of mammograms processed.

Firstly, we have created a big set of cases (GLOBAL) which includes an important number
of clearly normal cases (all cases from normal volumes) and as much malignant MCCs cases
as possible (all cancer cases from cancer volumes whose lesion type is diagnosed as a kind
of microcalcification cluster). This subset should allow us to test our overall system
performance on a more realistic situation than that proposed in (Heath et al., 2000), which
only comprises malignant MCC cases.

Secondly, we decided to use the validation subset proposed in (Heath et al., 2000) (CALC 1)
which contains all cases of the BCRP CALC 1 subset as specified by DDSM creators. It must
be noted that none of this cases have been considered to train the neural classifier used in
this system. Results obtained over this subset can be compared with those obtained in
research works that follow the guidelines provided by DDSM authors in (Heath et al., 2000).
Furthermore, we studied a third subset (SET 1) which includes the same cases studied in
(Roffilli, 2006). It is comprised of all the cases from normal volumes 8 and 10 plus all MCC
cases from cancer volumes 2,7 and 12.

Finally, SET 2 is a favorable selection of cases from GLOBAL subset.

Set Description Mammograms
GLOBAL Vols. normal and cancer 4,372
CALC_1 BRCP_CALC_1 200

Vols. 8 and 10 of normal
SET_1 and vols. 2, 7 and 12 of cancer 408
SET 2 Selection of favourable cases 1,622

Table 1. Data included in the considered sets.
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3. System Implementation

As can be deduced from the previous sections, the proposed system is very complete and
somewhat complex. In this section we describe in deep the elements which constitute the
system and its characteristics.

3.1 Computational infrastructure

The DDSM database provided by Island Vision Group is accessible by FTP, so we dumped it
to a dedicated server with a storing capacity of 290 gigabytes where 240 gigabytes are used
exclusively to store the images and configuration files which constitutes the database.

As previously mentioned, DDSM provides case information in file form. As this format is
not adequate to work with this data in an intensive way, we have decided to insert this
information in a SQL database server which runs in one of our Linux servers.

At the same time this database engine allows us to store some information for different
project phases, letting us to centralize all needed data, both input as output, and facilitating
statistics procurement task.

Some project phases require high computational resources and volatile memory
requirements. Fortunately our research group owns various multiprocessor servers with
important memory resources which have allowed us to carry out the project; obviously
typical hardware infrastructure is insufficient to deal with a project like the proposed here.
We can point out an Opteron bi-processor server with 16 gigabytes of RAM, a second 64-bit
server Athlon64 four-cores-processor with 8 gigabytes of RAM and various 32-bit bi-
processor servers which hold the database engine, the distributed file system and backup.

A special mention is due to the most important computation resource of the group, a
Beowulf type cluster with 45 Phenom 9850 nodes each one equipped with 4 gigabytes of
RAM. This is the resource where all massive calculations are carried out and lets us reduce
dramatically simulation times, thanks to its 180 CPU cores.

3.2 Management interface

A reliable image work requires developing a tool that makes easy to visualize these images
and to make different operations with them like marking or correcting. The tool developed
by our group is called Mamoprot and lets us to solve many different issues arisen in various
development stages of the project.

Mamoprot is a modular application written in C++ and developed against the widget
library QT, which runs under Linux environment. It is completely integrated with the
relational database server that manages the project. This tool lets to carry out many different
operations. Besides basic visualization operations (contrast adjustment, brightness, basic
filtering and enhancement) working with overlays allows us to perform many interfacing
operations. Specifically Mamoprot is the tool that we used to visualize and mark prototypes
in overlays, and also let us to diagnose the visualized overlay with a given configuration,
visualize ICA decomposition of the overlay and rebuild the image using only some
components. The first module of Mamoprot was used by experts to insert training
prototypes in the database.

Mamoprot is also designed to deal with mammograms, letting us to visualize them with
overlapped expert marks and stored regions of interest. The application also permits us to
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carry out a diagnostic of the whole mammogram, viewing pixel based classification and the
possibly generated ROIs with that system configuration. Finally, this module allows us to
create new overlays and to add new prototypes for interesting regions.

And finally, Mamoprot permits to insert visually new diagnostic configurations, selecting
system characteristics to be studied. In Figure 5, we can see a Mamoprot snapshot for the
mammogram module; particularly we show the diagnostic results for a complete
mammogram. Discontinued blue rectangles mark benign auxiliary ROIs previously added
to the database, red discontinuous rectangle marks the original DDSM malignant overlay,
green solid line rectangle accounts for true positive finding and the blue solid border
rectangle is a false positive generated by the system.
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Fig. 5. Mamoprot interface.

4. Results

In our work we have trained more than 4,000 classifiers, we have evaluated more than
140,000 complete mammograms (with different classifiers and decision systems), and more
than 450,000 ROIs have been generated.With these numbers, it is clear the importance of the
SQL database in order to get the results in an easy way.

To evaluate complete mammogram performance we have decided to use FROC curve
analysis (Free-response Receiver Operating Characteristic), as a widely accepted technique.
Furthermore, we have decided to use “Weighed False Positive per Image” (WFPi) instead of
“False Positive per Image” (FPi).
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4.1 Global results

First, we present the results over the BCRP_CALC_0 and BCRP_CALC_1 subsets of DDSM
database.

The use of WFPi instead of FPi deteriorate our results, but it is evident that it provides a
more reliable vision of the overall system performance. Table 2 shows the values of these
parameters for one of the best configurations obtained for global results, and Figure 6 shows
FROC curves globally and for the subsets BCRP_CALC_0 and BCRP_CALC_1 (showing in
every case WFPi instead of FPi). These results are obtained for a 13x13 patch size with 40
ICA components.

FPi WEFPi Sens. (%)
0,40 0,40 24,5
2,18 2,20 54,1
2,79 2,83 63,8
3,33 4,17 84,1
2,78 4,20 88,5
2,65 4,35 90,4
3,57 6,74 97,6

Table 2. Global results.

4.2 Results over different sets

We thought that it could be interesting to compare the results obtained when we use
different sets of mammograms to test the performance. As we said before, we have defined
four different subsets of DDSM (Table I).

Figure 7 shows the modified FROC curves obtained for each of the subsets defined in Table
1. In the x-axis we have replaced regular FPi values with the previously defined WFPi
performance index.

We can observe that modified FROC curves for GLOBAL and BCRP_CALC_1 groupings
follow a similar trend. Due to we are restricting our study to MCC detection and diagnosis,
and given the previous definition of BCRP_CALC_1, this behaviour seems to suggest that
this set of mammograms is an adequate sample to provide results over the whole DDSM
database.

On the other hand, results for subset SET 1 show a clear improvement over GLOBAL and
BCRP_CALC_1 subsets; we can observe better sensitivity values for the same or even lower
WEFPi. However, it is evident that this subset does not reflect valid results for the whole
database.
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Fig. 6. FROC curves corresponding to complete mammograms.

Finally, we can observe an important improvement in the modified FROC curve for SET 2.
We obtain high sensitivity values at low WEFPi rates even when this subset has
approximately 1,600 mammograms, a number of mammograms higher than those included
in both BCRP_CALC_1 and SET 1.
Table 3 shows a WFPi and FPi comparison at a common sensitivity value of 80% for each
analyzed subset. As can be seen, WFPi values are higher than the corresponding FPi. This
effect is stronger in the GLOBAL subset (the most comprehensive one) where the WFPi
value is a 13% higher than the associated FPi.

Set FPi WFPi Sensitivity
GLOBAL 3,75 3,97 78,04 %
CALC_1 3,26 3,67 80,65 %

SET_1 2,24 2,29 81,82 %
SET_2 1,03 1,25 80,09 %

Table 3. Performance parameters for the proposed subsets.
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Fig. 7. FROC curves for proposed subsets.

5. Conclusions

The previously described results show that ICA lead to systems with an acceptable
performance for mammograms taken from the BCRP_CALC_1 of the DDSM database.

The results showed in Figure 6 and the previous analysis let us to state that the election of
the specific subset used in this research work has an important influence on the results
provided by our CAD system, at least from the MCC detection and diagnosis point of view.
Hence, we think that, in this particular research field, not only raw results, but also a clear
specification of the set used to provide them, should be provided.

Finally, we must conclude that Independent Component Analysis is a valid technique to
deal with the microcalcification detection problem. However, as a future research plan, we
are studying the possibility of improving the system performance by adding new prototypes
in particular zones where diagnostic results deteriorate the overall performance.
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