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1. Introduction

The interactions that occur among different cells and inside themselves are essential for
maintaining the fundamental life processes in biological systems. These interactions are
generally described as networks interconnecting an enormous number of nodes and are
characterised by extremely complex topologies. Among such networks, the most studied are
typically classified as metabolic pathways (the flow of material and energy in the organism),
gene regulatory cascades (when and which genes are expressed) and protein signalling
networks (triggering an immune response to viral attack). The Pathguide resource list offers
detailed information on several biological pathway and network databases accessible
through the web (http:/ /www.pathguide.org, 2009 - Bader et al., 2006).

Mathematical objects such as graphs, consisting of nodes and links joining the nodes (arcs
and edges), offer a convenient and effective level of abstraction for representing the
aforementioned networks. These graphs are generally referred to as biological interaction
networks.

Biologists can benefit from graph-based formalisms since they are able to visualize the
overall (or certain parts) topology of the network, modify nodes and links and annotate
them with additional information. Furthermore, many biological questions can be
conveniently formulated in terms of search or optimization problems on graphs. For
example, it is currently believed that the topological structure of biological networks (e.g.
cell signalling pathways) reveal its characteristics of robustness and evolutionary history.
The main lines of thought in this field describe biological interaction networks by employing
formalisms based on either undirected or directed graphs; we describe them in section 2.
The complexity of biological networks is not only driven by the enormous amounts of
variables and the relationships among them; additional sources of uncertainty are due to the
difficulty of observing cellular dynamics in 3D-space. Thus, developing quantitative
mathematical models of cellular dynamics in large networks may be computationally
infeasible. However, structural analysis and hypothesis formulation (and validation) may
reveal valuable information on the underlying biological functions at a system level (e.g
which molecules and information processing pathways are involved in the accomplishment
of a biological function). For this reason, it is essential for biologists working on such
networks under this perspective to have access to open and extensible computing platforms
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586 Advanced Technologies

with advanced functionalities and efficient graph rendering routines. To this end, we
summarise (section 4) the features of an exemplary subset of open source software packages
typically used for the exploratory analysis of biological interaction networks of variable type
and size.

We conclude the chapter by observing that currently there is a lack of quantitative and
comprehensive frameworks for linking network topology to biological function.

2. Graph-based formalisms for representing biological interaction networks

Graphs are widely used as a mathematical formalism for representing networks. In this
section we review directed and undirected graph-based paradigms used to represent and
study biological networks. Directed graphs can well describe causal relationships among
entities whereas undirected graphs are better suited for expressing soft constraints between
nodes.

2.1 Undirected Graphs
A Dbiological interaction network may be represented by an undirected graph, a

mathematical structure G(V,E) composed of a set of vertexes V and edges E (E c [V]?); we
denote the resulting graph as a biological structure graph (BSG). The vertex set consists of
all the species that occur in the network; an edge connects two species that are biologically
related.

Interesting matters to investigate about BSGs are, for example, determining whether they
share the same topological properties of other types of networks (e.g. social or
communication networks), their robustness (e.g. against viral attacks or mutations) and if
they are self-organizing.

To this end, qualitative approaches based on statistical characteristics of network structure
have been widely applied for studying the topology of large-scale networks (Albert, R. &
Barabasi, A.-L., 2002; Watts, D.]. & Strogatz, S.H., 1998; see Jeong et al., 2001 for a case study
of protein-protein interaction networks). These methods try to exploit massive datasets in
order to discover patterns that would otherwise be undetectable at smaller scales.

Among the most frequently used and perhaps most significant topological statistics are the
average path length I, defined as the average number of links along the shortest paths for all
possible pairs of network nodes and the average clustering coefficient

= 1
c==-Sc,

where the clustering coefficient C; of node i provides a quantitative measure of how close to
a clique is the subgraph obtained by considering the vertex i and all its neighbors.

In random networks (Erdos, P. & Renyi, A., 1960), an edge connecting two arbitrary nodes is
added to the graph as the result of a random experiment (the probability of accepting the
edge is equal to a fixed p € [0,1]). In these networks the statistics  and C generally assume
small values (Albert, R. & Barabasi, A.-L., 2002). A small [ implies that an arbitrary node can
reach any other node in a few steps thus it is a measure of the efficiency of information flow
(or processing) across the network (eg. it is useful for studying mass transfer in a metabolic
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network). On the other hand, with a small C itis likely that the network does not contain
clusters and groups.

Recent studies have revealed that many complex systems present small-world and scale-
free properties (Albert, R. & Barabasi, A.-L., 2002). A small-world network has a

significantly larger C , with respect to a random graph constructed with the same vertex set,
and a relatively small I (Watts, D.J. & Strogatz, S.H., 1998). Scale-free networks, on the other
hand, are characterised by the degree distribution following the Pareto or power-law
distribution p(k)~k”, meaning that the fraction p(k) of nodes in the network having k links to
other nodes is proportional to k" where y is a constant typically in the range ]2,3[ (Albert, R.
& Barabasi, A.-L., 2002).

It has been conjectured that a self-organizing mechanism based on the preferential
attachment rule can explain the dynamics of scale-free networks. Preferential attachment,
which naturally leads to the power-law degree distribution, implies that when a new node is
added to the network it is attracted by the vertexes with the highest degree. This is in
contrast to random graphs where the addition of nodes follows a pure probabilistic process,
meaning that nodes are equally important in a statistical sense (no node is privileged).
Research has shown that the functions of a complex system may be affected to a large extent
by its network topology (Albert, R. & Barabasi, A.-L., 2002). For example, the greater
tendency for clustering in metabolic networks appears related to the organization of
functional modules in cells, which contribute to the behaviour and survival of organisms.

In a biological network this behaviour is plausible (and desirable) since the network
converges toward a structure that favours the efficiency (low-energy reactions) of its
functions (many real world networks ultimately exhibit this structure). Some researchers
explain this behaviour as the evidence of evolutionary history; i.e., nodes with high degrees
have resisted selective pressure since they are important for the survival of the organism
(acting as hubs and thus are essential for the correct functioning of the network). It is this
structure that makes such networks tolerant to random failure and errors (e.g. missense
point mutations) but less vulnerable to targeted attacks (e.g. removal of nodes with highest
degree) (Holme et al., 2002; Bollobas & Riordan, 2003). However, while this a posteriori
analysis seems consistent with observations of real biological networks there are still many
open questions that naturally arise regarding the way they are actually formed.

2.2 Directed Graphs

When reactions are also represented as vertexes Vi, distinct from the set of vertexes Vs
denoting species, we obtain a particular directed graph known as a bipartite directed graph
G(Vs, Vi, E) where Vs N V. = & and E contains the arcs connecting species occurring within a

specific reaction. Following the terminology introduced by other authors (BPGs, Ruths et al.,
2006) we refer to such graphs as biological pathway graphs!.

BPGs based on bipartite graphs are characterised by the following properties (which
immediately follow from the definition of bipartite graph):

1 The nomenclatures BSG, BPG used in this article simply denote that the network is represented
respectively by an undirected or directed graph. The BSG formalism is often used to represent protein-
protein and protein-DNA interaction networks whilst the BPG is employed to study metabolic
networks.
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(@) the sets Vi, V; form a partition of the vertex set V. Therefore a node in a BPG is either a
molecule or a reaction but not both;

(b) the edge set E < Vs X Vr U Vi X Vs (the symbol X denotes the cartesian product between
sets - a directed edge connecting the generic nodes u and v is denoted by uv; likewise,
the directed edge connecting v to u is denoted by vu). This condition implies that Vs and
V. are independent sets. As the result, molecules point exclusively (are the input) to
reactions while the latter are linked only to molecules;

(c) the property r € V; u,v € Vss.t. ur, rv €E implies that any reaction requires at least one
molecule (products) in input and produces at least one molecule (substrate) in output.

The BPG directed graph-based formalism is appealing since:

(@) both molecules and reactions are viewed as vertexes (which typically indicate the
information content of the graph while edges carry the information concerning its
topological structure) thus making certain types of analysis simpler (e.g. when taking
into account the enhancing or inhibiting character of reactions);

(b) the directionality of the reactions and information flows in the network are made
explicit;

(c) there is (at least in principle) a greater compatibility with richer (quantitative) models
that are able to take into account system dynamics (e.g. Petri nets).

The analysis of a BPG is essentially performed by working on the corresponding adjacency

matrix A of size (| V:|+|Vs]|)? (the notation |S| represents the number of elements in the

set S, i.e. the cardinality of S); element A(i,j) is set to 1 if there exists an arc joining vertex i

with vertex j (it is straightforward to verify that are |Vs|2 elements in the upper left

triangular sub-matrix - above the main diagonal - and |V:|2 elements in the lower
triangular sub-matrix - below the main diagonal - are equal to zero).

An alternative representation is given by the adjacency list L; in this case the list of nodes

(either molecules or reactions) for which there exists an arc originating from the i-th node

are stored in the corresponding position of the array L(i). Graph analysis algorithms are

often more efficient when implemented using adjacency lists.

Of notable interest are the sets yU(s)={e e E|e = sr, ¥ € V;} and y(D(s)={e e E|e =15, 7 € V;}

which contain the arcs respectively departing from and entering into an arbitrary species

node s, and the sets pM(s)={r € V:|rs € E} and pt(s)={r € V.|sr € E} which contain
respectively the child and parent vertexes (reactions) of an arbitrary node v. Analogous
definitions can be set out for interaction s (i.e. for the sets y(r), y((r), pd(r), u(H(r)). Also,
for v € V; U Vs d+(v)=|yD(0) |=|u®(@©) | and d.(v)=|yD(v) |=|uD(v)| are respectively the

out degree and in degree of v, we have Vr e V, d+(r)d.(r) > 0.

The in- and out-degrees of a molecule node are extremely informative since one can identify

“source” molecules (with in-degree equal to 0 that act only as substrates) and “sink”

molecules (with out-degree equal to 0 that act only as products). Nodes with large in/out-

degrees (also called “hub” nodes) are typical of many reaction networks that exhibit the
scale-free topology and small-world structure as discussed above.

It is interesting to explore a BPG by searching for the induced subgraph originating from a

particular vertex set. The basic use of this algorithm is for identifying the reactions and

substrates involved in the transformations between any two (or set of) molecules. In
particular, the induced subgraph originating from a certain vertex v € V; with constraints

specified in order to exclude a set of species nodes Xs — Vs and/or reaction nodes X; ¢ V:
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from the search (i.e. vertexes that should not be visited by the algorithm). This can be useful
for determining how inhibitors affect the overall functionality of the network.

Path enumeration algorithms identify the paths originating in a vertex v € Vs and
terminating in t € V. Again the algorithm may be restricted to visiting (or excluding) certain
nodes as above. To detect feedback loops incident on s it is sufficient to set s=t; such loops
are worthy of interest from a biological point of view.

An interesting line of research was recently opened by (Ruths et al., 2006) who formulated
two biologically significant problems on BPGs: the constrained downstream (CDP) and
minimum knockout (MKP) problems. The CDP essentially searches a BPG for the set of
reactions that leads from one set of species to another, with the constraint that the search
algorithm must include and/or exclude a given set of reactions. An application of a CDP
instance to a BPG would therefore be useful to design drugs that modify or inhibit certain
biological functions while preserving others. From a topological point of view this amounts
to identifying molecules or sets of molecules that have to be targeted to inhibit function of a
sub-network while preserving connectivity (and thus information flow) to a different sub-
network. On the other hand, the MKP seeks for a minimum-size set of molecules whose
removal (knocking out) from the BPG disconnects given sets of source and target species
thus making impossible the production of certain target molecules from the source set. An
instance of the MDP may help solve the biological problem of identifying the optimal and
minimal sets of molecules that have to be targeted to block network function. For example,
in patients affected by cancer this could allow the development of therapeutics that can
efficiently destroy cancer cells while preserving normal cells.

The above algorithms based on a depth-first search strategy usually require running times
of O(| Vs - Xs|+|V: - X¢|).

2.3 Relationship between directed and undirected graph representations

The transformation of the BPG G(Vs, Vy, E) into an undirected bipartite graph Gu(Vs, Vr, Ey)
can be simply obtained by duplicating all the arcs in E, i.e. Ek=E U {e=rs € E |sr €E, s
€ Vs, r € Vi }. It is straightforward to verify that the (symmetric) adjacency matrix B of the
associated undirected graph G, may be calculated by the matrix sum B=A+A" (or A’+A, A’
denotes the transpose of A) where A is the adjacency matrix of the directed graph G.

(@) (b) ©

Fig. 1. (a) An example BPG, (b) the undirected BPG derived from (a) and (c) the BSG
corresponding to (b).

As an example, following this procedure the BPG depicted in Figure 1-(a) is transformed
into the undirected graph shown in Figure 1-(b), which is also bipartite. From a biological
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point of view, one must be aware that the undirected graph contains additional information
since molecules that were reactants are now also products and vice versa; such newly
introduced reactions are not necessarily biologically significant.

A further transformation step is illustrated in Figure 1-(c) where the undirected BPG is
transformed into a BSR by cutting reaction nodes (all the information contained in the arcs
entering and leaving the reaction is retained).

2.4 Petri Nets

In computer science, a Petri net (PN) is a graphical and mathematical modeling tool for the
analysis and simulation of concurrent and/or stochastic systems (Murata, 1989). A system is
represented as a bipartite directed graph with a set of "place" nodes that contain resources
(conditions), and a set of "event" nodes which generate and/or consume resources
(transitions).

A PN models both the topology of the network as well as the dynamical behavior of the
system. For this reason they have been employed to simulate biological networks (Reddy et
al., 1993; Tsavachidou & Liebman, 2002; Nagasaki et al., 2005; Chaouiya, 2007;). In
translating the biological network into a PN, each molecule and each interaction are
described as a node. Each molecule is initialized with some number of “tokens,” which are
then iteratively reallocated by the interactions to which they are connected.

3. Enhanced formalisms for representing biological networks

In this section we briefly describe graphical formalisms that are commonly used to represent
complex biological systems. Although such formalisms are not always strictly graph-based
(i.e. directed or undirected graphs), they are worthy of mention since they afford visual
modelling approaches that humans can employ for the description, analysis and simulation
of complex biological systems by computer programs. In general, with respect to
mathematical graphs these notations encompass enriched and highly expressive formalisms
that can describe many types of nodes and relationships.

These languages provide a consistent and complete formalism for the specification of
biological models and thus facilitate model sharing in different software environments
(models should be platform-independent).

It must be emphasized that currently system biology still lacks a standard graphical
notation.

3.1 SBML

The Systems Biology Markup Language (SBML) is an open XML-based schema for
representing quantitative biological models such as regulatory and metabolic networks
(Hucka et al., 2003; Finney & Hucka, 2003). SBML specifies a formalism for representing
biological entities by means of compartments and reacting species, as well as their dynamic
behaviour, using reactions, events and arbitrary mathematical rules (Hucka et al., 2008). The
SBML file format and underlying network structure is widely accepted and supported by a
large number of tools (http:/ /sbml.org, 2009).
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3.2 BioPAX

The Biological Pathway Exchange Format (BioPAX) is a collaborative effort to create a data
exchange format for biological pathway data (http://www.biopax.org, 2009). The BioPAX
specification provides an abstract object model, based on the web ontology language (OWL),
for the representation of biological pathway concepts. Mapping the concepts defined in any
custom data model to the semantically corresponding items in the BioPAX model provides a
unified formalism for the representation of biological interaction networks.

3.3 PSI-MI

The Proteomics Standards Initiative (PSI-MI) provides an XML-based formalism for the
representation of protein-protein interaction data

(http:/ / psidev.sourceforge.net/mi/xml/doc/user/, 2009). Future developments are aimed
at expanding the language to include other types of molecules (e.g. DNA, RNA, etc).

3.4 SBGN

Recently, the level 1 specification of the Systems Biology Graphical Notation (SBGN) was
released (http://www.sbgn.org, 2009) in an effort to provide a standardised graphical
notation to describe biological systems in a format comprehensible to humans. In this
respect, it may be considered a natural complement to SBML and to the aforementioned
formalisms.

4. Graph-based Analysis Tools

It is essential for biologists working with biological networks to have access to open and
extensible computing platforms with advanced functionalities and efficient graph drawing
routines. For this purpose there are currently many commercial and open source tools
available; a short selection is provided in Table 1 which highlights some essential features.

Tool Graph Graph Graph | Integration | Supported | License
Analysis | Editing | Visual. Formats
Cytoscape Web SBML, Open
(Shannon et al., 2003) YES YES YES Services PSI-MI, source
BioPAX
PIANA (BIANA) Cytoscape | PSI-MI, Open
(Aragones et al., 2006) NO YES YES plug.in BioPAX source
ONDEX SBML, Open
(Kohler et al., 2006) YES YES YES PSI-M], source
BioPAX
VisANT YES YES YES Open
(Hu et al., 2006) source
GraphWeb YES YES YES | Cytoscape [ BioPAX Public web
(Reimand et al., 2008) plug.in service
PathSys YES YES YES Open
(BiologicalNetworks) source
(Baitaluk et al., 2006)

Table 1. Software tools for graph-based analysis of biological networks
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The first column “graph analysis” indicates whether the software tool can perform
structural analysis by making use of graph-theoretic algorithms (average path length,
clustering, diameter, etc). The column labelled “graph editing” shows that all the tools have
graph editing functionalities, i.e. the capability of adding and modifying nodes or edges
(although not all packages have graphical editors). All programs implement advanced
graph rendering routines that are able to display large networks (column “graph
visualization”). The column “supported formats” enumerates the supported notations
among those described previously. Finally, the last column (“license”) indicates the
conditions of use of the software (some licenses are free only for academic use).

5. Conclusions

With the recent advancements of experimental techniques in molecular biology (e.g.
microarrays) vast amounts of data are being gathered at an impressive rate and made
available in numerous on-line databases. The systematic analysis of this data is currently the
objective of many strong-minded research efforts to observe and understand the biological
principles that govern the interactions between a variety of molecules at the system level.
Such interactions are viewed as networks that often use graph-based notations since the
later allow both explorative, statistical and functional analysis (e.g. local and global
characteristics, growth dynamics). In addition, graph-based approaches may provide the
means for identifying the functional units (that constitute a large network) responsible for
the basic life processes in an organism at the molecular level. Such analysis may also explain
the (multifactorial) mechanisms by which molecular interaction networks (as a whole or
certain subsystems) appear disrupted in many forms of disease.

Although cluster analysis may be able to identify the functional components of a system it is
also necessary to study the interactions among subsystems and with the environment. This
also applies when evaluating network robustness with probabilistic based formalisms, such
as Markov-chain models or stochastic PNs, which capture the time dependent probability of
error propagation within a system but are unable to explain the course of events that are
caused by interactions with the environment (e.g. transitional events) or the relationship
between faults and the functional model (a fault probability equal to zero does not
guarantee correct functioning of the system).

Applying highly expressive formalisms (e.g. Petri nets) presents at least two problems: a)
exploratory techniques can be overly complex (e.g. NP-hard algorithms, state-space
explosion) and b) models are difficult to use and understand since they require skilled users
to design and maintain. These are general issues that apply to an entire class of graph-based
formalisms used to model large-scale networks. As a result, no technique appears to be
suitable for representing an entire system from both the structural and functional points of
view. One way to approach these problems is by using multiple formalisms, i.e. applying
different modelling techniques to different parts of the system in order to exploit the
strengths of one notation where others are less suitable. However, we stress that the major
concerns in this area are due to the absence of a widely accepted standard notation for the
representation of biological interaction networks and the availability of quantitative models
that are able to explain both their structural features and system dynamics.
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