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1. Introduction

Markovian jump systems consists of two components; i.e., the state (differential equation)
and the mode (Markov process). The Markovian jump system changes abruptly from one
mode to another mode caused by some phenomenon such as environmental disturbances,
changing subsystem interconnections and fast variations in the operating point of the
system plant, etc. The switching between modes is governed by a Markov process with the
discrete and finite state space. Over the past few decades, the Markovian jump systems have
been extensively studied by many researchers; see (Kushner, 1967; Dynkin, 1965, Wonham,
1968; Feng et al., 1992; Souza & Fragoso, 1993; Boukas & Liu, 2001; Boukas & Yang, 1999;
Rami & Ghaoui, 1995; Shi & Boukas, 1997; Benjelloun et al., 1997; Boukas et al., 2001; Dragan
et al., 1999). This is due to the fact that jumping systems have been a subject of the great
practical importance. For the past three decades, singularly perturbed systems have been
intensively studied by many researchers; see (Dragan et al., 1999; Pan & Basar, 1993; Pan &
Basar, 1994; Fridman, 2001; Shi & Dragan, 1999; Kokotovic et al., 1986).

Multiple time-scale dynamic systems also known as singularly perturbed systems normally
occur due to the presence of small “parasitic” parameters, typically small time constants,
masses, etc. In state space, such systems are commonly modelled using the mathematical
framework of singular perturbations, with a small parameter, say ¢, determining the degree
of separation between the “slow” and “fast” modes of the system. However, it is necessary
to note that it is possible to solve the singularly perturbed systems without separating
between slow and fast mode subsystems. But the requirement is that the “parasitic”
parameters must be large enough. In the case of having very small “parasitic” parameters
which normally occur in the description of various physical phenomena, a popular
approach adopted to handle these systems is based on the so-called reduction technique.
According to this technique the fast variables are replaced by their steady states obtained
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612 Advanced Technologies

with “frozen” slow variables and controls, and the slow dynamics is approximated by the
corresponding reduced order system. This time-scale is asymptotic, that is, exact in the limit,
as the ratio of the speeds of the slow versus the fast dynamics tends to zero.

In the last few years, the research on singularly perturbed systems in the #, sense has been
highly recognized in control area due to the great practical importance. #,, optimal control
of singularly perturbed linear systems under either perfect state measurements or imperfect
state measurements has been investigated via differential game theoretic approach.
Although many researchers have studied the #, control design of linear singularly
perturbed systems for many years, the %, control design of nonlinear singularly perturbed
systems remains as an open research area. This is due to, in general, nonlinear singularly
perturbed systems can not be decomposed into slow and fast subsystems.

Recently, a great amount of effort has been made on the design of fuzzy #, for a class of
nonlinear systems which can be represented by a Takagi-Sugeno (TS) fuzzy model; see
(Nguang & Shi, 2001; Han & Feng, 1998; Chen et al., 2000; Tanaka et al., 1996). Recent
studies (Nguang & Shi, 2001; Han & Feng, 1998; Chen et al., 2000; Tanaka et al., 1996, Wang
et al.,, 1996) show that a fuzzy model can be used to approximate global behaviors of a
highly complex nonlinear system. In this fuzzy model, local dynamics in different state
space regions are represented by local linear systems. The overall model of the system is
obtained by “blending” of these linear models through nonlinear fuzzy membership
functions. Unlike conventional modelling which uses a single model to describe the global
behavior of a system, fuzzy modelling is essentially a multi-model approach in which
simple submodels (linear models) are combined to describe the global behavior of the
system. Employing the existing fuzzy results (Nguang & Shi, 2001; Han & Feng, 1998; Chen
et al., 2000; Tanaka et al., 1996, Wang et al., 1996) on the singularly perturbed system, one
ends up with a family of ill-conditioned linear matrix inequalities resulting from the
interaction of slow and fast dynamic modes. In general, ill-conditioned linear matrix
inequalities are very difficult to solve.

What we intend to do in this chapter is to design a robust #, fuzzy controller for a class of
uncertain nonlinear two time-scale dynamic systems with Markovian jumps. First, we
approximate this class of uncertain nonlinear two time-scale dynamic systems with
Markovian jumps by a Takagi-Sugeno fuzzy model with Markovian jumps. Then based on
an LMI approach, we develop a technique for designing a robust #, fuzzy controller such
that the .£>-gain of the mapping from the exogenous input noise to the regulated output is
less than a prescribed value. To alleviate the ill-conditioned linear matrix inequalities
resulting from the interaction of slow and fast dynamic modes, these ill-conditioned LMIs
are decomposed into e-independent LMIs and e-dependent LMIs. The e-independent LMIs
are not ill-conditioned and the e-dependent LMIs tend to zero when ¢ approaches to zero. If
¢ is sufficiently small, the original ill-conditioned LMIs are solvable if and only if the &-
independent LMIs are solvable. The proposed approach does not involve the separation of
states into slow and fast ones, and it can be applied not only to standard, but also to
nonstandard singularly perturbed systems.

This chapter is organized as follows. In Section 2, system descriptions and definition are
presented. In Section 3, based on an LMI approach, we develop a technique for designing a
robust #, fuzzy controller such that the £»>-gain of the mapping from the exogenous input
noise to the regulated output is less than a prescribed value for the system described in
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Section 2. The validity of this approach is demonstrated by an example from a literature in
Section 4. Finally, conclusions are given in Section 5.

2. System Descriptions and Definitions

The class of uncertain nonlinear two time-scale dynamic systems with Markovian jumps
under consideration is described by the following TS fuzzy model with Markovian jumps:

E x(t) => l,ul(z) t)]HA [77
B, (nf1)+ 8, (nl))e
5 o) s ()
2t )=Z, yALD)te

Dl

(1)) + Ad (1)) ()
(t
},x o):o
J+A z)j}x[zj

/)| (1)

+

+

)
n(t)
)l

I 0
where E, =L) 1J,5>0 is the singular perturbation parameter, v(t)=[v1(t):-- vy (¢)] is the
&

+

premise variable that may depend on states in many cases, u [(U(t))denote the normalized
time varying fuzzy weighting functions for each rule, 9 is the number of fuzzy sets,
x(r)e R"is the state vector u(r) e R"is the input, w(r)eR” is the disturbance which
belongs to £[0,%), z(r) € R¥is the controlled output, the matrix functions 4; (n(t)) By, (n(t))
By (m(t)). C1, (n(t)) Dy, (n(t)), AA ,(n(t)), AByq (n(t)), AB; (n(t)) ACq, (n(t)), and ADjy (n(t))
are of appropriate dimensions. {(77(1))} is a continuous-time discrete-state Markov process
taking values in a finite set S = {1,2, ", s} with transition probability matrix PrA {sz(t)}
given by
P(t)=Pr(ie+ A)=kn(r)=1)
_{ JuA+O(A)  if 12k )
1+2,A+0() if 1=k

. o(A . .t
where A > 0, and lim, _,, % = 0. Here A, >0 is the transition rate from mode 1 (system

operating mode) to mode k(z# k), and

= D (3)

k=1,k#1

For the convenience of notations, we let ;A yi(u(t)),nz n(t), and any matrix
M(p,0) A M(u,17=1). The matrix functions A4,(n7), ABy (17), ABy (17), ACq (17) and ADq, (77),
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re-present the time-varying uncertainties in the system and satisfy the following
assumption.
Assumption 1:

A(n)=F(x(e) )i, (),
ABy, (m)=F(x(t) 1, ()
ABy ()= F(x(ekn.0 )3, ()
ACy, ()= F(x() .0}y, (1),

and ADy, (m)=F(x(tkn.0)s, ()

where H ji (77), j=1,2,---,5 are known matrices which characterize the structure of the

uncertainties. Furthermore, there exists a positive function p() such that the following
inequality holds:

|F(erm.0) < () 4)

We recall the following definition.

Definition 1: Suppose yis a given positive number. A system of the form (1) is said to have
the £-gain less than or equal to yif

E[ [ 0e0)- 7w (z)w(,)}dz} <0.4(0)=0 5)

where E[-]stands for the mathematical expectation, for all Trand all w(t) € £, [0, T/].

Note that for the symmetric block matrices, we use (*) as an ellipsis for terms that are
induced by symmetry.

3. Robust %, Fuzzy Control Design

This section provides the LMI-based solutions to the problem of designing a robust #, fuzzy
controller that guarantees the £-gain of the mapping from the exogenous input noise to the
regulated output to be less than some prescribed value.

First, we consider the following Hoo fuzzy state feedback which is inferred as the weighted
average of the local models of the form:

(0= LK, () ©

Then, we describe the problem under our study as follows.
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Problem Formulation: Given a prescribed %, performance y > 0, design a robust #,, fuzzy
state-feedback controller of the form (6) such that the inequality (5) holds.

Before presenting our first main result, the following lemma is needed.

Lemma 1: Consider the system (1). Given a prescribed #, performance y >0, for t=1, 2, s,
if there exist matrices Pg(l)= PET (l), positive constants J(z) and matrices Yj(7),j=1,2, - - -, r

such that the following e-dependent linear matrix inequalities hold:

P,(1)>0 7)
1//,-,-(1,5)< 0, i=1,2,---,r (8)
i (Le)+ v i(e)<0, i<j<r )
where
®;0e) () (*): (*);
\Pij(lag): R(Z)BL(Z) _7R(l) (*) (*)T (10)
Pij (L) 0 -R@  *)
z' (1.€) 0 0 -P@e)
®g(1,8)=f,-()E"P() P47 )+ By, @)Y, )+ Y] (0)B (1) + 2,E,'P.(e), (1)
¢, (0.6)=C, (JE;'P,()+ D ()Y,(l) (12)
R(z)=d {()115() 1}, (13)
2(s,¢)= JENETRY 0 A O IN WY 0 A ) SN 7N oo X 1) SR P
P(,)= dzag{Eg f;(1) W E- P( 1) Eg f;(z+1), ,Eg 'P(s)} (15)
with

Nl,(l):[l I 1 Bl,(l)]
C, ()=l @) 2NWewH6) 0 VNI W]
By ()= VANOPWHI () w@HIE) 20D, ()

N() = z+pZ(oggUH;(z)Hz,(z)u]f

then the inequality (5) holds. Furthermore, a suitable choice of the fuzzy controller is

u(r)= Zr:,qugj ()x(?) (16)

J=1
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where

K, =Y, 0(R0) B, (17)

Proof: The closed-loop state space form of the fuzzy system model (1) with the controller
(16) is given by

[AA, (,) ( )K (z)]x(t) (18)

or in a more compact form

=305, ([40)+ B, Ok, k() + B, (RE)(0))x(0) = 0 (19)

where
B(W=[r 1 1 B) (20)
F ((x( t)),l,Z)H L (l;x((t))
- 4 Fxtt )t )H, (tjwit (21)
W= RO oo o, (K ()

Consider a Lyapunov functional candidate as follows:

V(x(t),z,g)z ! (0, ()x(1), VieS (22)

Note that Q,(2) is constant for each:. For this choice, we have V(0, 1, ¢) = 0 and V(x(t), ,¢)—0
only when |x(t)|| — .

Now let consider the weak infinitesimal operator Aof the joint process {(x(t), 1, €), t= 0},
which is the stochastic analog of the deterministic derivative. {(x(t), 1, €), t= 0} is a Markov
process with infinitesimal operator given by (Souza & Fragoso, 1993),

ZV(x(t),l,e) =y 3" ()0, ()x(t)+ yx" (£)0, (1) x(e) + yx Z
= 23wt (3" (00, 04,0+ B, (0, ()]0

i=1 j=1

7 (04 0)+ B, (K, (0 0.(x(0)
+7x (1)0, (B, (R (i)
+70" (OR()B] (1), (t)x(r)
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+7/xT(t)i/1,ng(k)x(t) : (23)

Adding and subtracting —Nz(z)zT(t)z(t)+722;12;:12;:12221yi,uj,um,un [vT/T(t)R(z)

w(7)] to and from (23), we get

ZV(x(t),z,s): t)+y Z‘Z‘;Z’u’u o [w (c )R (1)
+N%( +y Z;;Zﬂu M 1 {W((Z)J x
4.+ B, 0K, 0.0) N
{{Qﬁ){A()w 0K, ]+ ;lz,ng(k)] 7 ke
R()B! (1)0,(2) 0

Now let us consider the following terms:

722 Zr: i Zr:ﬂi,u bt [P OR@FE)]

i=1 j=1m=1n=1
LSS5 S " 0
(l i=1j=1m=1n=1

17 O, O+ KEOHS, O3, (0K () O+ @ (@) (25)

and

N2 (0)="( lZZZZ#ﬂ,umﬂx e, )+ D, (K, ()] x

i=l j=lm=ln

[Clm +Dl ]+p [H +H, ()K ()]Tx
[, )+ 1, (z)Km (z)]}x(t) (26)

1

where N()= (1 + pz(l)z;lz;: 1[HH 2Ti (z)sz (JHJE - Hence,
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YIS it st [T OROFO] 20 ()

i=1j=1m=1n=1

2303039 W LG IR0 IOHNG) ES08

[C1, O+ D1z, (K @0+ @ ()(2) (27)

where
¢1,0=[pr! () V2RO0HL © 0 0T O]
Bia, = VBROAOHL ) 1008 O 2OPT, O]
Substituting (27) into (24), we have
AV (x(01.2)<=N20ET (OB Q)+ 220w (W (o)
A S SR SN x| x(?)
I IO {W(f)} D i (Z’E{W(t)}' (28)

i=1j=Im=1n=1

where
(1:0)+ B2, K, ) 2.0
oy 0a)-| 2 OLO B2, 0K O] [ @0 Dre, 0K, 0] < | ¢
R (l)[élm (l) + [)12,” (Z)K&‘n (l)]+ Zj{: 1 A Qe (k)
ROBT ()0, 0) R()
Using the fact

S Y3 ittt MW O3 St P 1,0 N, OV 0]

i=1j=1m=1n=1 i=1j=1

we can rewrite (28) as follows:
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50

where

1)+ By, 0K ;1)) 0.0)
+0, (l)(A i)+ B2, (DK (’))+ % [61,. )+ D 12, (DK (l)]T x| )T

RO, 0+ Do, Ko O]+ 2 240.0)
RO ()0, () _R()

(30)

(D,-j(z,g):

Pre and post multiplying (30) by

=0)- [” ) 0]

1

with P, (l) =0, ! (l) we obtain

P} ()+Y] B3, )+ 4;()P.(0)+ B2, Y ;)
% [1, R0+ Dra, O, O] ¢y
=0 EO=|| R O[C,, (08, ()+ D, (Y 0] .

Y AP OR OR0)
ROB] () RO)

Note that (31) is the Schur complement of ¥ji(i, €) defined in (10). Using (8)-(9), we learn that
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®;i(e) < 0, i=1,2,,r 32)
(L) +®@ ;(1e) < 0, i<j<r- 33)

Following from (29), (32) and (33) , we know that
A V(x(t), 1,g)< -N? (l)ZT (t)z(t)+ }/ZNZ (l)WT (t)w(t)- (34)

Applying the operator E[ f ! (.)d;} on both sides of (34), we obtain

1 r60uop < [ (207 0000 omap] 0

From the Dynkin’s formula [2], it follows that

E{ I(? AV(x(t),z,g)dt}: E [V(x(Tf)l(Tf),s)]— E[V (x(0).40).¢)] (36)

Substitute (36) into (35) yields

0< Et j(ff’ N2 QT OO+ 2w OO J
“E [V()C(Tf-),z(Tf-),g)]+E[V(x(O),l(O),g)]-

Using (34) and the fact that we have
E{ I £ 00 ysz(t)w(t)}dt}< 0. (37)

Hence, the inequality (5) holds. This completes the proof of Lemma 1. ]

Remark 1: The linear matrix inequalities given in Lemma 1 becomes ill-conditioned when ¢
is sufficiently small, which is always the case for the uncertain nonlinear two time-scale
dynamic systems. In general, these ill-conditioned linear matrix inequalities are very
difficult to solve. Thus, to alleviate these ill-conditioned linear matrix inequalities, we have
the following theorem which does not depend on ¢. |

Now we are in the position to present our first result.
Theorem 1: Consider the system (1). Given a prescribed %, performance y >0, for :1=1, 2, -,

s, if there exist matrices P(i), positive constants J(7) and matrices Yj(z),j =1, 2, ---, r such that
the following ¢-independent linear matrix inequalities hold:
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EP(l) + P(z)D > 0 (38)
W) < 0, i=1.2r (39)
Y (@)+¥@) < 0, i<j<r (40)
where EP()=PT()E, PQD=DP" (), E=[é OJ, D:[g (I)j
o0 ) (*): (*):
¥ (l)= R(l)B 1, (l) _7/R(l) (*) (* )T (41)
o) 0 RO )
z" ) 0 0 -P@)
D, ()= 4,(0)P()+ P"(1)4] 1)+ B, ()Y, (e)+ Y ()B] (¢)+ /1”1:’(1) (42)
9,(t)=C, ()P(1)+ Dy, (1)1, (0) (43)
R(1)= diag{s(:)1,1,5(:)1,1}, i ) (44)
20)= [ Py gy PO) oy P2 P0) 45)
P(0) = diag {P() - B~ 1) B+ 1);- B(s)} (46)
o)=L (’)+2P 0 )

with

By, ()= 1 1 By()]
C1,O=poH] O V20e0H] © 0 V20T O]

Dro, 0= V2OOHT @) 1oL 6) N2RODL, O]

1

HE (), (z)H}JZ

x@[np%)ii[

i=1j=1

then there exists a sufficiently small &> 0 such that the inequality (5) holds for & € (0,].

Furthermore, a suitable choice of the fuzzy controller is

u(r>=§ujf<j(z>x<r>-

where
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K;0)=Y,((PQ) " - (49)

Proof: Suppose there exists a matrix P(z) such that the inequality (38) holds, then P(:) is of
the following form:

P()[ﬁ(()) P:@J °0)

with Py(1)=P{ ()>0 and P5(:)=P§ (:)>0. Let

P.()=E,(P()+P(:)) (51)

with

0 O

B()= (0 £ (’)j, (52)
Substituting (50) and (52) into (51), we have

ro-| 20 20) )

&Py (i) &Ps(0) '
Clearly, P,({)= P/ (1), and there exists a sufficiently small £such that for ¢ € (0,£],P,(:)>0.

Using the matrix inversion lemma, we learn that
P @)= 0 +eM O (54)

where M, (1)=—P " (1)};(1)(1 +eP7! (1)13(1))_1 P7'(;). Substituting (51) and (54) into (10), we

obtain
Wi (@0)+ vy () (55)

where the ¢-independent linear matrix W;(z) is defined in (41) and the e-dependent linear
matrix is
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¥, (1)=¢ \+24,P() (56)
0 i ¢ ¢
(€. WP+ By ()Y, () 0o ¢
Z" (1) 0 -P()
with Zg(l)=(«/7u P}y Ay P0) A PO}-4, P (Z)J F:()= dia&{f)(l)’ o
P(-1).P(+1) - ,ﬁ(s)}, ﬁ@):%’ﬂ(’) and ¥, (1)=K ;(1)M;" (). Note that the &-

dependent linear matrix tends to zero when ¢ approaches zero.

Employing (38)-(40) and knowing the fact that for any given negative definite matrix W,
there exists an ¢ > 0 such that W + ¢l < 0, one can show that there exists a sufficiently
smallé >0 such that for ¢ € (0,], (8) and (9) hold. Since (7)-(9) hold, using Lemma 1, the

inequality (5) holds fore e (0,¢] . |

4. lllustrative Example

Consider a modified series dc motor model based on (Mehta & Chiasson, 1998) as shown in
Figure 1 which is governed by the following difference equations:

740K L i2(0)-(D+ADYo(0)
L0 _Ri(0)-K, L (o(0)+ 7 () (57)

where &(t)= (1)~ ,./(7) is the deviation of the actual angular velocity from the desired
angular velocity, ;(t)zi(t)—i,ef(t) is the deviation of the actual current from the desired

current, I;(t)z V()= V,er(r) is the deviation of the actual input voltage from the desired

input voltage, | is the moment of inertia, K,, is the torque/back emf constant, D is the
viscous friction coefficient, and R,, R L and L r are the armature resistance, the field

winding resistance, the armature inductance and the field winding inductance, respectively,
withRAR,+R,and LAL;+L,. Note that in a typical series-connected dc motor, the

condition L, >>L, holds. When one obtains a series connected dc motor, i(t)=i,(r)=i(7)
we have L, >>L,. Now let us assume that |A]| <0.1].
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Fig. 1. A modified series dc motor equivalent circuit.

Giving x1(r)=a(f), x,(1)=i(¢) and u(t)= "V (¢), (57) becomes

B Bl R

where ¢ = L represents a small parasitic parameter. Assume that, the system is aggregated
into 3 modes as shown in Table 1:

Mode + | Moment of Inertia | J(2) &£ AJ(t)
(kg-m®)
1 Small 0.0005 +£10%
2 Normal 0.005 +£10%
3 Large 0.05 £10%

Table 1. System Terminology.

The transition probability matrix that relates the three operation modes is given as follows:

0.67 017 0.16
P, =030 047 023/
026 010 0.64

The parameters for the system are given as R =10 Q, Ls= 0.005 H, D = 0.05 N 'm/rad/s and
Ky =1N m/A. Substituting the parameters into (58), we get

Lﬁii)}[{o.oﬁi (v) ?;EG(;?%Q((ZH{O?I g}W(t)n{ﬂu(t)
N —50 G| X

0 0 x,(?)

ol S o
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where x(1)= [xlT () x3 (t)]T is the state variables, w(r)= [w{ () wg(t)]T is the disturbance
input, u(t) is the controlled input and z(t) is the controlled output.
The control objective is to control the state variable xs(t) for the range x2(t) € [N1

N2]. For the sake of simplicity, we will use as few rules as possible.
Note that Figure 2 shows the plot of the membership function represented by

xz(t)+N2

M, @m%% and M ()2

Knowing that x»(f) € [N1 N2], the nonlinear system

1 M 1{:: :;I M :,(*c ]

-3 0 3
Ny X5(f) Ny
Fig. 2. Membership functions for the two fuzzy set.

(59) can be approximated by the following TS fuzzy model
E (1) = z i [[ A )+ B ofe)+ leu(z)}, «{0)=0,
- Sule- 0,0}
where i is the normalized time-varying fuzzy weighting functions for each rule, i = 1, 2, x(#)

{Xl(f)} E = {1 ﬂ A ()= F(x(t),0,0)H, (:)A4, (1) = F (x(¢),0,0)H, (1),

xz(t) 0
~100 10N 00 10N
40 05y 1}’ A2 ()= {oooszv 102}
0. 1 -

4,0)= 10 } - { 10 NZ}

70,0058, - 4 0.005N, -10]’
B 01N1 - 0.1N,

41(3)=

1) |—0.005N, } 42(3)= {oooszv -10 }

0 0

B, (0= B1,0)- [01 OJ Ba, (0= B2, )= Hchc):cb@){; SJ,
and Diy (1)=Dis, (l)zm,
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with ||[F(x(t), 3 t)|| < 1. Then we have

__0.05 0.05 N __0.05 0.05 N
0= A 0-[ 7 )

In this simulation, we select N1 = =3 and N> = 3. Using the LMI optimization algorithm and
Theoreml with ¢ = 0.005, y =1 and (1) = 6(2) = 6(3) = 1, we obtain the results given in Figure
3, Figure 4 and Figure 5

Remark 2: Employing results given in (Nguang & Shi, 2001; Han & Feng, 1998; Chen et al.,
2000; Tanaka et al., 1996; Wang et al., 1996) and Matlab LMI solver [28], it is easy to realize
that when ¢ < 0.005 for the state-feedback control design, LMIs become ill-conditioned and
Matlab LMI solver yields an error message, “Rank Deficient”. However, the state-feedback
fuzzy controller proposed in this paper guarantee that the inequality (5) holds for the
system (59). Figure 3 shows the result of the changing between modes during the
simulation with the initial mode at mode 1 and ¢ = 0.005. The disturbance input signal, w(t),
which was used during simulation is given in Figure 4. The ratio of the regulated output
energy to the disturbance input noise energy obtained by using the %, fuzzy controller is
depicted in Figure 5. The ratio of the regulated output energy to the disturbance input noise
energy tends to a constant value which is about 0.0094. So y =+/0.0094 =0.0970 which is less

than the pres-cribed value 1. Finally, Table 2 shows the performance index, y, for different
values of ¢. O

o8]
h
T
L

]

Maode

il §
o
¥l

15 2

Time (sec)

=
=
i

Fig. 3. The result of the changing between modes during the simulation with the initial
mode at mode
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The performance index ~
£ State-feedback control design
0,005 00070
0.10 04796
0.30 .8660
.40 0.9945
0.41 =]

Table 2. The performance index vy for different values of ¢.

5. Conclusion

This chapter has investigated the problem of designing a robust #, controller for a class of
uncertain nonlinear two time-scale dynamic systems with Markovian jumps that guarantees
the £»>- gain from an exogenous input to a regulated output to be less or equal to a
prescribed value. First, we approximate this class of uncertain nonlinear two time-scale
dynamic systems with Markovian jumps by a class of uncertain Takagi-Sugeno fuzzy
models with Markovian jumps. Then, based on an LMI approach, sufficient conditions for
the uncertain nonlinear two time-scale dynamic systems with Markovian jumps to have an
#, performance are derived. The proposed approach does not involve the separation of
states into slow and fast ones and it can be applied not only to standard, but also to
nonstandard uncertain nonlinear two time-scale dynamic systems. An illustrative example
is used to illustrate the effectiveness of the proposed design techniques.
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