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1. Introduction

In modern medicine, a largely diffused method for gathering knowledge about organs and
tissues is obtained by means of merging information from several datasets. Such data are
provided from multimodal or sequential acquisitions. As a consequence, a pre-processing
step that is called “image registration” is required to achieve data integration.

Image registration aims to obtain the best possible spatial correspondence between
misaligned datasets. This procedure is also useful to correct distortions induced by magnetic
interferences with the acquisition equipment signals or the ones due patient’s involuntary
movements such as heartbeat or breathing.

The problem can be regarded as finding the transformation, generally defined by a set of
parameters, that best maps one dataset (namely the input or floating image) onto the other
(namely the target or base image). At the end of the process, corresponding pixels/voxels
will have the same positions in both images/volumes.

This chapter starts presenting a brief taxonomy of literature registration methods. Then, an
excursus of novel registration methods is presented after a more detailed explanation of the
Thin-Plate Spline approach (Bookstein, 1989), which is a milestone in the field. All of these
schemes use a “fuzzy kernel-based” approach able to cope with many types of
deformations. The described procedures are examples of landmark-based approaches that
rely on a set of a priori known control points, even though the same concepts could be
extended to area-based approaches where no control points need to be detected.

All of the methods use fuzzy membership maps in a probabilistic discriminative model,
which is based on kernel regression. Such techniques are based on concepts derived by
Fuzzy c-means clustering process (Dunn, 1973 and Bezdek, 1981). However, no clustering
algorithm needs to be performed at all.

The framework uses several measures, both quantitative and qualitative to evaluate the
performance of the method.

In all of the presented approaches the global mapping function is recovered as a continuous
and smooth composition of local mappings. This philosophy allows dealing with subtle
local deformations without the need of using extremely time consuming complex models.
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The methods were extensively tested and validated and the experimental results are
reported. Final considerations and future work are then discussed.

2. Methods for image registration

Even though image registration is used for a large variety of applicative contexts,

applications can be divided in four categories, depending on the image acquisition strategy:

- Different viewpoints (or multi-view analysis): The same object or scene is acquired from
different viewpoints: the goal is to obtain a larger view or a 3d representation of the
object.

- Different times (or multi-temporal analysis): Images of the same object are acquired in
different times, perhaps under different conditions. The aim is to evaluate differences
between two or more acquisitions.

- Different sensors (or multimodal analysis): Images of the same object are acquired by
different sensors, for example magnetic resonance (MR), computer tomography (CT),
positron emission tomography (PET), etc.

- Scene to model registration: images of a real scene and its model are registered. The model
can be a synthetic representation or another scene with similar content. The purpose of
this method is to find the acquired image in the model and compare them.

Since there exists a lot of image types, it is impossible to design a universal method suitable

for all application purposes. Each method should take into account the objects to be

registered and the characteristics of the deformations to be recovered. Furthermore, even
more elements such as noise corruption should be considered too. Generally, a distinction
between feature-based and area-based approaches is operated, depending on how much
information is used for the registration task, in the first case just a sparse information subset

(the features) is used for recovering the mapping, in the latter all of the images information

is taken into account. Nonetheless, every strategy generally uses four steps, with the

exception of the first one. These steps are the following:

- Feature detection: salient and unambiguous objects such as corners, intersections,
contours, etc., are manually or automatically detected in both the input and reference
image. This step is omitted in area-based strategies.

- Feature matching: the correspondences between the images are found by means of
matching the previously detected features. For this purpose, there exist several feature
descriptors and similarity measures based on features appearance or informative
content. Since area-based strategies use all of the image information; such methods use
a dense features map simply defined by all of the pixels/voxels in the images.

- Transform model estimation: after the features are matched, this information is used to
recover a transformation function, which defines the deformation needed to map every
pixel/voxel of the input image onto every pixel/voxel of the reference image. Such a
function is determined by choosing its type and defining the value of its set of
parameters.

- Image resampling and transformation: once the deformation estimation is achieved, the
mapping function is applied on the input image. Since this mapping generally brings
the pixels/voxels in non-integer coordinates, proper interpolation techniques need to be
used in order to avoid or limit resampling artefacts.
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Each of the steps has its intrinsic problems, so each of them has to be developed taking into
account the properties of the objects that have to be registered. For example the presence of
noise can affect feature detection. So, if noise is assumed to be present, the detection
procedure should be robust. A potential problem in feature matching is the different
appearance of corresponding features due to illumination conditions or to sensors spectral
sensitivity; in this case the similarity measure adopted needs to take into account these
factors.

In literature there exists a large variety of approaches that had been used to deal with the
registration problem. As mentioned, there not exist a unique solution since each one has its
specific applicative context. Global mapping models use bivariate low-degree polynomials
as mapping function. This strategy is often not suited for real cases due to the presence of
local deformations in the images; however, it is used frequently as a starting point for other
methods. Local mapping models overcome these limitations by registering locally the
different areas of the image. Radial basis functions such as Thin-Plate spline (Bookstein,
1989) or Wendland's functions (Wendland 1995, Fornefett et al. 1999) are also used, and they
are able to deal with local deformations, even if they could be considered as global mapping
models. Another approach, which does not require the use of any parametric function is to
model complex deformations by considering the image as a tensile material (Bajcsy R.
and Kovacic S., 1989) or a viscous fluid (Bro-Nielsen and Gramkow, 1996) deformed by
external and internal forces subject to constraints. Registration is achieved by the iterative
minimization of an energy functional.

2.1 A classical approach: the Thin Plate Spline

One of the classical approaches to image registration is the Thin Plate Spline (TPS). The
name is derived from the physical analogy, which involves the bending of a thin metal
sheet. In the context of spatial coordinates transformation and image registration, lifting the
plate corresponds to displace the image in one direction (i.e. x, y or z axis). The Thin Plate
Spline is a parametric interpolation function which is defined by D(K+3) parameters, where
D is the number of spatial dimensions of the datasets and K is the number of the given
landmark points where the displacement values are known. The function is a composition of
an affine part, defined by 3 parameters, and K radial basis functions, defined by an equal
number of parameters. In 2d its analytic form is defined as:

2 X C,
g(p)=ax+by+d+ p(||p—ci|| jwi; =l a=l, (1)
y

where p is the input point, ¢; are the landmark points and the radial basis function p(r) is
given by:

p(r)= % r*logr?, )
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All of the TPS parameters are computed solving a linear system defined by a closed-form
minimization of the bending energy functional. Such functional is given by:

L 2 2 2
E 62g 82g ng
E,m = ||yl. -g (pl.) +A J‘.ﬂ:{_af J +2 (_axy + 6y2 dxdy. €)
i=1

The functional is composed by two terms: the data term and the regularization term. The
former minimizes the difference between known and recovered displacements at landmark
points, the latter minimizes the bending energy of the recovered function, i.e. maximises its
smoothness and it is weighted by the parameter 1. As mentioned before, for this expression
a closed-form analytical solution exists, from which is possible to recover all of the required
spline function parameters. The main characteristic of this function is that it exhibits
minimum curvature properties.

3. Registration with fuzzy-based kernel regression

In our study we developed a class of registration algorithms, which exploit kernel
regression model to recover the mapping functions. The classic kernel regression is
enhanced by fuzzy related techniques, in particular the C-means clustering algorithm.

The registration schemes proposed are similar as regards the theoretical concepts they rely
on, while they differ in their application. Two strategies are discussed: the former is a simple
landmark-based registration approach (Ardizzone et al., 2009-1) that is described to explain
how the fuzzy kernel regression concepts can be applied to elastic registration. In this
scheme the global transformation function is recovered directly from the landmarks
displacements. The latter strategy (Ardizzone et al., 2009-2) differs from the previous one in
that the regression is used to obtain a smooth composition of affine transformations
recovered from the triangulation of landmark points. Both techniques do not need to
perform neither iterative nor analytic minimization procedures.

3.1 Kernel regression

In pattern recognition, there exists a class of techniques, which uses data points or a subset
of them not just in the training phase, but also in the prediction phase. These are called
memory-based methods. Linear parametric models that can be re-cast into equivalent dual
representations where the predictions are given by linear combinations of a kernel function
evaluated at the training data points are known as kernel regression methods. Kernel
functions are symmetric in their argument and are defined by training data points. Kernels,
which depend only on the magnitude of the distance of the argument from the training
points, are known as homogeneous kernels or radial basis functions.

For our registration purpose we will use the derivation of kernel regression from the scheme
known as the Nadaraya-Watson model (Nadaraya, 1964 and Watson, 1964). Assuming we
have a training set {x,, t,}. Then, using a Parzen density estimator, the joint distribution p(x,
t) is modeled as
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p(x,f)=%2f(x—xn,t—tn) (4)

n=1
where f(x, t) is the component density function, and there is a component centered on each

data point. The regression function y(x), corresponding to the conditional average of the
target variable conditioned on the input variable, is given by:

jtp(x,z)dt Y

[pCendr
thf(x—xn,t—tn)dt ©

} > [t -1, )t

y(x)=Elr| x]= [ 1p(t | x)dr =

Assuming that the component density functions have zero mean so that

[ r@ndi=0 6)
for all values of x, then, operating a change of variable we get

2 g(x=x,),
y(x)= S eGon) =;k(x,xn)tn )

where the kernel function k(x, x,) is defined as

__8kx—x,)
k(X,xn)_ Zg(x—xm) (8)

and

g =[xt ©)

This form (7) represents the Nadaraya-Watson model, for localized kernel function. It has the
property of weighting more the data points x, close to x than the other ones. The kernel (8)
satisfies the summation constraint
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N
Zk(x, x,)=1 (10)
n=l1

This result points out that the prediction for the value of a data point x is given by a linear
combination of the training data points values and the kernel functions. Such kernel
functions can have different forms, provided that (10) is satisfied.

3.2 Fuzzy c-means

Before explaining how kernel regression can be applied to the registration task, it is
necessary to describe the Fuzzy c-means clustering technique (Bezdek, 1981) that is a
powerful and efficient data clustering method.

Each data sample, represented by some feature values in a suitable space, is associated to
each cluster by assigning a membership degree. Each cluster is identified by its centroid, a
special point where the feature values are representative for its own class. The original
algorithm is based on the minimization of the following objective function:

JS:Zm:Zk:(uij)sd(xi,cj), I<s<o (11)

where d(x; cj) is a distance function between each observation vector x; and the cluster
centroid ¢j, s is a parameter which determines the amount of clustering fuzziness, m is the
number of clusters, which should be chosen a priori, k is the number of observations and u;;
is the membership degree of the sample x; belonging to cluster centroid c;.

An additional constraint is that the membership degrees should be positive and structured
such that uj; + up + ... + ui = 1. The method advances as an iterative procedure where, given
the membership matrix U = [u;j] of size k by m, the new positions of the centroids are
updated as:

Z; (”y )S i

=== v (12)

" Z; (”u)s

The algorithm ends after a fixed number of iterations or when the overall variation of the
centroids displacements over a single iteration falls below a given threshold. The new
membership values are given by the following equation:

1

d(xl.,c.) 51 (13)
2| d(x.c.)

=1
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To better understand the whole process a one-dimensional example is reported (i.e. each
data point is represented by just one value).

Twenty random data points and three clusters are used to initialize the procedure and
compute the initial matrix U. Note that the cluster starting positions, represented by vertical
lines), are randomly chosen. Fig. 1 shows the membership values for each data point relative
to each cluster; their colour is assigned on the basis of the closest cluster to the data point.

e @ ao o o000 © 00 0@odo

Fig. 1. Fuzzy C-means example: initial membership value assignation.
After running the algorithm, the minimization is performed and the cluster centroids are

shifted, the final membership matrix U can be computed. The resulting membership
functions are depicted in Fig. 2

oy

e ¢ ® ©000 O 00 OWO®O
Fig. 2. Fuzzy C-means example: final membership value assignation and cluster centres

positions.

3.3 Fuzzy kernel regression
Merging the results of the previous discussion it turns out that Fuzzy C-means membership
functions can be used as kernels for regression in the Nadaraya-Watson model because they
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satisfy the summation constraint. In the scenario of image registration, the input variables
populate the feature space by means of the spatial coordinates of the pixels/voxels and
cluster centroids are represented by relevant points in the images, whose spatial
displacement is known. The landmark points where correspondences are known between
input and reference image can be used for this purpose.

As a result of such setting there is no need to execute any minimization of the Bezdek
functional, since image points are already supposed to be clustered around the landmark
points (or equivalent representative points). Fuzzy C-means is used just as a starting point
for the registration procedure. Once the relevant points are known, a single FCM step is
performed to construct Fuzzy kernels by means of computing membership functions. For
this purpose the distance measure used in (13) is the simple Euclidean distance, since just
spatial closeness is required to determine how much any point is influenced by surrounding
relevant points. Such membership functions are then used to recover the displacement for
any pixel/voxel in the image using the following formula:

y(x) =D u(x,x,)t, (14)

where u(x,x,) is the membership value for the current pixel/voxel with regard to the
relevant point x,, and f, is a 2d/3d vector or function representing its known xy or xyz
displacement. This will result in continuous and smooth displacement surfaces, which
interpolate relevant points.

Even if the registration framework is unique, it can be applied in several ways, depending
on the choice of the target variable, i.e. what is assumed to be the prior information in terms
of relevant points and their known displacement. In the following paragraphs two different
applications of the proposed framework will be described.

3.4 Simple landmark based elastic registration

A first application arises naturally from the described framework. It is very simple and is
meant to demonstrate the actual use of the fuzzy kernel regression. However since it is
effective notwithstanding its simplicity, it could be used for actual registration tasks.
Basically, it consists in considering the landmark points themselves directly as the relevant
points representing the cluster centroids for the FCM step, and their displacements vectors
directly as the target variables. Each pixel/voxel is then subjected to a displacement
contribute from each landmark point. Such contribute is high for closer points and gets
smaller while relative distances between the input points and the landmarks increase. The
final displacement vector for any input point will consequently be a weighted sum of the
landmarks points.

To better understand this technique an example of the procedure is explained: a pattern
image showing four landmark points is depicted in Fig. 3a. An input point P is considered,
and its distances from the four landmarks are shown. After the procedure is applied with a
fuzziness value s set to 1.6, the point P results to have the following membership values for
the four landmarks:

u, =[0.0371,0.0106, 0.9339,0.0183] (15)
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This means that it will receive the greatest part of the displacement contribute from the
bottom-left landmark, and just a marginal contribute from the other three. The results are
confirmed in Fig. 3b, where the point has been moved according to a displacement vector
that is mostly similar to the displacement of the third landmark. Anyway, other landmarks
give small influences too.

(a) (b)
Fig. 3. Example of single point registration using four landmarks.

Repeating the same procedure for the points in the whole image, complete dense
displacement surfaces are recovered, one for each spatial dimension. Such surfaces have
continuity and smoothness properties.

As a first example, visual results for conventional images are shown in Fig. 4.

Fig. 4. Example of registration of conventional images. Input image (a), registered image (b)
and target image (c). In this example 31 landmark points were used with the fuzziness s
value set to 1.6

In Fig. 5 are shown the recovered displacement surfaces for x (a) and y (b) values
respectively.
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Fig. 5. Displacement surfaces recovered for x (a) and y (b) values.

3.5 Improved landmarks based elastic registration

Although the simple method previously described is effective and can be useful for simple
registration tasks, it does not result suitable for many applications in that it does not take
properly into account relations between neighbouring landmark points. In other words,
considering a single point displacement vector to represent the deformation of the image in
different areas is not enough. Thus, it is necessary to find an effective way for estimating
such zones. Given some landmark points, a simple way to subdivide the image space in
regions is the application of the classic Delaunay triangulation procedure (Delaunay, 1934),
which is the optimal way of recovering a tessellation of triangles, starting from a set of
vertices. It is optimal in the sense that it maximizes the minimum angle among all of the
triangles in the generated triangulation. Starting from the landmark points and their
correspondences, such triangulation produces a most useful triangles set along their relative
vertices correspondences. An example of Delaunay triangulation is depicted in Fig. 6.

Fig. 6. Example of Delaunay triangulation.
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Once we have such triangle tessellation whose vertices are known as well as their
displacements, it is possible to recover the local transformations, which map each triangle of
the input image onto its respective counterpart in the target image. Such transformation can
be recovered in several ways; basically an affine transformation can be used. In 2d space
affine transforms are determined by six parameters. Writing down the transformation
equation (16) for three points a linear system of six equations to recover such parameters can
be obtained. Similar considerations hold for the three-dimensional case.

(x, = b
x, =ax,, +by,, +c

Y= de,l +ey, +f

X a b c|x,, ax, +by, +c
: X, =ax,,+by,, +c

v =|d e [ Yo, |=|dxotey,+f|=3 J ’ + ’ L f (16)
: =dx e

1 0 0 1 1 1 V2 02 T€Voo

X; =axy,; + byo,3 +c

V3 = dxo,s +ey; +f

Each transformation is recovered from a triangle pair correspondence, and the composition
of all the transformations allows the full reconstruction of the image. Anyway, this direct
composition it is not sufficient per se, since it presents crisp edges because transition
between two different areas of the image are not smooth even if the recovered displacement
surfaces are continuous due to the adjacency of the triangles edges. This can lead to severe
artefacts in the registered image, especially for points outside of the convex hull defined by
the control points (Fig. 7c and Fig. 7d), where no transformation information is determined.
To better understand this problem an example of registration along the recovered surfaces
plot are shown respectively in Fig. 7 and Fig. 8.
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(d)
Fig. 7. Example of MRI image registration with direct composition of affine transformations.

Input image (a), registered image (b) and target image (c). Deformed grid in (d). In this
example 18 landmark points were used.
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Fig. 8. Displacement surfaces recovered for x (a) and y (b) values with direct affine
transformation composition.

Fuzzy kernel regression technique can be used to overcome this drawback. To apply the
method, relevant points acting as cluster centroids must be chosen. Since our prior
displacement information is no more about landmark points, but about triangles, they
cannot be chosen as relevant points anymore. Thus, we have to choose some other
representative points for each triangle. For this purpose, centres of mass are used as relevant
points, and their relative triangle affine transformation matrix is the target variable. In this
way, after recovering the membership functions and using them as kernels for regression,
final displacement for each pixel/voxel is given by the weighted sum of the displacements
given by all of the affine matrices. In this way the whole image information is taken into
account. The final location of each pixel/voxel is then obtained as follows (2d case):

n n

=2 lu,(xNd, e, [ | (17)
' 0 0 11

a, b c, | x,
e

e R

In this way there are no more displacement values that change sharply when crossing
triangle edges, but variations are smooth according to the choice of the fuzziness parameter
s. In Fig. 9. and Fig. 10 registration results and deformation surfaces for the previous
examples are shown. Note that there are no more sharp edges in the surface plots and a
displacement value is recovered also outside of the convex hull defined by the landmarks
points.
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Fig. 9. Example of MRI image registration with fuzzy kernel regression affine
transformations composition. Input image (a), registered image (b) and target image (c).
Deformed grid in (d). In this example 18 landmark points were used.
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Fig. 10. Displacement surfaces recovered for x (a) and y (b) values with fuzzy kernel
regression affine transformation composition.

3.6 Image resampling and transformation

Once the mapping functions have been determined, the actual pixels/voxels transformation
has to be realized. Such transformation can be operated in a forward or backward manner.
In the forward or direct approach (Fig. 11a), each pixel of the input image can be directly
transformed using the mapping function. This method presents a strong drawback, in that it
can produce holes and/or overlaps in the output image due to discretization or rounding
errors. With backward mapping (Fig. 11b), each point of the result image is mapped back
onto the input image using the inverse of the transformation function. Such mapping
generally produces non-integer pixel/voxel coordinates, so resampling via proper
interpolation methods is necessary even though neither holes nor overlaps are produced.
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Such interpolation is generally produced using a convolution of the image with an
interpolation kernel.

o] — bp
Y
(@)
Pqi\—.\ // /A i
(b)

Fig. 11. Direct mapping (a) and inverse mapping (b).

The optimal interpolating kernel, the sinc function, is hard to implement due to its infinite
support extent. Thus, several simpler kernels with limited support have been proposed in
literature. Among them, some of most common are nearest neighbour (Fig. 12a), linear (Fig.
12b) and cubic (Fig. 12¢) functions, Gaussians (Fig. 12d) and Hamming-windowed sinc (Fig.
12e). In Table 1 are reported the expressions for such interpolators.

Interpolating with the nearest neighbour technique consists in convolving the image with a
rectangular window. Such operation is equivalent to apply a poor sinc-shaped low-pass
filter in the frequency domain. In addition it causes the resampled image to be shifted with
respect to the original image by an amount equal to the difference between the positions of
the coordinate locations. This means that such interpolator is suitable neither for sub-pixel
accuracy nor for large magnifications, since it just replicates pixels/voxels.

A slightly better interpolator is the linear kernel, which operates a good low-pass filtering in
the frequency domain, even though causes the attenuation of the frequencies near the cut-off
frequency, determining smoothing of the image. Similar, though better results are achieved
using a Gaussian kernel.
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Fig. 12. Interpolation kernels in one dimension: nearest neighbour (a), linear (b), Cubic (c),
Gaussian (d) and Hamming-windowed sinc (e). Width of the support is shown below

(pixel/voxel number).
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INTERPOLATOR FORMULA FOR INTERPOLATED INTENSITY
n, if x<0.5
Nearest Neighbour = )
n, otherwise
Linear =(1- x)no + Xn,
(a+2)x* —(a+3)x*+1 f0<x<I1
Cubic Spline ; 5 _
ax” —S5ax” +8ax—4a if1<x<2
1 (x_:u)z
Gaussian -2 550
M
oN2rm
3 3
= Stwn [
i=— i=—2
Hamming-sinc where

w.=| 0.54+0.46 cos( ”(x3_ i)) sin{{x i)

’ m(x—1i)

Table 1. Analytic expression for several interpolators in one dimension.
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Cubic Interpolator are generally obtained by means of spline functions, constrained to pass
from points (0, 1), (1, 0) and (2,0), and to have continuity properties in 0 and 1; in addition
the slope in 0 and 2 should be 0, and approaching 1 both form left and right, it must be the
same. Since a cubic spline has eight degrees of freedom, using these seven constraints, the
function is defined up to a constant a. Investigated choice of the a parameter are 1, -3/4, and
1/2 (Simon, 1975).

Due to the problems of using an ideal sinc function, several approximation schemes have
been investigated. Direct truncation of the function is not possible because cutting the lobes
generates the ringing phenomenon. A more performing alternative is to use a non-squared
window, such as Hamming’s raised cosine window.

4. Experimental results and discussion

Simple Fuzzy Regression (SFR) and Fuzzy Regression Affine Composition (FRAC) have
been extensively tested with quantitative and qualitative criteria using both real and
synthetic datasets (Cocosco et al., 1997, Kwan et al., 1996-1999, Collins et al., 1998). The first
type of tests consists in the registration of a manually deformed image onto its original
version. The test image is warped using a known transformation, which is recovered
operating the registration. The method performance is then evaluated using several
similarity metrics: sum of squared difference (SSD), mean squared error (MSE) and mutual
information (MI) as objective measures, Structural Similarity (SSIM) as the subjective one
(Wang et al., 2004). The algorithm was ran using different fuzziness values s, visual results
for the proposed method are depicted in Fig. 13 and Fig. 14 and measures are summarized
in Table 2 and Table 3. Comparisons with Thin-Plate Spline approach are also presented.

Fig. 13. Example of registration results with simple fuzzy kernel regression. From left to
right: input image, registered image, target image, initial image difference, final image
difference.
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Fig. 14. Example of registration results with fuzzy kernel regression affine transformation
composition. From left to right: input image, registered image, target image, initial image
difference, final image difference.

SIMPLE FUZZY REGRESSION THIN PLATE SPLINE

s MSE SSD MI SSIM MSE SSD MI SSIM
1.2 0.0287 1049 1.0570  0.6753
1.4 0.0254 929 1.0945  0.6893
1.6 0.0251 917 1.0519  0.6552
1.8 0.0282 1033 1.0090  0.6225  0.0243 903 1.0856  0.6759
2.0 0.0361 1322 0.9563  0.5877
22 0.0426 1560 0.8970  0.5534
2.4 0.0486 1779 0.8489  0.5250
Table 2. Comparison of similarity measures between Simple Fuzzy Regression and Thin
Plate Spline approaches. Best results are underlined.

FuzzY REGRESSION AFFINE COMPOSITION THIN PLATE SPLINE

s MSE SSD MI SSIM MSE SSD MI SSIM

1.2 0.0112 410 1.1666  0.7389

1.4 0.0101 369 1.1811  _0.7435

1.6 0.0111 408 1.1834  0.7385

1.8 0.0133 486 1.1329  0.7037  0.0115 412 1.1654  0.7294

2.0 0.0201 736 1.0044  0.6257

22 0.0277 1015 0.8985  0.5590

2.4 0.0370 1355 0.8158  0.5115
Table 3. Comparison of similarity measures between Fuzzy Regression Affine Composition
and Thin Plate Spline approaches. Best results underlined.
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From the previous tables it results that the obtained similarity measures are comparable to
the Thin Plate Spline in the case of SFR registration, and better for FRAC Registration, so the
proposed methods are a valid alternative from an effectiveness point of view.

From an efficiency perspective, different considerations hold. All of the tests were
conducted on a AMD Phenom Quad-core running Matlab 7.5 on Windows XP. Timing
performance exhibited a large speed up for both of the presented algorithms in respect of
TPS: using 22 landmark points on 208x176 images, mean execution time for SFR registration
is 30,32% of TPS, while for FRAC registration it is 49,65%. Such difference is due to the fact
that TPS requires the solution of a linear system composed by an high number of equations,
this task is not needed for the proposed methods which reduce just to distance measures
and weighted sums for SFR and FRAC, the latter is a bit more expensive since the affine
transformation parameters have to be recovered from simple six equations systems (2d
case).

Last considerations are for memory consumption. Comparing the size of data structures, it
can be seen that for SFR algorithm DxM values need to be stored for landmarks
displacements, where D is the dimensionality of the images and M the number of control
points, and M values are needed for the membership degrees of each point. However, once
every single pixel/voxel has been transformed, its membership degrees can be dropped, so
the total data structure is M(D+1) large. TPS approximation has a little more compact
structure, in fact it needs just to maintain the D(M+3) surface coefficients (M for the non-
linear part and 3 for the linear one). FRAC has the largest descriptor, it is variable since it
depends on the number of triangles in which the image is subdivided, and anyway it is in
the order of 2M. Since each affine transformation is defined by D(D+1) parameters and
membership degrees require 2M additional values (i.e. one for each triangle) the whole
registration function descriptor is in the order of 2M[D(D+1)+1]. In conclusion, the storing
complexity is O(M) for both methods, i.e. linear in the number of landmarks used, and thus
equivalent.

4.1 Choosing the s parameter

As resulted from the discussion of the registration methods, both techniques require the
parameter s, the fuzziness value, to be assigned. Even though there exists the problem of
tuning this term, experiments shown that each of the considered similarity measures is a
convex (or concave) function of the s parameter and that the optimal value generally lies in
1.7+0.3. Furthermore, in this range results are very similar. Anyway, if a fine-tuning is
required, a few mono-dimensional search attempts (3-4 trials on average) are enough to find
the optimum solution using bisectional strategies such as golden ratio thus keeping the
method still more efficient than Thin Plane Spline.
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Fig. 15. Example of plot of the similarity measures versus the s parameters: MSE (a), SSD (b),
MI (c) and SSIM (d).

4.2 Interpolation performance

The interpolation schemes described provide different visual results exhibiting different
quality performances. Fig. 16 depicts the visual results achieved by the described
interpolators. However, especially when dealing with 3d volumes, computational burden
may be eccessive compared to the quality of the resampled images. Table 4 shows the
average computational time normalized with respect to nearest neighbour performance.

INTERPOLATOR TIMING PERFORMANCE
Nearest Neighbour 1

Linear 2.8534

Cubic Spline 41328
Gaussian 2.7913
Hamming-sinc 4.9586

Table 4. Timing performance for resampling kernels.
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Fig. 16. Results with different interpolating kernels: original detail (a), 300% magnification
with box-shaped kernel (b), triangular-shaped kernel (c), cubic kernel (d), gaussian kernel
(e) and hamming sinc kernel (f).
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Additionally, even if the subject goes beyond the purpose of this work, it is worth to remark
that image resampling is not involved just in image reconstruction, but is also a critical
matter in area-based registration techniques based on maximization of some similarity
function. The choice of the interpolation method has relevant influence on the shape of such
function, so a proper interpolation technique must be chosen to avoid the formation of local
minima in the curve to optimize. In turn, such technique can be different from the one that
provides us with the best visual results. For further reading on this topic, an interesting
analysis was conducted by Liang et al. (2003).

5. Conclusion and future works

Image registration has become a fundamental pre-processing step for a large variety of
modern medicine imaging tasks useful to support the experts” diagnosis. It allows to fuse
information provided by sequential or multi-modality acquisitions in order to gather useful
knowledge about tissues and anatomical parts. It can be used to correct the acquisition
distortion due to low quality equipments or involuntary movements.

Over the last years, the work by a number of research groups has introduced a wide variety
of methods for image registration. The problem to find the transformation function that best
maps the input dataset onto the target one has been addressed by a large variety of
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techniques which span from feature-based to area-based approaches depending on the
amount of information used in the process.

A new framework for image registration has been introduced. It relies on kernel-based
regression technique, using fuzzy membership functions as equivalent kernels. Such
framework is presented in a formal fashion, which arises from the application and extension
of the Nadaraya-Watson model.

The theoretic core has then been applied to two different landmark-based elastic registration
schemes. The former simply predicts the pixels displacement after constructing the
regression function starting from the known displacements of the landmarks. The latter,
after a space subdivision of the dataset into triangles, computes the affine transformations
that maps each triangle into the input image onto its correspondent in the target image.
Such affine transformations are then composed to create a deformation surface, which
exhibits crisp edges at the triangles junctions. In this case the regression function acts as a
smoother for such surfaces; each point displacement is conditioned by the influence of the
affine transformations of every surrounding zone of the image, receiving a larger contribute
from closer areas.

Both the proposed registration algorithms have been extensively tested and some of the
results have been reported. Comparisons with thin-plate spline literature method show that
quality performances are generally better. At the same time timing performance is improved
due to the absence of any optimization processes. The only drawback with the proposed
methods is the size of the displacement function descriptor, which is bigger than TPS
parameters vector, even though it keeps linear in the number of used landmarks.

Additional analysis were conducted on the resampling process involved in image
registration. Several interpolation kernels have been described and analyzed.

As future work it is possible to extend the application of this framework towards a fully
automatic area based registration with no needs of setting landmark points. For this
purpose, new interpolation techniques will be designed to keep into account both image
reconstruction quality and suppression of local minima in the optimization function.
According to the point-wise nature of these methods, it is possible to exploit the possibilities
given by parallel computing, in particular with the use of GPU cluster-enhanced algorithms
which will dramatically improve the process performance.
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