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1. Introduction

A study of data compression methods is motivated by the necessity to reduce expenditures
incurred with the transmission, processing and storage of large data arrays (Scharf., 1991; Hua
et al., 2001). Such methods have also been applied successfully to the solution of problems
related, e.g., to clustering (Fukunaga, 1990), feature selection (Jolliffe, 1986; Gimeno, 1987),
forecasting (Kim et al., 2005; Common and Golub, 1990) and estimating the medium from
transmission data (Kraut et al., 2004).
Data compression techniques are often performed on the basis of the Karhunen-Loève trans-
form (KLT)1, which is closely related to the Principal Component Analysis (PCA). A basic
theory for the KLT-PCA can be found, for example, in (Scharf., 1991; Jolliffe, 1986; Torokhti
and Howlett, 2007). In short, the KLT-PCA produces a linear operator of a given rank that
minimizes an associated error over all linear operators of the same rank. In a so-called stan-
dard KLT-PCA (e.g., presented in (Jolliffe, 1986)), an observable signal and a reference signals
are the same. In other words, the standard KLT-PCA provides data compression only and no
noise filtering.
Scharf (Scharf., 1991; Scharf, 1991) presented an extension of the PCA–KLT2 for the case when
an observable signal y and a reference signal x are different and no explicit analytical repre-
sentation of y in terms of x is known. In particular, y can be a noisy version of x. The method
(Scharf., 1991; Scharf, 1991) assumes that covariance matrix Eyy, formed from y, is nonsingular.
Yamashita and Ogawa (Yamashita and Ogawa, 1996) proposed and justified a version of the
PCA–KLT for the case where the covariance matrix Eyy may be singular and y = x + w with
w an additive noise. Hua and Liu (Hua and Liu, 1998) considered an extension of the PCA–
KLT to the case when y and x are different as in (Scharf., 1991; Scharf, 1991), to guarantee its
existence when Eyy is singular. Torokhti and Friedland (Torokhti and Friedland, 2009) studied
a weighted version of the the PCA–KLT. Torokhti and Howlett (Torokhti and Howlett, 2006;
2009) extended the PCA–KLT to the case of optimal non-linear data compression. Torokhti
and Manton (Torokhti and Manton, 2009) further advanced results in (Torokhti and Fried-
land, 2009; Torokhti and Howlett, 2006; 2009) to the so-called generic weighted filtering of
stochastic signals. Advanced computational aspects of the PCA–KLT were provided, in par-
ticular, by Hua, Nikpour and Stoica (Hua et al., 2001), Hua and Nikpour (Hua and Nikpour,
1999), Stoica and Viberg (Stoica and Viberg, 1996), and Zhang and Golub (Zhang and Golub,

1The KLT is also known as Hotelling Transform and Eigenvector Transform.
2List of references related to the PCA–KLT is very long. For example, a Google search for ‘Karhunen-

Loève transform and Principal Component Analysis’ gives 9230 items. Here, we mention only the most
relevant references to the problem under consideration.
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2001). Other relevant references can be found, e.g. in the bibliographies of the books by Scharf
(Scharf., 1991), and Torokhti and Howlett (Torokhti and Howlett, 2007).
While the topics of data compression have been intensively studied (in particular, in the ref-
erences mentioned above), a number of related fundamental questions remain open. One of
them concerns real-time data processing. In this paper, the real-time aspect of the data com-
pression problem is the dominant motivation for considering specific restrictions associated
with causality and memory. Similar observations, but not in context of data compression, mo-
tivated studies of Winer-like filtering in works by Fomin and Ruzhansky (Fomin and Ruzhan-
sky, 2000), Torokhti and Howlett (Torokhti and Howlett, 2006), and Howlett, Torokhti and
Pearce (Howlett et al., 2007).
We note that conditions of causality and memory make the problem very specific and difficult.
To the best of our knowledge, such a problem is considered here for the first time. In Section
3.2, we provide a new approach to the problem solution and give an analysis of the associated
error. In more detail, motivations to consider the problem are as follows.
FIRST MOTIVATION: CAUSALITY AND MEMORY. Data compression techniques mainly consist
of two operations, data compression itself and a subsequent data de-compression (or recon-
struction). In real time, the compressor and de-compressor are causal and may be performed
with a memory.
A causality constraint follows from the observation that in practice, the present value of the
output of a filter3 is not affected by future values of the input (De Santis, 1976). To deter-
mine the output signal at time tk with qk = 1, . . . ,k, to be defined below, the causal filter should
“remember” the input signal up to time tk, i.e. at times tk, tk−1, . . . , t1.
A memory constraint is motivated as follows. The output of the compressor and/or de-
compressor at time tk with k = 0,1, . . . ,m, may only be determined from a ‘fragment’ of the
input defined at times tk, tk−1, . . . , tk−(qk−1) with qk = 1, . . . ,k. In other words, compressor and
de-compressor should ‘remember’ that fragment of the input. The ‘length’ of the fragment for
a given k, i.e. the number qk, is called a local memory. The local memory could be different
for different k, therefore, we also say that qk is a local variable memory. A collection of the
local memories, {q1, . . . ,qm}, is called the variable finite memory or simply variable memory. A
formalization of these concepts is given in Section 3.1 below. Matrices that form filter models
with a variable memory possess special structure. Some related examples are given in Section
3.1.
Thus, our first motivation to consider the problem in the form presented in Section 2.3 below
comes from the observation that the compressor and de-compressor used in real time should
be causal with variable finite memory.
SECOND MOTIVATION: SPECIFIC FORMULATION OF THE PROBLEM. In reality, the compres-
sion and de-compression are separated in time. Therefore, it is natural to pose optimization
problems for them separately, one specific problem for each operation, compression and de-
compression. Associated optimization criteria could be formulated in many ways. Some of
them are discussed in Section 6, and we show that those criteria lead to significant difficul-
ties. To avoid the difficulties considered in Section 6, a new approach to the solution of the
data compression problem is presented here. The approach is based on a specific formulation
of two related problems given in Section 2 below. Solutions of those problems represent an
associated optimal compressor and optimal de-compressor, respectively. It is shown in Sec-
tion 3.1 that the optimal compressor and de-compressor satisfying conditions of causality and
variable finite memory must have special forms. This implies that signals processed by these

3Below, when a context is clear, we use the term ‘filter’ for both compressor and de-compressor.
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operators should be presented in special forms as well. In Sections 3.1 and 3.2 this issue is
discussed in detail.
Next, traditionally, the data compression problem is studied in terms of linear operators,
mainly due to a simplicity of their implementation. See, for example, (Scharf., 1991)–(Jolliffe,
1986) and (Scharf, 1991)–(Torokhti and Friedland, 2009) and references herein. Here, we ex-
tend the approaches of linear data compression proposed in (Scharf., 1991)–(Jolliffe, 1986)
and (Scharf, 1991)–(Torokhti and Friedland, 2009). A case of non-linear compression and
de-compression with causality and memory is more complicated, and it can be studied on
the basis of results obtained below combined, e.g., with the approaches to optimal non-linear
filtering presented in (Torokhti and Howlett, 2007; 2006; 2009; Torokhti and Manton, 2009;
Howlett et al., 2007).

2. Basic idea and statement of the problem

2.1 Informal statement of problem

In an informal way, the data compression problem we consider can be expressed as follows.
Let (Ω,Σ,µ) be a probability space, where Ω = {ω} is the set of outcomes, Σ a σ–field of
measurable subsets in Ω and µ : Σ → [0,1] an associated probability measure on Σ with µ(Ω) =
1. Let y ∈ L2(Ω,Rn) be observable data and x ∈ L2(Ω,Rm) be a reference signal that is to be
estimated from y in such a way that

(i) first, data y should be compressed to a shorter vector z ∈ L2(Ω,Rr)4 with r < min{m,n},

(ii) then z should be decompressed (reconstructed) to a signal x̃ ∈ L2(Ω,Rm) so that x̃ is
‘close’ to x in some appropriate sense, and

(iii) both operations, compression and de-compression, should be causal and should have
variable memory.

The problem is to determine a compressor and de-compressor so that associated errors are
minimal. A rigorous statement of the problem is given in Section 2.3 below.
In an intuitive way, y can be regarded as a noise-corrupted version of x. For example, y can
be interpreted as y = x + n where n is white noise. Thus, the above two operations, (i) and
(ii), perform the noise filtering as well. We do not restrict ourselves to this simplest version of
y and assume that the dependence of y on x and n is arbitrary.

2.2 Basic idea

Let B : L2(Ω,Rn) → L2(Ω,Rr) signify compression so that z = B(y) and let A : L2(Ω,Rr) →
L2(Ω,Rm) designate data de-compression, i.e., x̃ = A(z). We suppose that B and A are linear
operators defined by the relationships

[B(y)](ω) = B[y(ω)] and [A(z)](ω) = A[z(ω)] (1)

where B ∈ R
n×r and A ∈ R

r×m. In the remainder of this paper we shall use the same symbol
to represent both the linear operator acting on a random vector and its associated matrix.
We assume that information about vector z in the form of associated covariance matrices can
be obtained, in particular, from the known solution (Torokhti and Howlett, 2007) of the data
compression problem with no constraints associated with causality and memory. This allows us to
state the problem, subject to conditions of causality and memory, in the form of two separate
problems (2) and (3) formulated below. This is the basic idea of our approach.

4Components of z are often called principal components (Jolliffe, 1986).
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2.3 The problem formalization

SPECIAL NOTATION. We need to use some special notation to be defined in Section 3.1 be-
low. The notation follows from six specific Definitions 1–6 of causal compressors and de-
compressors with different types of memories given in Section 3.1. To shorten the way forward
for the problem formalization, we describe briefly here that notation and refer the reader to
Section 3.1 for more detail.
We write MC (r,n,ηB ) for the set of causal r × n compressors B with so-called complete variable
finite memory ηB , and MT (r,n,ηB ) for the set of causal r × n compressors B with so-called
truncated variable finite memory ηB . The definitions MC (m,r,ηA ) and MT (m,r,ηA ) for sets of
de-compressors A are similar. Related Definitions 1–6 are in Section 3.1.
FORMULATION OF THE PROBLEM. Now, we are in a position to formulate the problem rig-

orously. We define the norm to be ‖x‖2
Ω =

∫

Ω
‖x(ω)‖2

2dµ(ω) where ‖x(ω)‖2 is the Euclidean

norm of x(ω). Consider
J1(B) = ‖z − B(y)‖2

Ω.

Let B0 be such that

J1(B0) = min
B

J1(B) subject to B ∈MC (r,n,ηB ) or B ∈MT (r,n,ηB ). (2)

We write z0 = B0(y). Next, let
J2(A) = ‖x − A(z0)‖2

Ω

and let A0 be such that

J2(A0) = min
A

J2(A) subject to A ∈M(m,r,ηA ) or A ∈MT (m,r,ηA ). (3)

We denote x0 = A0(z0).
The problem considered in this paper is to find operators B0 and A0 that satisfy minimization
criteria (2) and (3), respectively.
Operator B0 provides a compression of the signal y to the form z0. Further, A0 reconstructs
then compressed signal z0 to the form x0 so that x0 is an optimal representation of x in the
sense of the constrained minimization problem (3).

2.4 Differences of our statement of the problem

The major differences between our statement of the problem (2)–(3) and the known statements
considered, for example, in (Scharf., 1991)–(Jolliffe, 1986) and (Scharf, 1991)–(Torokhti and
Friedland, 2009) are as follows. Firstly, de-compressor A and compressor B should be causal
with variable finite memory. Secondly, we represent the data compression problem in the
form of a concatenation of two new separate problems (2) and (3). Some related arguments
for considering the real-time data compression problem in the form (2)–(3) are presented in
Section 6.

3. Main results

3.1 Formalization of the concept of variable memory

Let τ1 < τ2 < · · · < τn be time instants and α, β,ϑ : R → L2(Ω,R) be continuous functions.
Suppose αk = α(τk), βk = β(τk) and ϑk = ϑ(τk) are real-valued, random variables having finite
second moments. We write

x = [α1,α2, . . . ,αm]T y = [β1, β2, . . . , βn]T and z = [ϑ1, . . . ,ϑr]
T .
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Let z̃ be a compressed form of data y defined by z̃ = B(y) with z̃ = [ϑ̃1, . . . , ϑ̃r]T , and x̃ be a
de-compression of z̃ defined by x̃ = A(z̃) with x̃ = [α̃1, . . . , α̃m]T .
In many applications5, to obtain ϑ̃k for k = 1, . . . ,r, it is necessary for the compressor B to use
only a limited number of input components, ηBk

= 1, . . . ,r. A number of such input compo-
nents ηBk

is here called a kth local memory for B.
To define a notation of memory for the compressor B, we use parameters p and g which are
positive integers such that

1 ≤ p ≤ n and n − r + 2 ≤ g ≤ n.

Definition 1 The vector ηB = [ηB1
, . . . ,ηBr

] is called a variable memory of the compressor B. In
particular, ηB is called a complete variable memory if ηB1

= g and ηBk
= n when k = n − g + 1, . . . ,n.

Vector ηB is called a truncated variable memory of B if, for r ≤ p ≤ n, ηB1
= p − r + 1 and ηBr

= p.
Here, p relates to the last possible nonzero entry in the bottom row of B and g relates to the last possible
nonzero entry in the first row.

The notation ηA = [ηA1
, . . . ,ηAm

] has a similar meaning for the de-compressor A. Here, ηAj
is

the jth local memory of A. In other words, ηAj
is the number of input components used by the

de-compressor A to obtain the estimate α̃j with j = 1, . . . ,m.
The parameters q and s which are positive integers such that

1 ≤ q ≤ r and 2 ≤ s ≤ m

are used below to define two types of memory for A.

Definition 2 Vector ηA is called a complete variable memory of the de-compressor A if ηA1
= q and

ηAj
= r when j = s + r − 1, . . . ,m. Vector ηA is called a truncated variable memory of A if ηAj

= 0

for j = 1, . . . , s − 1, ηAs
= s and ηAj

= r when j = s + r − 1, . . . ,m. Here, q relates to the first possible

nonzero entry in the last column of A and s relates to the first possible nonzero entry in the first column.

The memory constraints described above imply that certain elements of the matrices B =
{bij}

r,n
i,j=1 and A = {aij}

m,r
i,j=1 must be set equal to zero. In this regard, for matrix B with r ≤ p ≤

n, we require that

bi,j = 0 (4)

if j = p − r + i + 1, . . . ,n, for

{

p = r, . . . ,n − 1,
i = 1, . . . ,r

and

{

p = n,
i = 1, . . . ,r − 1,

(5)

and, for 1 ≤ p ≤ r − 1, it is required that

bi,j = 0 (6)

if

{

i = 1, . . . ,r − p,
j = 1, . . . ,n,

and if

{

i = r − p + 1, . . . ,r,
j = i − r + p + 1, . . . ,n.

(7)

See Examples 1 and 2 below.

5Examples include computer medical diagnostics (Gimeno, 1987) and problems of bio-informatics
(Kim et al., 2005).
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For matrix A with r ≤ p ≤ n, we require

ai,j = 0 (8)

if j = q + i, . . . ,r for q = 1, . . . ,r − 1 and i = 1, . . . ,r − q, (9)

and, for 2 ≤ s ≤ m, it is required that

ai,j = 0 (10)

if j = s + i, . . . ,r for s = 1, . . . ,m and i = 1, . . . , s + r − 1, (11)

See Examples 3 and 4 below.
The above conditions imply the following definitions.

Definition 3 A matrix B satisfying the constraint (4)–(5) is said to be a causal operator with the
truncated variable memory ηB = [p− r + 1, . . . , p]. The set of such matrices is denoted by MT (r,n,ηB ).

Example 1 Let n = 8, r = 3 and p = 7. If the symbol • denotes an entry that may be non-zero, then
B is of the form

b1,p−r+1↓

B =

⎡

⎣

• • • • • 0 0 0
• • • • • • 0 0
• • • • • • • 0

⎤

⎦

r p

is a causal operator with the truncated variable memory ηB = [5,6,7].

Definition 4 A matrix B satisfying the constraint (6)–(7) is said to be a causal operator with the
complete variable memory ηB = [g, g + 1, . . . ,n]. Here, ηBk

= n when k = n − g + 1, . . . ,n. The set of

such matrices is denoted by MC (r,n,ηB ).

Example 2 Let n = 6, r = 4 and g = 4. Then B with
g

B =

⎡

⎢

⎢

⎣

• • • • 0 0
• • • • • 0
• • • • • •
• • • • • •

⎤

⎥

⎥

⎦ n − g + 1

is the causal operator with the complete variable memory ηB = [4,5,6,6].

Definition 5 A matrix A satisfying the constraint (8)–(9) is said to be a causal operator with the
complete variable memory ηA = [r − q + 1, . . . ,r]. Here, ηAj

= r when j = q, . . . ,m. The set of such

matrices is denoted by MC (m,r,ηA ).

Example 3 Let m = 5, r = 4 and q = 3. Then A is of the form
a1,r−q+1↓

A =

⎡

⎢

⎢

⎢

⎢

⎣

• • 0 0
• • • 0
• • • •
• • • •
• • • •

⎤

⎥

⎥

⎥

⎥

⎦

← aq,r

and is a causal operator with the complete variable memory ηA = [2,3,4,4,4].

www.intechopen.com
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Definition 6 A matrix A satisfying the constraint (10)–(11) is said to be a causal operator with the
truncated variable memory ηA = [0, . . . ,0,1, . . . ,r]. Here, ηAj

= 0 when j = 1, . . . , s − 1, and ηAj
= r

when j = s + r − 1, . . . ,m. The set of such matrices is denoted by MT (m,r,ηA ).

Example 4 Let m = 6, r = 4 and s = 3. Then matrix A of the form

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
• 0 0 0
• • 0 0
• • • 0
• • • •

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

is a causal operator with the truncated variable memory ηA = [0,0,1,2,3,4].

3.2 Solution of problems (2) and (3)

To proceed any further we shall require some more notation. Let

〈αi, βj〉 =
∫

Ω
αi(ω)βj(ω)dµ(ω) < ∞, Exy = {〈αi, βj〉}

m,n
i,j=1 ∈ R

m×n, (12)

y1 = [β1, . . . , βg−1]
T , y2 = [βg, . . . , βn]T , (13)

z1 = [ϑ1, . . . ,ϑg−1]
T and z2 = [ϑg, . . . ,ϑn]T . (14)

The pseudo-inverse matrix (Golub and Van Loan, 1996) for any matrix M is denoted by M†.
The symbol O designates the zero matrix.

Definition 7 (Torokhti and Howlett, 2007) Two random vectors u and w are said to be mutually
orthogonal if Euw = O.

Lemma 1 (Torokhti and Howlett, 2007) If we define

w1 = y1 and w2 = y2 − Pyy1

where
Py = Ey1y2 E†

y1y1
+ Dy(I − Ey1y1 E†

y1y1
) (15)

with Dy an arbitrary matrix, then w1 and w2 are mutually orthogonal random vectors.

3.2.1 Solution of problem (2). The case of complete variable memory

Let us first consider problem (2) when B has the complete variable memory ηB = [g, g + 1, . . . ,n]
(see Definition 4).
Let us partition B in four matrices KB, LB, SB1

and SB2
so that

B =

[

KB LB

SB1
SB2

]

,

www.intechopen.com
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where

KB = {kij} ∈ R
nb×(g−1) is a rectangular matrix with nb = n − g + 1,

LB = {ℓij} ∈ R
nb×nb is a lower triangular matrix, and

SB1
= {s

(1)
ij } ∈ R

(r−nb)×(g−1) and SB2
= {s

(2)
kl } ∈ R

(r−nb)×nb are rectangular matrices.

We have

B(y) =

[

KB LB

SB1
SB2

][

y1
y2

]

=

[

KB(y1) + LB(y2)
SB1

(y1) + SB2
(y2)

]

=

[

KB(w1) + LB(w2 + Py(w1))
SB1

(w1) + SB2
(w2 + Py(w1))

]

=

[

TB(w1) + LB(w2)
SB(w1) + SB2

(w2)

]

, (16)

where

TB = KB + LBPy and SB = SB1
+ SB2

Py. (17)

Then

J1(B) = ‖z − B(y)‖2
Ω

=

∥

∥

∥

∥

[

z1

z2

]

−

[

TB LB

SB SB2

][

w1

w2

]∥

∥

∥

∥

2

Ω

= J(1)(TB, LB) + J(2)(SB,SB2
), (18)

where

J(1)(T, L) = ‖z1 − [TB(w1) + LB(w2)]‖
2
Ω and J(2)(SB,SB2

) = ‖z2 − [SB(w1) + SB2
(w2)]‖

2
Ω.

By analogy with Lemma 37 in (Torokhti and Howlett, 2007),

min
B∈M(r,n,η

B
)

J1(B) = min
TB ,LB

J(1)(TB, LB) + min
SB ,SB2

J(2)(SB,SB2
). (19)

Therefore, problem (2) is reduced to finding matrices T0
B, L0

B, S0
B and S0

B2
such that

J(1)(T0
B, L0

B) = min
TB ,LB

J(1)(TB, LB) (20)

and
J(2)(S0

B,S0
B2

) = min
SB ,SB2

J(2)(SB,SB2
). (21)

Taking into account the orthogonality of vectors w1 and w2, and working in analogy with the
argument on pp. 348–352 in (Torokhti and Howlett, 2007), it follows that matrices S0

B and S0
B2

are given by

S0
B = Ez2w1 E†

w1w1
+ HB(I − Ew1w1 E†

w1w1
) (22)

and
S0

B2
= Ez2w2 E†

w2w2
+ HB2

(I − Ew2w2 E†
w2w2

), (23)

where HB and HB2
are arbitrary matrices. See Section 7 for more details.

Next, to find T0
B and L0

B we use the following notation.
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For r = 1,2, . . . ,ℓ, let ρ be the rank of the matrix Ew2w2 ∈ Rn2×n2 with nb = n − g + 1, and let

Ew2w2
1/2 = Qw,ρRw,ρ

be the QR-decomposition for Ew2w2
1/2 where Qw,ρ ∈ Rn2×ρ and Qw,ρ

TQw,ρ = I and Rw,ρ ∈

Rρ×n2 is upper trapezoidal with rank ρ. We write Gw,ρ = Rw,ρ
T and use the notation

Gw,ρ = [g1, . . . , gρ] ∈ R
n2×ρ

where gj ∈ Rn2 denotes the j-th column of Gw,ρ. We also write

Gw,s = [g1, . . . , gs] ∈ R
n2×s (24)

for s ≤ ρ to denote the matrix consisting of the first s columns of Gw,ρ. For the sake of simplic-
ity, let us set

Gs := Gw,s. (25)

Next,
e1

T = [1,0,0,0, . . .], e2
T = [0,1,0,0, . . .], e3

T = [0,0,1,0, . . .], etc.

denote the unit row vectors whatever the dimension of the space.
Finally, any square matrix M can be written as M = M∆ + M∇ where M∆ is lower triangular
and M∇ is strictly upper triangular. We write ‖ · ‖F for the Frobenius norm.

Lemma 2 Let matrices K, N and C be such that K = N + C and nijcij = 0 for all i, j, where nij and
cij are entries of N and C, respectively. Then

‖K‖2
F = ‖N‖2

F + ‖C‖2
F.

Proof. The proof is obvious. ✷

Theorem 1 Let B have the complete variable memory ηB = [g, g + 1, . . . ,n]. Then the solution to
problem (2) is provided by the matrix B0, which has the form

B0 =

[

K0
B L0

B
S0

B1
S0

B2

]

,

where the blocks K0
B ∈ R

nb×(g−1), S0
B1

∈ R
(r−nb)×(g−1) and S0

B2
∈ R

(r−nb)×nb are rectangular, and

the block L0
B ∈ R

nb×nb is lower triangular. These blocks are given as follows. The block K0
B is given by

K0
B = T0

B − L0
BPy (26)

with
T0

B = Ez1w1 E†
w1w1

+ NB1
(I − Ew1w1 E†

w1w1
) (27)

where NB1
is an arbitrary matrix. The block L0

B =

⎡

⎢

⎣

λ0
1
...

λ0
nb

⎤

⎥

⎦
, for each s = 1,2, . . . ,n2, is defined by its

rows
λ0

s = es
T Ez1w2 Ew2w2

† GsGs
† + fs

T(I − GsGs
†) (28)
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with fs
T ∈ R1×n2 arbitrary. The blocks S0

B1
and S0

B2
are given by

S0
B1

= S0
B − S0

B2
Py (29)

and (23), respectively. In (29), S0
B is presented by (22).

The error associated with the matrix B0 is given by

‖z − B0y‖2
Ω =

ρ

∑
s=1

n2

∑
j=s+1

|es
T Ez1w2 Ew2w2

†gj|
2

+
2

∑
j=1

‖Ezjzj
1/2‖2

F −
2

∑
i=1

2

∑
j=1

‖Eziwi Ewjwj
†1/2‖2

F. (30)

Proof. Since Ew2w2 = Gw,ρGw,ρ
T , we have

J(1)(T, L) = ‖z1 − [T(w1) + L(w2)]‖
2
Ω

= tr
{

Ez1z1 − Ez1w1 TT − Ez1w2 LT − TEw1z1

+ TEw1w1 TT + TEw1w2 LT − LEw2z1

+ LEw2w1 TT + LEw2w2 LT
}

= tr
{

Ez1z1 − Ez1w1 TT − Ez1w2 LT − TEw1z1

+ TEw1w1 TT − LEw2z1 + LEw2w2 LT
}

= tr
{

(T − Ez1w1 Ew1w1
†)Ew1w1 (TT − Ew1w1

†Ew1z1 )

+ (L − Ez1w2 Ew2w2
†)GρGρ

T(LT − E†
w2w2

Ew2z1 )

+ Ez1z1 − Ez1w1 Ew1w1
†Ew1z1 − Ez1w2 Ew2w2

†Ew2z1

}

= ‖(T − Ez1w1 Ew1w1
†)Ew1w1

1/2‖F
2

+ ‖(L − Ez1w2 Ew2w2
†)Gρ‖F

2
+ ‖Ez1z1

1/2‖F
2

−‖Ez1w1 Ew1w1
†1/2‖F

2
− ‖Ez1w2 Ew2w2

†1/2‖F
2
. (31)
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On the basis of Lemma 2 and the fact that the matrix LGρ is lower triangular we note that

‖(L − Ez1w2 Ew2w2
†)Gρ‖F

2

= ‖(LGρ − Ez1w2 Ew2w2
†Gρ)∆ − (Ez1w2 Ew2w2

†Gρ)∇‖F
2

=
ρ

∑
s=1

s

∑
j=1

|(λsgj − es
T Ez1w2 Ew2w2

†gj)|
2

+
ρ

∑
s=1

nb

∑
j=s+1

|es
T Ez1w2 Ew2w2

†gj|
2

=
ρ

∑
s=1

‖λsGs − es
T Ez1w2 Ew2w2

†Gs‖2
2

+
ρ

∑
s=1

nb

∑
j=s+1

|es
T Ez1w2 Ew2w2

†gj|
2. (32)

The first sum in (32) calculates the contribution from all elements with j ≤ s that are on or
below the leading diagonal of the matrix (L − Ez1w2 Ew2w2

†)Gρ and the second sum calculates
the contribution from all elements with j > s that are strictly above the leading diagonal. To
minimize the overall expression (32) it would be sufficient to set the terms in the first sum to
zero. Thus we wish to solve the matrix equation

λsGs − es
T Ez1w2 E†

w2w2
Gs = 0.

This equation is a system of (2nb − ρ + 1)ρ2/2 equations in (nb + 1)nb/2 unknowns. Hence,
there is always at least one solution. Indeed, by applying similar arguments to those used in
proving Lemma 26 of (Torokhti and Howlett, 2007), it can be seen that the general solution is
given by (28).
Next, it follows from (31) that the minimum of

‖(TB − Ez1w1 Ew1w1
†)Ew1w1

1/2‖F
2

is attained if
(TB − Ez1w1 Ew1w1

†)Ew1w1
1/2 = O. (33)

By Lemma 26 of (Torokhti and Howlett, 2007), this equation is equivalent to the equation

TBEw1w1 − Ez1w1 = O. (34)

See Section 7 for more details. The general solution (Ben-Israel and Greville, 1974) to (34) is
given by (43). Then (26) follows from (17). Equality (29) also follows from (17).
To obtain the error representation (30), we write

‖z − B0y‖2
Ω = J(1)(T0

B, L0
B) + J(2)(S0

B,S0
B2

)

= ‖z1 − [T0
B(w1) + L0

B(w2)]‖
2
Ω + ‖z2 − [S0

B(w1) + S0
B2

(w2)]‖
2
Ω.
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Here,

J(1)(T0
B, L0

B) =
ρ

∑
s=1

n2

∑
j=s+1

|es
T Ez1w2 Ew2w2

†gj|
2

+‖Ez1z1
1/2‖2

F −
2

∑
j=1

‖Ez1wj Ewjwj
†1/2‖2

F

which follows from (31) by substituting (43) and (28). Similarly, the term J(2)(S0
B,S0

B2
) is rep-

resented by (see Corollary 20 (p. 351) in (Torokhti and Howlett, 2007))

J(2)(S0
B,S0

B2
) = ‖E†1/2

z2z2
‖2

F −
2

∑
j=1

‖Ez2wj Ewjwj
†1/2‖2

F.

Hence, (30) follows. ✷

3.2.2 Solution of problem (3). The case of complete variable memory

Let us now consider problem (3) when the de-compressor A has the complete variable mem-
ory ηA = [r − q + 1, . . . ,r] (see Definition 5).
In analogy with our partitioning of matrix B, we partition matrix A in four matrices KA, LA,
SA1 and SA2 so that

A =

[

KA LA

SA1 SA2

]

,

where

KA = {kij} ∈ R
q×(r−q) is a rectangular matrix,

LA = {ℓij} ∈ R
q×q is a lower triangular matrix, and

SA1 = {s
(1)
ij } ∈ R

(m−q)×(r−q) and SA2 = {s
(2)
kl } ∈ R

(m−q)×q are rectangular matrices.

Let us partition z0 so that

z0 =

[

z0
1

z0
2

]

with z0
1 ∈ L2(Ω,Rr−q) and z0

2 ∈ L2(Ω,Rq). We also write

x1 = [α1 . . . ,αr−q]
T and x2 = [αr−q+1, . . . ,αm]T ,

and denote by v1 ∈ L2(Ω,Rr−q) and v2 ∈ L2(Ω,Rq), orthogonal vectors according to Lemma
1 as

v1 = z0
1 and v2 = z0

2 − Pzz0
1,

where Pz = Ez1z2 E†
z1z1

+ Dz(I − Ez1z1 E†
z1z1

) with Dz an arbitrary matrix.
By analogy with (24)–(25), we write

Gv,s = [g1, . . . , gs] ∈ R
q×s

where Gv,s is constructed from a QR-decomposition of Ev2v2
1/2, in a manner similar to the

construction of matrix Gw,s.
Furthermore, we shall define Gs := Gv,s.
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Theorem 2 Let A have the complete variable memory ηA = [r − q + 1, . . . ,r]. Then the solution to
problem (3) is provided by the matrix A0, which has the form

A0 =

[

K0
A L0

A
S0

A1 S0
A2

]

,

where the blocks K0
A ∈ R

q×(r−q), S0
A1 ∈ R

(m−q)×(r−q) and S0
A2 ∈ R

(m−q)×q are rectangular, and the

block L0
A ∈ R

q×q is lower triangular. These blocks are given as follows. The block K0
A is given by

K0
A = T0

A − L0
AP (35)

with
T0

A = Ex1v1 E†
v1v1

+ NA1(I − Ev1v1 E†
v1v1

) (36)

where NA1 is an arbitrary matrix. The block L0
A =

⎡

⎢

⎣

λ0
1
...

λ0
q

⎤

⎥

⎦
,for each s = 1,2, . . . ,q, is defined by its

rows
λ0

s = es
T Ex1v2 Ev2v2

† GsGs
† + fs

T(I − GsGs
†) (37)

with fs
T ∈ R1×q arbitrary. The blocks S0

A1 and S0
A2 are given by

S0
A1 = S0

A − S0
A2P and S0

A2 = Ex2v2 E†
v2v2

+ HA2(I − Ev2v2 E†
v2v2

), (38)

where
S0

A = Ex2v1 E†
v1v1

+ HA(I − Ev1v1 E†
v1v1

) (39)

and HA2 and HA are arbitrary matrices.
The error associated with the de-compressor A0 is given by

‖x − A0z0‖2
Ω =

ρ

∑
s=1

q

∑
j=s+1

|es
T Ex1v2 Ev2v2

†gj|
2

+
2

∑
j=1

‖Exj xj
1/2‖2

F −
2

∑
i=1

2

∑
j=1

‖Exivi Evjvj
†1/2‖2

F. (40)

Proof. The proof follows in analogy with the proof of Theorem 1. ✷

3.2.3 Solution of problem (2): the case of truncated variable memory

Let us now consider a solution to the problem (2) when the compressor B has the truncated
variable memory ηB = [p − r + 1, . . . , p]T (see Definition 3).
To this end, let us partition B in three blocks KB, LB and ZB so that

B = [KB LB ZB],

where

KB = {kij} ∈ R
r×(p−r) is a rectangular matrix,

LB = {ℓij} ∈ R
r×r is a lower triangular matrix, and

ZB = {zij} ∈ R
r×(n−p)is the zero rectangular matrix.
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Let us write

y1 = [β1, . . . , βp−r]
T , y2 = [βp−r+1, . . . , βp]

T and y3 = [βp+1, . . . , βn]T .

Therefore

B(y) = [KB LB ZB]

⎡

⎣

y1
y2
y3

⎤

⎦ = KB(w1) + LB(w2 + Py(w1)) = TB(w1) + LB(w2),

where TB is given by (17). Then

J1(B) = ‖z − B(y)‖2
Ω

= ‖z − [TB(w1) + LB(w2)]‖
2
Ω

= J(1)(TB, LB). (41)

Similarly to (24)–(25), we write

Gw,s = [g1, . . . , gs] ∈ R
r×s

where Gw,s is constructed from a QR-decomposition of Ew2w2
1/2, in a manner similar to the

construction of matrix Gw,s.
Furthermore, we shall define Gs := Gw,s.
A comparison of (41) with (18) and Theorem 1 shows that the solution to the problem under
consideration follows from Theorem 1 as its particular case as follows.

Corollary 1 Let B ∈ MT (r,n,ηB ), i.e. the compressor B is causal and has the truncated variable
memory ηB = [p − r + 1, . . . , p]T . Then the solution to problem (2) is provided by the matrix B0,
which has the form

B0 =
[

K0
B L0

B ZB

]

.

Here, the block K0
B ∈ R

r×(p−r) is given by

K0
B = T0

B − L0
BPy (42)

with Py determined by (15) and

T0
B = Ez1w1 E†

w1w1
+ NB(I − Ew1w1 E†

w1w1
) (43)

where NB is an arbitrary matrix. The lower triangular block L0
B =

⎡

⎢

⎣

λ0
1
...

λ0
r

⎤

⎥

⎦
∈ R

r×r, for each s =

1,2, . . . ,r, is defined by its rows

λ0
s = es

T Ezw2 Ew2w2
† GsGs

† + fs
T(I − GsGs

†), (44)

where Gs determined by (24)–(25) with Ew2w2 ∈ Rr×r, and fs
T ∈ R1×r arbitrary.

www.intechopen.com



��������	
���
�������������	
���
��������������
���
���
�����

������
�
�������
� �#$

Let ρ be the rank of the matrix Ew2w2 ∈ Rr×r. The error associated with the compressor B0 is given by

J(1)(T0
B, L0

B) =
ρ

∑
s=1

r

∑
j=s+1

|es
T Ezw2 Ew2w2

†gj|
2

+‖Ezz
1/2‖2

F −
2

∑
j=1

‖Ezwj Ewjwj
†1/2‖2

F. (45)

Proof. (42)–(44) follow in analogy with (26)–(28), and (45) is similar to (30). ✷

3.2.4 Solution of problem (3): the case of truncated variable memory

A solution to the problem (3) when the de-compressor A has the truncated variable memory
ηA = [0, . . . ,0,1, . . . ,r]T (see Definition 6) is obtained in a similar manner to the solution of the
problem (3) given in Section 3.2.2 above.
We partition matrix A and vector z0 in three blocks ZA, LA and KA, and three sub-vectors z0

1,

z0
1 and z0

1, respectively, so that

A =

⎡

⎣

ZA

LA

KA

⎤

⎦ and z0 =

⎡

⎣

z0
1

z0
2

z0
3

⎤

⎦ ,

where ZA ∈R
(s−1)×r is the zero matrix, LA ∈R

r×r is a lower triangular matrix, KA ∈R
(m−r)×r

is a rectangular matrix, and z0
1 ∈ L2(Ω,Rs−1), z0

2 ∈ L2(Ω,Rr−s+1) and z0
3 ∈ L2(Ω,Rm−r).

We also write

x1 = [α1 . . . ,αs−1]
T , x2 = [αs, . . . ,αs+r−1]

T and x3 = [αs+r, . . . ,αm]T .

Therefore,

J2(A) =

∥

∥

∥

∥

∥

∥

x −

⎡

⎣

ZA

LA

KA

⎤

⎦z0

∥

∥

∥

∥

∥

∥

2

Ω

=

∥

∥

∥

∥

∥

∥

⎡

⎣

x1

x2 − LA(z0
2)

x3 − KA(z0
3)

⎤

⎦

∥

∥

∥

∥

∥

∥

2

Ω

= ‖x1‖
2
Ω + J

(1)
2 (LA) + J

(1)
2 (KA), (46)

where

J
(1)
2 (LA) = ‖x2 − LA(z0

2)‖
2
Ω and J

(1)
2 (KA) = ‖x3 − KA(z0

3)‖
2
Ω. (47)

By analogy with (24)–(25), we write Gs := Gz0
2,s with

Gz0
2,s = [g1, . . . , gs] ∈ R

rs×s,

where rs = r − s + 1 and Gz0
2,s is constructed from a QR-decomposition of Ez0

2z0
2

1/2, in a manner

similar to the construction of matrix Gw,s.
The solution of the problem under consideration is as follows.
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Corollary 2 Let a de-compressor A have the truncated variable memory ηA = [0, . . . ,0,1, . . . ,r]T .
Then the solution to problem (3) is provided by the matrix A0 which has the form

A0 =

⎡

⎣

ZA

L0
A

K0
A

⎤

⎦ .

Here, ZA ∈ R
(s−1)×r is the zero matrix and L0

A =

⎡

⎢

⎣

λ0
1
...

λ0
r

⎤

⎥

⎦
∈ R

r×r is a lower triangular matrix, for

each s = 1,2, . . . ,r, defined by its rows

λ0
s = es

T Ex2z0
2
Ez0

2z0
2

† GsGs
† + fs

T(I − GsGs
†), (48)

with fs
T ∈ R1×r arbitrary. The block K0

A ∈ R
(m−r)×r is given by

K0
A = Ex3z0

3
E†

z0
3z0

3
+ HA(I − Ez0

3z0
3
E†

z0
3z0

3
), (49)

where HA is an arbitrary matrix.
Let ρ be the rank of the matrix Ez0

2z0
2
∈ Rrs×rs where rs = r − s + 1. The error associated with the

de-compressor A0 is given by

‖x − A0(z0)‖2
Ω = ‖x1‖

2
Ω +

ρ

∑
s=1

rs

∑
j=s+1

|es
T Ex2z0

2
Ez0

2z0
2

†gj|
2 + ‖E†1/2

x3x3
‖2

F − ‖Ex3z0
3
Ez0

3z0
3

†1/2‖2
F. (50)

Proof. By analogy with (31)) and (32), we have

J
(1)
2 (LA) = ‖(LA − Ex2z0

2
Ez0

2z0
2

†)Gw,ρ‖F
2
+ ‖Ex2x2

1/2‖F
2
− ‖Ex2z0

2
Ez0

2z0
2

†1/2‖F
2

and

‖(LA − Ex2z0
2
Ez0

2z0
2

†)Gw,ρ‖F
2
=

ρ

∑
s=1

‖λsGs − es
T Ex2z0

2
Ez0

2z0
2

†Gs‖2
2

+
ρ

∑
s=1

rs

∑
j=s+1

|es
T Ex2z0

2
Ez0

2z0
2

†gj|
2, (51)

respectively. Then (48) follows similarly to (28).

The equality (49) is determined from minimizing J
(1)
2 (KA) in (47) as it has been done in (22)–

(23) and on pp. 348–352 in (Torokhti and Howlett, 2007).
To derive the error representation (50), we write

J2(A0) = ‖x − A0(z0)‖2
Ω = J

(1)
2 (L0

A) + J
(2)
2 (K0

A)

= ‖x1‖
2
Ω +

ρ

∑
s=1

rs

∑
j=s+1

|es
T Ex2z0

2
Ez0

2z0
2

†gj|
2 + ‖E†1/2

x3x3
‖2

F − ‖Ex3z0
3
Ez0

3z0
3

†1/2‖2
F.

Thus, (48)–(50) are true. ✷
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3.3 Device for data compression and de-compression

The proposed filter F0 for data compression, filtering and de-compression consists of two
devices, the compressor B0 and the de-compressor A0, so that F0 = A0B0. The device B0 com-
presses observed data y ∈ L2(Ω,Rn) to a ‘shorter’ vector z0 ∈ L2(Ω,Rr) with r < min{m,n}
where m is a dimension of the reference signal x ∈ L2(Ω,Rm). The de-compressor A0 restores
z0 to a signal x̃ ∈ L2(Ω,Rm) so that this procedure minimizes the cost functional J2(A) given
by (3). The compression ratio associated with such devices is given by

c =
r

min{m,n}
. (52)

4. Simulations

The following simulations and numerical results illustrate the performance of the proposed
approach.
Our filter F0 = A0B0 has been applied to compression, filtering and subsequent restoration
of the reference signals given by the matrix X ∈ R

256×256. The matrix X represents the data
obtained from an aerial digital photograph of a plant6 presented in Fig. 1.
We divide X into 128 sub-matrices Xij ∈ R

m×q with i = 1, . . . ,16, j = 1, . . . ,8, m = 16 and q =
32 so that X = {Xij}. By assumption, the sub-matrix Xij is interpreted as q realizations of

a random vector x ∈ L2(Ω,Rm) with each column representing a realization. For each i =
1, . . . ,16 and j = 1, . . . ,8, observed data Yij were modelled from Xij in the form

Yij = Xij • rand(16,32)(ij).

Here, • means the Hadamard product and rand(16,32)(ij) is a 16× 32 matrix whose elements

are uniformly distributed in the interval (0,1).
The proposed filter F0 has been applied to each pair {Xij, Yij}.
In these simulations, we are mainly concerned with the implementation of conditions of
causality and variable finite memory in the filter F0 and their influence on the filter perfor-
mance. To this end, we considered compressors B0 and de-compressors A0 with different
types of memory studied above.
First, each pair {Xij, Yij} has been processed by compressors and de-compressors with the

complete variable memory. In this regard, see Definitions 4 and 5. We denote B0
C

= B0 and

A0
C

= A0 for such a compressor and de-compressor determined by Theorems 1 and 2, respec-
tively, so that

B0
C
∈MT (r,n,ηB ) and A0

C
∈MC (m,r,ηA )

where n = m = 16, r = 8, ηB = {ηBk
}16

k=1 with ηB k
=

{

12 + k − 1, if k = 1, . . . ,4,
16, if k = 5, . . . ,16

, and

ηA = {ηA j}
16
j=1 with ηA j =

{

6 + j − 1, if j = 1,2,
8, if k = 3, . . . ,16

. In this case, the optimal filter F0 is

denoted by F0
C

so that F0
C

= A0
C

B0
C
. We write

J0
C

= max
ij

‖Xij − F0
C

Yij‖
2

for a maximal error associated with the filter F0
C

over all i = 1, . . . ,16 and j = 1, . . . ,8.

6The database is available in http://sipi.usc.edu/services/database/Database.html.
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Second, each pair {Xij, Yij} has been processed by compressors and de-compressors with the
truncated variable memory defined by Definitions 3 and 6, respectively. Such a compressor
and de-compressor are denoted by B0

T
= B0 and A0

T
= A0 with B0 and A0 determined by

Corollaries 1 and 2. Here,

B0
T
∈MT (r,n,ηB ) and A0

T
∈MT (m,r,ηA )

where n = m = 16, r = 8, ηB = {ηBk
}16

k=1 with ηB k
= 9 + k− 1 for k = 1, . . . ,8, and ηA = {ηA j}

16
j=1

with ηA j =

{

j, if j = 1, . . . ,7,
8, if k = 8, . . . ,16

. The filter F0 composed from B0
T

and A0
T

is denoted by F0
C

so that F0
C

= A0
T

B0
T
. The maximal error associated with the filter F0

T
over all i = 1, . . . ,16 and

j = 1, . . . ,8 is
J0

T
= max

ij
‖Xij − F0

T
Yij‖

2.

The compression ratio for both cases above was c = 1/2.
We assumed that covariance matrices associated with a compressed signal and used to com-
pute B0

C
, A0

C
, B0

T
and A0

T
could be determined from the Generic Karhunen-Loève Transform

(GKLT) (Torokhti and Howlett, 2007) applied to each pair {Xij, Yij}. We remind that the GKLT
is not restricted by the conditions of causality and memory.
To the best of our knowledge, a method for the data compression subject to the conditions of
causality and memory is presented here for the first time. Therefore, we could not compare
our results with similar methods. However, to have an idea of some sort of comparison, we
also computed the maximal error associated with the GKLT FGKLT over all i = 1, . . . ,16 and
j = 1, . . . ,8 as

JGKLT = max
ij

‖Xij − FGKLT Yij‖
2.

The results of simulations are presented in Table 1 and Figures 1 (a) - (d).

Table 1.

J0
C

J0
T

JGKLT

3.3123e + 005 4.3649e + 005 3.0001e + 005

As it has been shown above, the conditions of causality and memory imply the specific struc-
ture of the filter F0 = A0B0 such that matrices A0 and B0 must have special zero entries. The
more zeros A0 and B0 have the worse an associated error is. Matrices B0

C
and A0

C
have more

non-zero entries than B0
T

and A0
T
, therefore, J0

C
is lesser than J0

T
. The error JGKLT associated with

the GKLT is naturally lesser than J0
C

and J0
T

because the conditions of causality and memory
are not imposed on FGKLT and, therefore, it is not required that FGKLT must have specific zero
entries.

5. Conclusion

The new results obtained in the paper are summarized as follows.
We have presented a new approach to the data processing consisting from compression, de-
compression and filtering of observed stochastic data subject to the conditions of causality and
variable memory. The approach is based on the assumption that certain covariance matrices
formed from observed data, reference signal and compressed signal are known or can be
estimated. This allowed us to consider two separate problem related to compression and
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(a) Given reference signals. (b) Observed data.

(c) Estimates of the reference signals by the filter
F0

C
with the complete variable memory.

(d) Estimates of the reference signals by the filter
F0

T
with the truncated variable memory.

Fig. 1. Illustration of simulation results.

de-compression subject to those constraints. It has been shown that the structure of the filter
should have a special form due to constrains of causality and variable memory. The latter
has implied the new method for the filter determination presented in Sections 3.2.1–3.2.4. The
analysis of the associated errors has also been provided.
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6. Appendix 1: Difficulties associated with some possible formalizations of the

real-time data compression problem

In addition to the motivations presented in Section 1, we provide here some further, related
arguments for considering the real-time data compression problem in the form (2)–(3).
Let us consider two seemingly natural ways to state the real-time data compression problem
and show that they lead to significant difficulties. This observation, in particular, has moti-
vated us to state the problem as it has been done in Section 2.3 above.
The first way is as follows. Let us denote by J(A, B), the norm of the difference between the ref-
erence signal x and its estimate x̃ = (A ◦ B)(y), constructed by de-compressor A : L2(Ω,Rr)→
L2(Ω,Rm) and compressor B : L2(Ω,Rn) → L2(Ω,Rr) from the observed signal y:

J(A, B) = ‖x − (A ◦ B)(y)‖2
Ω. (53)

The problem is to find B0 : L2(Ω,Rn) → L2(Ω,Rr) and A0 : L2(Ω,Rr) → L2(Ω,Rm) such that

J(A0, B0) = min
A,B

J(A, B) (54)

subject to conditions of causality and variable finite memory for A and B.
The problem (54), with no constraints of causality and variable finite memory, has been con-
sidered, in particular, in (Hua and Nikpour, 1999).
A second way to formulate the problem is as follows. Let F : L2(Ω,Rn) → L2(Ω,Rm) be a
linear operator defined by

[F (y)](ω) = F[y(ω)] (55)

where F ∈ R
n×m. Let rank F = r and

J(F) = ‖x −F (y)‖2
Ω.

Find F0 : L2(Ω,Rn) → L2(Ω,Rm) such that

J(F0) = min
F

J(F) (56)

subject to
rank F ≤ min{m,n} (57)

and conditions of causality and variable finite memory for F.
The constraint (57) implies that F can be written as a product of two matrices, A and B, repre-
senting a de-compressor and compressor, respectively.
If the conditions of causality and variable finite memory for F are not imposed then the so-
lution of problem (56)–(57) is known and provided, for example, in (Torokhti and Howlett,
2007), Section 7.4.
If there are no constraints associated with causality and variable finite memory, then solutions
of problems (54) and (56)-(57) are based on the assumption that certain covariance matrices
are known. In this regard, see, for example, (Scharf., 1991)–(Jolliffe, 1986) and (Scharf, 1991)–
(Torokhti and Friedland, 2009). In particular, the solution of problem (54), with no constraints
of causality and variable finite memory, provided in (Hua and Nikpour, 1999) follows from
an iterative scheme that requires knowledge of two covariance matrices at each step of the
scheme. Thus, if the method proposed in (Hua and Nikpour, 1999) requires p iterative steps,
then it requires a knowledge of 2p covariance matrices.
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In the case of no constraints of causality and variable finite memory, the known solution
of problem (56)-(57) requires knowledge of two covariance matrices only (see, e.g., (Scharf.,
1991)–(Jolliffe, 1986) and (Scharf, 1991)–(Torokhti and Friedland, 2009)).
A special difficulty with solving problem (54) is that it involves two unknowns, A and B, but
only one functional to minimize. An iterative approach to its approximate solution based on the
method presented in (Hua and Nikpour, 1999) requires knowledge of a number of covariance
matrices. Another difficulty is that A and B must keep their special form associated with
causality and variable finite memory. Related definitions are given in Section 3.1.
Unlike (54), problem (56)–(57) has only one unknown. Nevertheless, the main difficulty asso-
ciated with problem (56)-(57) is similar: an implementation of the conditions of causality and
variable finite memory into a structure of F implies a representation of F as a product of two
factors, each with a specific shape related to causality and memory, respectively. An approach
to its exact solution based on the methodology presented in (Scharf., 1991)–(Jolliffe, 1986) and
(Scharf, 1991)–(Torokhti and Friedland, 2009) would require knowledge of two covariance
matrices only, but implies constraints related to a special shape of each factor in the decompo-
sition of F into a product of two factors. Therefore, as with problem (54), the difficulty again
relates to dealing with two unknowns with only one functional to minimize.
To avoid the difficulties discussed above, we proposed the approach to the solution of the
real-time data compression problem presented in Sections 2 and 3. We note that the problem
(2)–(3) requires knowledge of covariance matrices used in Theorems 1 and 2, and Corollaries
1 and 2, i.e., such an assumption is similar to the assumptions used in (Scharf., 1991)–(Jolliffe,
1986) and (Scharf, 1991)–(Torokhti and Friedland, 2009) for the solution of problems (54) and
(56)-(57) with no constraints associated with causality and variable finite memory.

7. Appendix 2: Some derivations used in Section 3.2

7.1 Proof of relationships (22) and (23)

Let us show that (22) and (23) are true. For simplicity, we denote

z := z2, S1 := SB, S2 := SB2
and J(S1,S2) := J(2)(SB,SB2

). (58)

Let

J0 = ‖E1/2
zz ‖2

F −
2

∑
k=1

‖Ezwk
(E1/2

wkwk
)†‖2

F and J1 =
2

∑
k=1

‖SkE1/2
wkwk

− Ezwk
(E1/2

wkwk
)†‖2

F.

Lemma 3 Let J(S1,S2) = ‖z −
2

∑
k=1

Sk(wk)‖
2
Ω. Then min

S1,S2

J(S1,S2) is achieved when

Sk = Ezwk
E†

wkwk
+ Hk(I − Ewkwk

E†
wkwk

) for k = 1,2, (59)

where Hk is an arbitrary matrix.

Proof. First, let us prove that

J(S1,S2) = J0 + J1. (60)

We note that ‖M‖2
F = tr[MMT ], and write

J0 = tr[Ezz] −
2

∑
k=1

tr[Ezwk
E†

wkwk
Ewkz] (61)
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and

J1 =
2

∑
k=1

tr[(Sk − Ezwk
E†

wkwk
)Ewkwk

(ST
k − E†

wkwk
Ewkz)]

=
2

∑
k=1

tr[(SkEwkwk
ST

k − SkEwkz − Ezwk
ST

k + Ezwk
E†

wkwk
Ewkz)]. (62)

The latter is due to the relationship E†
wkwk

E1/2
wkwk

= (E1/2
wkwk

)† and orthogonality of vectors w1

and w2.
Next, since for any random vector z, ‖z‖2

Ω = tr[Ezz], we have

J(S1,S2) = ‖z −
2

∑
k=1

Sk(wk)‖
2
Ω = tr[Ezz −

2

∑
k=1

(Ezwk
Sk

T − SkEwkz + SkEwkw1kSk
T)]. (63)

Then (60) follows from (61)–(63).
In (60), the only term depending on S1 and S2, is J1. Therefore, min

S1,S2

J(S1,S2) is achieved when

SkE1/2
wkwk

− Ezwk
(E1/2

wkwk
)† = O for k = 1,2. (64)

By (Torokhti and Howlett, 2007) (see p. 352), matrix equation (64) has its general solutions in
the form (59). ✷

As a result, relationships (22) and (23) follow from (58) and (59).

7.2 Proof of equivalency of equations (33) and (34)

In Lemma 4 below, TB is any matrix of the size that makes sense of the difference TB −
Ez1w1 Ew1w1

†. In particular, TB can be the matrix defined by (17).

Lemma 4 The equations

(TB − Ez1w1 Ew1w1
†)Ew1w1

1/2 = O. (65)

and
TBEw1w1 − Ez1w1 = O. (66)

are equivalent.

Proof. Let us suppose that (65) is true. Multiplying on the right by Ew1w1
1/2 gives

TBEw1w1 − Ez1w1 E†
w1w1

Ew1w1 = O.

Then TBEw1w1 − Ez1w1 = O follows on the basis of Ez1w1 E†
w1w1

Ew1w1 = Ez1w1 (see Lemma 24 on
p. 168 in (Torokhti and Howlett, 2007)).
On the other hand, if TBEw1w1 − Ez1w1 E†

w1w1
Ew1w1 = O then multiplying on the right by E†

w1w1

gives

TBEw1w1 E†
w1w1

− Ez1w1 E†
w1w1

= O. (67)

Here, E1/2
w1w1

E1/2†
w1w1

= Ew1w1 E†
w1w1

(see p. 170 in (Torokhti and Howlett, 2007)). Hence, equation
(67) can be rewritten as

TBE1/2
w1w1

E1/2†
w1w1

− Ez1w1 E†
w1w1

= O.

Multiplying on the right by E1/2
w1w1

gives the required result (66). ✷

In other words, (33) and (34) are equivalent.
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